Loading...
HomeMy WebLinkAboutStormwater Report - 10 COMMERCE WAY 7/8/2002 SUPPLEMENTARY ENGINEERING COMPUTATIONS TO ACCOMPANY A PERMIT SITE PLAN IN N. ANDOVER, MA Proposed Car Wash Facility SITE: 10 Commerce Way N. Andover, MA 01845 OWNER: APPLICANT: a� jj' Fa h'qg�n Vincent Grasso Same 10 Millpond No. "056 N. Andover MA 01845\ �l,T��,� oaP ..• DATE: July 8, 2002 Rev. 1 - January 2, 2003 H.S.A. NO. 9425 Rev. 2 - January 22, 2003 RECENWED �3 Fn3 r Aeft, NE NORTH hN00VL--r9 PLANNING ENGIE - _ 0 TES DIVISION F HL PtTf SSV S,INC. t 235 NEWBURY ST � � NVE RS, MA 01923 PHONE: (978) 777 *.fryer AX: (978) 774—4205 TABLE OF CONTENTS PAGES INTRODUCTION AND METHODOLOGY 1-2 SUMMARY OF RESULTS 2 Hydrology Summary for 1,2,10, and 100-year, 24-hr. storms MDEP STORMWATER MANAGEMENT FORM 3-14 - (Includes attachments) Appendix: • EXISTING CONDITIONS COMPUTATIONS • PROPOSED CONDITIONS COMPUTATIONS 1. DESCRIPTION OF EXISTING SITE& DRAINAGE FEATURES The existing property currently consists of a previously site consisting of approximately 2.6 developed acres. The existing pavement grade and wooded area slope is relatively flat (34% slope). Currently,the site runoff is untreated and flows primarily towards wetlands situated to the west. The existing structure situated on the subject property consists of an existing concrete block/metal frame warehouse, not currently in use. 2. DESCRIPTION OFPROPOSED DRAINAGE FEATURES. The existing concrete block/metal frame structure will be converted into a proposed car wash facility. In addition, a proposed parking area, supporting car vacuums, will be constructed to the south of the existing structure. In order to comply with Massachusetts Department of Environmental Protection(MDEP) Stormwater Management Guidelines, 1996, by implementing Best Management Practices (BMP's)to the maximum extent practicable,the proposed parking area runoff will direct into a proposed vortechnics devise, then into a proposed water quality Swale situated to the west of the proposed parking area. Runoff from the existing pavement surface will be treated via a second vortechnics structure to the west of the existing structure. In addition, roof runoff will be routed into trench drains situated along the existing structure. Because of the recorded presence rare and endangered species as listed by Massachusetts Natural Heritage,the proposed drainage system has been designed to treat the first inch of runoff generated by post-development impervious surfaces. 3. PEAK STORMDISCHARGE SUMMARY. The purpose of stormwater modeling is to determine how effectively a proposed drainage system will be able to reduce or hold constant the amount of stormwater runoff leaving a developed site. To achieve this goal, the HydroCAD 3.2 Stormwater Modeling System was utilized to determine the runoff rates for the 1,2, 10, and 100-year Type III storm events. The HydroCAD system is based on the U.S.D.A. Soil Conservation Services Technical Release 20, a unit hydrograph procedure. The addition of impervious area potentially generates a greater amount of stormwater runoff. In order to reduce the stormwater runoff produced by the development of the site, a closed drainage system has been incorporated to route stormwater runoff, effectively increasing times of concentration,thus spreading out over time the various peak flows discharging off site. The following table is a summary of the peak flows generated by the 1, 2, 10 and 100-year storm events for both pre and post development flows. 24 hour rainfall frequencies utilized for this report are the result of Cornell University Technical Publication Tlo. RR 93-5 dated 9/93. Refer to the pre and post development drainage plans to be included in this report for the location and extent of the subcatchments (SC) listed in the table. Based on the results below, no changes in upstream and downstream flooding are anticipated. Although the table depicts a decrease in rate for pre--development to post-development conditions, we feel the total volume of water supplied to the existing drainage system and wetland resource areas will not be decreased appreciably. We do not anticipate any negative impacts on downstream wetlands and vegetation. The design of the systems in accordance with the DEP Guidelines lead to the rate decrease shown due to the multiple BNIP concept and its effect on those rates. COMPARISON OF PEAK FLOWS combined hydrograph STORM EVENT 1 Year 2 Year 10 Year 104 Year Storm Storm Storm Storm (c.f.s.) (c.f.s.) (c.f.s.) (c.fs.) Pre-Development 1.8 2.6 3.7 7.1 Peak Flow; SC 1 & SC 2 Post Development 1.5 2.2 3.1 5.7 Pear Flow;Pond 5, Reach 2, SC 5 Total Increase/Decrease -0.3 -0.4 -0.6 -1.4 TOWN OF NORTH ANDOVER DEPARTMENT OF ENVIRONMENTAL PROTECTION STORMWATER MANAGEMENT FORM This form is intended to ensure that proposed stormwater control designs meet the stormwater management standards described in the DEP's Stormwater Management Policy (Nov. 1.996 - REV Mar. 1997) and the Town of North Andover's Wetland Protection Regulations. The Commission requires that applicants submit this form with the Notice of Intent, as well as supporting documentation and plans, to provide stormwater information for conservation commission review. If a particular stormwater management standard cannot be met, information should be provided to demonstrate how adequate water quality and water quantity protection will be provided by - the project. Engineers should use this form to certify that the project meets the stormwater management standards as well as acceptable engineering standards. This form should be completed by checking the appropriate boxes for each standard and by signing and stamping the back of this form. Project Location: to ComAAz*8 t uN !J- AJ ycx,_=.Q^, MA N The proposed project is/is not(circle one) exempt from one or more of the stormwater-management standards. If project is exempt, explain why: PAR 71AL_ 9wgy oPmgs1,_TF PP-6 jrC Stormwater runoff volumes to be treated for water quality are based on the following calculations: (check one that applies) 1 inch of runoff x total impervious-area of post-development site for Critical Areas (e.g. Outstanding Resource Waters and Ephemeral Pools): ❑ 0.5 inches of runoff x total impervious area of post-development site for other resource areas. Standard #1: Untreated stormwater (See plans oi- ) DPA-46-G C1+Ie15) 5Q The. project is designed so that new stormwater conveyances (outfalls/discharges) do not discharge untreated stormwater into.,or cause erosion to wetland resource areas of the Town of North Andover. Standard #2: Post-development peak discharge rates(See plan 4- ) DRA,�fX6 5 Ck-Cc I' Post-development peak discharge rates do not exceed pre-development rates on the site either at the point of discharge or downgradient property boundary. ❑ N/A: project site contains waters subject to tidal action, so standard is not applicable. I9 Stormwater controls have been designed for the 2-year, 10-year,and 100-year, 24-hour storm. Standard #3: Recharge.to groundwater (See plan 5 ) .D2Awhe-c-, CAL-CS.) The annual groundwater recharge for the post-development site approximates annual recharge from existing site conditions on a sub-watershed level. ® Soil types have been identified according to either the U.S. Natural Resources Conservation Service (NRCS) County Soils Survey or on-site soil evaluation. Calculations on stormwater flow are based on a soil hydrologic group of D and total impervious area of 3+ 8°tb (square feet). �Cl Soil types at each planned point of stormwater runoff infiltration include: Ur - u0A0 [� Infiltration Best Management Practices(BMPs) used for this project include: FLo,.v .Dc1`TVSa0, ujc(S i WA't i_avdcitr� Standard #4: 80% TSS removal (See plan Z ) DQAw C�c� The proposed stormwater management systems will remove 80% of the post-development site's average annual load of Total Suspended Solids(TSS). ® The BMPs selected forthis project include (list BMPs with TSS removal rates): S'tzs.�T Swe�op­'&-) 06--P sa,A/a eAT" 84StJ 5 , l Ai t/VN IG Wr��lcjc oCrcaS(V(P- Kq UIC5 0001 al� ADD �,,,Aut 5wkt.C; C Rene(Z ro S�� L{- �u e4�T TSS �2r � i2AtL$S) Page 1 of 2 11/98 TOWN OF NORTH ANDOVER DEPARTMINT OF ENVIRONMENTAL PROTECTION Standard #6: Higher potential pollutant loads.(See plan ) 9 The project site does/41oes ircle one) contain Land Uses with Higher Potential Pollutant Loads. If site contains such land uses, describe: ❑ If applicable, BMPs selected for controlling stormwater in these areas are designed to prevent infiltration of untreated stormwater and include: Standard #6: Protection of critical areas (refer to Section H in the local Regulations) (See plan_) 9 The project site does/ ooes nott circle one) contain Critical Areas with sensitive resources. If site contains critical areasescribe: ❑ If applicable, BMPs selected for stormwater discharges in these areas include: Standard #7: Redevelopment projects (See plan S g-) 0PA(,rAc_E %_ec� 6 4 The proposed activity Q is not(circle one) a redevelopment project. CPfiAML) Note: Components of redevelopment projects which plan to develop previously undeveloped site do not fall under the scope of Standard 7. ® If the project is a redevelopment project,the following stormwater management standards have been met: STnUDN_-0 &A T55 rM_,, ® The standards which have not been Let include: uoe��rvzc of RooF- ►O�,o f-F rx PAAAMt� r-2vEA &I n&v.Av Cr- pcFTV_ .S. UAJ TO &Ra--)1JDL-A1v _ The proposed project will reduce the annual pollutant load on the site with new or expanded stormwater controls. Standard #8: Erosion/sediment control (See plan S ) 19 Erosion and sediment controls are incorporated' into the project design. to prevent erosion, control sediment movement, and stabilize exposed soils. 0 An Erosion and Sediment Control An has been developed. - Standard#9: Operation/maintenance plan (See plan S )-4- QRA1,Jk-E G -Cs ® An operation and maintenance plan for both construction and post-development stormwater controls has been developed. The plan includes BMP owner(s); parties responsible for operation and maintenance; schedule for inspection and maintenance; routine and non-routine maintenance tasks and provisions for appropriate access and maintenance easements surrounding control(s) and extending to public right-of-way. 13F M4 I attest under the penalties of perjury that I have personally examined and ',t4 am familiar with the information-contained in this submittal, including any COMEAR.U n and all documents, accompanying this certification statement; and that 1 CML co am fully authorized to make this attestation on behalf of the project applicant. J c At 1y 3AVICS P, COIWAO� p —Co-v 3 (Stamp/Signature) Print Name Date Page 2 of 2 11/98 #9523 Exhibit E Stormwater Management Norm This form is intended to ensure that proposed stormwater control designs meet the stormwater management standards described in the Department of Environmental Protection's Stormwater Management Policy(November 1996). The Depart- ment of Environmental Protection (DEP)recommends that applicants submit this form with the Notice of Intent, as well as supporting documentation and plans, to provide stormwater information for conservation commission review. If a particu-lar stormwater management standard cannot be met, information should be provided to demonstrate how adequate water quality and water quantity protection will be provided by the project. DEP encourages engineers to use this form to certify that the project meets the stormwater management standards as well as acceptable engineering standards. This form should be completed by checking the appropriate boxes for each standard and by signing and stamping the back of this forma Project Location: 10 Commerce Way,N.Andover,MA ® The proposed projec is -ts not (circle one)exempt from one or more of the stormwater management standards. If project is exempt,explain why: PA RTt A(_ PL-06rt;ZOP tt PAa:T&CT Stormwater runoff volumes to be treated for water quality are based on the following calculations: (check one that applies)Does not apply, all impervious post-development runoff retained on-site. ® l.inch of runoff x total impervious area of post-development site for critical areas(e.g. Outstanding Resource Waters and shellfish growing areas) ❑ 0.5 inches of runoff x total impervious area of post-development site for other resource areas Standard#1: Untreated stormwater See Site Plans and drainage calcs 2 The project is designed so that new stormwater conveyances(outfalls/discharges)do not discharge untreated stormwater .into, or cause erosion to,wetlands or waters. Standard#2: Post-development peak discharge rates See Site Plans and drainage calcs ® Post-development peak discharge rates do not exceed pre-development rates on the site either at the point of discharge or downgradient property boundary. ❑ NIA:project site contains waters subject to tidal action,so standard is not applicable. ® Stormwater controls have been designed for the 2-year and 10-year,24-hour storms. ® The project's stormwater design will not increase flooding impacts offsite from the 100-year,24-hour storm. Standard 43: Recharge to groundwater See Site Plans & drain. calcs ® The annual groundwater recharge for the post-construction site approximates annual recharge from existing site conditions. ® Soil types have been identified according to either the U.S.Natural Resources Conservation Service(MRCS)County Soils Survey or onsite soil evaluation. Calculations on stormwater flow are based on a soil hydrologic group of D ,and impervious area of 34,848 (square feet). The annual groundwater recharge for the post-construction site approximates annual recharge from existing site conditions. Soil types at each planned point of stormwater runoff infiltration Ur—Urban ® Infiltration Best Management Practices(BMP's)used for this project include:flow diffusor units,water quality swales Standard #4: 80% TSS removal See Drainage calcs. OQ The proposed stormwater management systems will remove 80%+of the post-development site's average annual load of Total Suspended Solids(TSS). ® Best Management Practices(BMP's)used for this project include: street sweeping,deep sump catch basins,innovative technologies(vortechnics devices),and water quality swales. Page 2 #9523 Standard #5: Higher potential pollutant loads See The project site does does no (circle one)contain Land Uses with Higher Potential Pollutant Loads. If site contains such land uses,describe: ❑ If applicable,BMP's selected for controlling stormwater in these areas are designed to prevent infiltration of untreated stormwater and include: Standard #6: Protection of critical areas See N..0..1. �( The project site oes does not(circle one)contain critical areas with sensitive resources. If site contains critical areas,describe: Endangered Species Wildlife Habitat ❑ If applicable,BW's selected for stormwater discharges in these areas include: street sweeping,deep sump catch basins, innovative technologies(vortechnics devices),and water quality swales. Standard #7: Redevelopment projects See Site Plans 01 The proposed activi is '.pis not(circle one)a redevelopment project. Note: Components of remvelopment projects which plan to develop previously undeveloped sites do not fall under the scope of Standard 7. CK If the project is a redevelopment project,the following stormwater management standards have been met: stormwater controls designed for 2& 10 year storms, no increase in flooding for 100 year storm,removal of greater than 80%T.S.S, treatment of 1.0 in.first flush ❑ The standards which have not been met include: -u© ReC'rrvZ&G OF puoc-- AixioFF -tz s, t -J -Z'-o 11 SEVAk—AT&tj Haan & row OF- Rrf'u5cs� u�31rS ro G�v�DwaT '`, ® rmwater controls. The proposed project will reduce the annual pollutant load on the site with new or expanded sto Standard #8: Erosion/sediment control See Site Plans ® Erosion and sediment controls are incorporated into the project design to prevent erosion,control sediment movement, and stabilize exposed soils. Standard #9: Operation/maintenance plan See Attached ® An operation and maintenance plan for both construction and post-development stormwater controls has been developed. The plan includes BMP owner(s);parties responsible for operation and maintenance;schedule for inspection and maintenance;routine and non-routine maintenance tasks; and provision for appropriate access and maintenance easements surrounding controls)and extending to public right-of-way. I attest under the penalties of perjury that I have personally examined and am familiar with the information contained in this submittal, including any and all 1 documents, accompanying this certification statement; and that I am fully authorized to make this attestation on behalf of the project applicant cIaBL ' orgo 6° E4 �L James R. Comeau, P.E. 1Q/19/2002 (Stain ature) Print Name Date SMP Standard 4 HANCOCK TSS REMOVAL COMPUTATIONS Grasso - Clark St., N. Andover, MA Hancock Project No. 9425 EPA Recommended Process Train BMP Design TSS Design TSS TSS Remaining TSS Removed No. Type Removal Rate Removal Rate at Discharge at Discharge I; �,�,I. � .M �°u•��� '- '�'J� 3�`i�: lsc��ria�� �� �!�.�'��?:��'dk s ;J�� ��d �a�n�sJ��b.' u.M� ��i'° zlr��:INi� -. 1 SS 10% 10% 90% 10% 2 DSCB 25% 25% 68% 33% 3 IT 70% 70% 20% 80°i6 Key Y DSCB deep sump catch basin IT innovative technology(vortech device) SS street sweeping SMP Standard 4 HANCOCK WATER QUALITY RETENTION VOLUME COMPUTATIONS Grasso-Mark St. N.Andover,MA Hancock Project No, 9425 Parameter Unit Value Comment � Tributary area AC 0.0 Runoff to critical area? 1 1=yes; O=no Runoff depth used for design IN 1.0 Predevelopment impervious area AC 0.6 Tributary Impervious area added AC 0.2 Total tributary Impervious area AC 0.8 P � .t u,I WIN. I xfP f i m"I i ' . :P 11 •'�:`'�,, :. REQUIRED RETENTION AC-FT 0.06 stormwater volume VOLUME retained on site OF 2,795 Design volume provided via: vortechnics devices OF 240 within water quality Swale OF 270 under water quality Swale OF 216 flow diffusors OF 1,092 perimeter drains OF 490 crushed stone for diffusors OF 246 crushed stone between diffusors OF 198 catch basins OF 56 DESIGN VOLUME PROVIDED OF 2,808 AC-FT 0.06 SMP Standard 3 HANCOCK GROUNDWATER RECHARGE COMPUTATIONS Grasso-Clark St. N.Andover,MA Hancock Project No. 9425 Parameter Units Value Comment i� l a :.!I.. �"a .;:i�:i&� �iA .Ai y.. .r:r 11I i0 I h'lly' �.� �r.�v�zv�><� ���-.���"� s���E��%'��'v:°�..4 J�h �1�eS`: ��i:er Asa .� ���: .6 aw'as Predevelopment soils, hydrologic group D Required runoff depth to recharge IN WAIVED A=0.40;B=0.25 C=0.10; D=waived Connected impervious area added AC, 0.2 ,a� �� REQUIRED RUNOFF VOLUME AC-FT WAIVED post development TO RECHARGE impervious areas CF WAIVED OPERATION & MAINTENANCE PLAN PROPOSED CAR WASH FACILITY 10 COMMERCE WAY NORTH ANDOVER, MASSACHUSETTS Pursuant to Permitting Requirements under Massachusetts Department of Environmental Protection Stormwater Management Policy Massachusetts Wetlands Protection Act (MGL Chapter 131, Section 40) Hancock Engineering Assoc. 235 Newbury Street Danvers, Massachusetts 01923 July 10, 2002, Rev. Jan. 2, 2003, Rev. Jan 29, 2003 1. INTRODUCTION The following Operation and Management Plan has been prepared on behalf of Mr. Vincent Grasso, 10 Mill Pond, North Andover, MA, to satisfy permitting requirements under the Massachusetts Department of Environmental Protection Stormwater Management Policy. As such, the Plan contains operation and management procedures recommended within the DEP publication: Stormwater Management, Volume Two: Stormwater .Technical Handbook, March 1997. 2. STORMWATER MANAGEMENT SYSTEM OWNER Mr. Vincent Grasso 10 Mill Pond North Andover, Ma (978) 502 - 6239 3. PARTY RESPONSIBLE FOR OPERATION AND MAINTENANCE Mr. Vincent Grasso 10 Mill Pond North Andover, Ma (978) 502 6239 4. MAINTENANCE TASKS AND SCHEDULE i The following section identifies routine and non-routine maintenance tasks for the proposed stormwater management, along with associated schedules for inspection and maintenance. 4.1 CONSTRUCTION PERIOD All efforts will be made to avoid impacts to nearby wetland areas. During the construction period, the erosion control methods as presented on the site plan will be installed and periodically inspected to check sedimentation, minimize the exposure of areas, and revegetate or stabilize exposed soils. as soon as possible. Structural and vegetative methods will be used to minimize erosion and control any sedimentation that may occur. All activities within the plan will adhere to Soil Conservation Service guidelines, as well as the specifications detailed by DEP in the publication Protecting Water Quali t in Urban Areas (Minnesota Pollution Control Agency, 1989. Published by: Office of the Massachusetts Secretary of State, Michael Joseph Connolly, Secretary). The following measures will be employed. 4.1.1 General Notes • The construction contractor shall maintain all sedimentation and erosion control structures throughout the project site for the duration of the construction. These devices will be inspected and maintained on a daily basis. • The proposed plan will minimize the exposure of areas during construction in order to minimize the erosion process. In addition, exposed areas will be stabilized and revegetated as soon as possible. No earthmoving activities will take place prior to the establishment of erosion and sedimentation control measures. • Deposited sediment collected by the erosion control measures will be removed periodically, and the condition of the siltation barrier will be maintained until such time that the site has been adequately stabilized with permanent grass cover or pavement. • Areas that will be bare for a period of more than one month, but less than twelve months, will be stabilized by means of appropriate temporary vegetative cover. The cover will be one or a mixture of the following fast- growing grasses: annual ryegrass, sudangrass, millet, winter rye. ® Proposed diversion swales and other drainage structures on-site will be inspected regularly and cleaned of accumulated sediment, grit, and other debris as needed in order to maximize effectiveness. 4.1.2 Construction Sequencinq and Erosion Control • erosion control barrier will be installed and functioning at the limits of construction. • The proposed earthwork areas will be cleared and existing pavement areas will be excavated. • All slopes greater than 3:1 shall be seeded and mulched and installed within 72 hours of completion. • All diversion swales and ditches with slopes exceeding 5% shall be stabilized with jute netting. • Pavement subgrade areas shall be constructed,. followed by placement of subbase in all areas to be paved. Install utilities. Place pavement base courses and compact. • All pavement areas to be stabilized immediately after grading. Begin temporary and permanent seeding and mulching. All cut and fill slopes shall be seeded and mulched immediately after construction of these areas. The maximum area allowed to be disturbed and left unstabilized is two acres per drainage area. • Bituminous concrete pavement to be placed. • Temporary diversion channels to be constructed as required. • Daily or as required, construct temporary berms, drainage ditches, silt fences, haybales, etc. Mulch and seed as required. • No permanent planting to be placed prior to 1 May nor after 1 September. • All disturbed areas shall be stabilized with fast-growing grass and mulch, and not left bare for more than 30 days nor over the winter months. • Complete permanent seeding and landscaping. reused once inspected and deemed structurally sound by the North Andover Town Engineer/D.P.W. Director, or his representative. Vortechnics Devices e Refer to the following vendor maintenance schedule: Ins m In the first year of operation, frequent inspections of the accumulated sed h ent nt volume within the aluminum grit chamber are necessary appropriate maintenance plan. Vortechn�e performed more often in the inspections r during the first year. Inspections should p months in climates where sanding operat�hesf st lead ear, theanspect n schedule or in equipment washdown areas. After Y should be reviewed and modified according to for doing so is is very useful to keep a record of each inspection. A simple o The Vortechs System only needs to be cleaned has accumulated to within asix is nearly full; specifically, when sediment depth inches of the dry-weather water level, This determination can be made by one taking 2 measurements with a stadia roll an hole opening to lthe dtopc of he measurement is the distance from the sediment pile and the other is the distance from ments is than six water surface. If the difference between the t o measurements the inches the system should be cleaned out. Note: asurn device must be lowered to volume of sediment in the chamber, the measuring at the top of the pile the top of the sediment pile carefully. Finer, silty p typically offer less resistance to the end of the rod ons w larger he risk of large the bottom of the pile. In Vortechs installer petroleum spills is small, liquid contaminants may of accu be cleaned as quickly as sediment. However, an oil or gasoline spill immediately. Oil or gas that ac captured. ° tared.routine basis should be removed when an appreciable layer has been p Cl�a�iu� Cleanout of the Vortechs System with a vacuum truck g thin 6thoursoof effective and convenient method. Cleanout should not occur w tem to drain down. Properly a rain event to allow the entire Collection sys chamber maintained Vortechs Systems will only require evacuation of the grit portion of the system, in which case only the d manhole ' system inlet need be opened to remove water an o chambers should be checked to ensure the integrity of the system. In F installations where a "clamshell' is being utilized for solids removal, prior to removing the grit, absorbent pads or pillows can be placed in the oil chamber to remove floating contaminants. Once this is done, sediment may then be easily removed with the clamshell In some cases, it may be necessary to pump out all chambers. An important maintenance feature built into Vortechs Systems is that floatables remain trapped after a Gleaning. A pocket of water between the grit chamber and the outlet panel keeps the bottom of the baffle submerged, so that all floatables remain trapped when the system begins to fill up again. Therefore, in the event of cleaning other chambers it is imperative that the grit chamber be drained first. Manhole covers should be securely seated following cleaning activities, to ensure that surface runoff does not leak into the unit from above. Water Quality Swale • Mow swale at least once yearly. At no time will swale bottom and side slopes be cut shorter than 4". • Cleanings and inspections will occur at a minimum of 2 times per year. • Removed sediment and other materials will be disposed off-site in accordance with current DEP policy and regulation. Roof Infiltration Trenches • If continual overflowing occurs at 2" roof leader openings due to complete siltation of these devices, crushed stone roof infiltration trenches shall be replaced by completely excavating the existing crushed stone and totally replacing the existing stone aggregate. Perforated polyvinyl chloride pipes can be reused once inspected and deemed structurally sound by the North Andover Town Engineer/D.P.W. Director, or his representative. s 4.2.2 Pavement Areas • Pavement areas (parking lots and driveways) will be routinely swept twice monthly. Sweepings will be disposed off-site in accordance with DEP policy and regulation. • Paved areas will be inspected for damage and debris on a once yearly basis each spring. Repaving as needed will repair damage to pavement. 4.2.3 Lawn Maintenance • Managed lawn areas will continue to be maintained on a minimal basis with fertilizers and watering. • In currently grassed areas that must be revegetated as a result of the proposed work, they are proposed to be minimally fertilized and watered when reseeded with grass species to allow rapid cover and soil stabilization. Regular fertilization of these areas is not proposed after grass cover is reestablished. • In order to maintain the vegetative stabilization, lawn in these areas will be inspected annually each spring and reseeded as needed. 4.2.4 Snow and Ice Removal • No sodium chloride de-icing chemicals will be used on all on-site paved surfaces. • Calcium chloride will be used as a de-icing chemical where needed for public safety. This material will be stored internally. • Snow disposal will be limited to areas indicated on the Permit Site Plan and prohibited within 25' of wetland resource areas and within the water quality swales. 4.2.5 Roof Maintenance The roof will be inspected on a biannual basis in order to maintain it's condition. The roof will be repaired as specified by the manufacturer where chipping, wear, or other defects are observed in the surface. 4.2.6 Chain Link Fence The chain link fence will be cleaned weekly for paper-type trash. 4.2.7 Daily Housekee-oin The Applicant has committed to an aggressive schedule of servicing relating to the trash receptacles and dumpster since the cleanliness of this facility is perceived to be in the Applicant's best interest for ongoing business. The management will appoint a designated staff person who will have the responsibility of policing and the entire facility on a daily basis for trash and other debris. • Trash Receptacles and Dumpster The trash receptacles will be emptied on a daily basis with the dumpster being emptied on as-needed basis, with a minimum off-site trash pick-up schedule at least on a weekly basis. ® Courtesy Areas All courtesy areas (vacuum pumps, designated areas for automobile towel drying, etc.) will be policed on a daily basis for purposes of picking up trash, cigarette butts and other debris left inadvertently by patrons. Q 4. PRE DEVELOPMENT DRAINAGE. +29.a• O n \ '��128.1 •126.9 ^ pl • 1 1x141 zl.dz \ 2tp. 1-J2 R=176.10 I \ I;265!'12 05 ) .12- N I \ \ 7d72CP=121. NW � � .12x. N 2�.1 40° W 1117/32 1.1 40 POND O O, I2{.e . -x4,1 r ?61 F�24. aaa iza9 12t � 1-11 \1x42+ .3 %120.9` Un a QYI{•. 111.4 $. ; 129.)• / Jt l25 j 1x0.3a 1277a 20/ �CA IE N/F 3.� oF1e I:a-a• CA SA VECH/A l/ 126 aA7U / E LIMITED PARMERSH/P I -4J / f�LW (PLAN{8880) A 1 ca+s ONE STORY 129.5+ R7Rf a .Imo \zl? BK. J981, PG J29 \ I P'� CONC. BLOCK (w eow) RNtf - u4.a ,xs.94, GARAGE Ix9.+e 1 �. NFAlLR IaSa• \y n (4�r K p 1 1.7y51 /124.81\ >I&L�1 Ck/p Iip 179.\ •114 9.2) Iz79x 1x9.93 12 129.96 11� .,%ts IY JO Iz9.e>Put 1i9.w ,RAxs) Be�� Jazz BOX 1. 7 \ \.126.3 2S> 1144 2431 CA IF _Nq(II/Jf f _�. 129. t \ 124.9 .129.7{ b II R°130.65 124.7 p, 1261 `1243 � .• I 111%!GP>•121 9(SEJ-46 18 121 'n POND 11x.1.91 AI i' 'O.D PA IV +`4 I t3S 110.1 / II q4 PARMW 1245 / Lor 7 Iz.2a`.�1z7.9 anao -IJT,1 Nl�' qY a _ 7 b a Jl,3a, 3c1• .3a x KgLLIAM-D, HAi A, 0 u+.e/ u1.9�b n REALTY TRU 2.{/ A, �1ws / ;; 7 JIUMM 0. HAPHE; .126.0. IA4 1-49 BK. 4355, PG. F R=1J60.OD' y- / "?0, 117.4• Is NCP-11S2(5CJ � � , / .+Jae h i� 1g�y<IZSa(N L=7J5J� 1=s2 1x11 '3.,3z1 ,uaz Jy41 518 / 130.9• .132.{ / LP/N 126z• n+.°` I M, ' W10 J - pNSB \y (,FD) 10� $ ,,29.1/ .13x9 / 1342], 21 ( L°19351• \ s+a• R=25.00' 134.3 1V 5 oNil _R,1J0ptJ 1 1 J L=15.0 ' I r A 13ZU C O \ ,3527 Ng 1JZS9 1 gb- .7. - 14718 ,3101 4`�0 13x9• b Ball w33a AWN gb `�3+ 13102 ' ,4.49 Co 13�.Ifft 1-11 OSGOOD sT BEET Ir y, n 9AEa 6 .S, N'6- 60477-2 Dat a zor ffy46n "'-,abbu, V. TYPE III 24-HOUR RAINFALL= 2 .6 IN 23 Jan 03 Prepared by Applied Microcomputer Systems H d -oCAD 4 .00 000833 (c) 1986-3,995 Applied Micro oLnputer. Systems WATERSHED ROUTING 02 0 0 SUBCATCHMENT F-] REACH A POND LINK L)dLct LVL *F )A*40 l7tCHb�V, V. R14UUVnX - JSA1--. 1"N i Vnn XnOV. TYPE III 24-HOUR RAINFALL= 2 .6 IN Prepared by Applied Microcomputer Systems 23 Jan 03 H droCAD 4 .00 000833 c 1986-1995 Applied Microcomputer Systems POND 10 Not described Qin = 1 . 8 CFS @ 12_00 HRS, VOLUME= ..14 AF Qout= 1 . 8 CFS @ 12 . 00 HRS, VOLUME= . 14 AF, ATTEN= 0%, LAG= 0 . 0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 .0 FT FLOOD ELEVATION= 0 .0 FT START ELEVATION= 0 . 0 FT SPAN= 10-20 HRS, dt= . 1 HRS ROUTE INVERT OUTL T DEVICES POND 10 INFLOW & OUTFLOW Not described 1 .7 1 .5 - METHOD 1 :5 PEAK STOR= 0. 00 AF 1 .4 PEAK ELEU= 0 FT 1 .3 r 1 .2 1 . 1 Gin= 1 . 8 CFS u 1 .9 Qout= 1 : 8 CFS .g LAG= 0 MIN 3 J .6 .4 .3 .2 . 1 TIME (hours) Lama Lvi fF�YGJ l7i�lia7a7l/, 11l. HIVJJVVdSiC - I7;L110-L-LV17 Vnn AL%O.U. TYPE III 24-HOUR RAINFALL= 3 .5 IN Prepared by Applied Microcomputer Systems 23 Jan 03 HydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems POND 1.0 Not described Qin = 2 .,6 CFS @ 12 . 00 HRS, VOLUME= .21 AF Qout= 2 . 6 CFS @ 12 . 00 HRS, VOLUME= . 21 AF, ATTEN= 0%, LAG= 0 . 0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 . 0 FT FLOOD ELEVATION= 0 . 0 FT START ELEVATION= 0 . 0 FT SPAN= 10-20 HRS, dt= . l HRS # ROUTE INVERT OUTLET DEVICES POND 10 INFLOW & OUTFLOW Not described 2 . 4 - METHOD 2 '2 PEAK STOR= 0. 00 AF 2 . 0 PEAK ELEU= 0 FT 1 .6 Gin= 2. 6 CFS C+- 1 . 4 Gout 2. 6 CFS 1 .2 LAG= 0 MIN 0 1 .0 J .8 6 .4 �2{ N M T Ln t0 Q) m TIME (hours) Uo1LGt LIJL jfi7`2LGJ l7RliJJV, 1V. J-UNUVVjM.M - nA—L JLJ- Vk VIlf3 iCMO-ff TYPE III 24-HOUR RAINFALL= 4.8 IN Prepared by Applied Microcomputer Systems 23 Jan 03 HydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems POND 10 Not described Qin = 3 .7 CFS @ 12 .00 HRS, VOLUME= .31 AF Qout= 3 .7 CFS @ 12 .00 HRS, VOLUME= .31 AF, ATTEN= 0%, LAG= 0 .0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 . 0 FT FLOOD ELEVATION= 0 . 0 FT START ELEVATION= 0 . 0 FT SPAN= 10-20 HRS, dt= . 1 HRS ROUTE INVERT OUTLET DEVICES POND 10 INFLOW & OUTFLOW Not described 3 .4 - METHOD 3 .� PEAK STOR= 0. 00 AF 2 . 8 PEAK ELEO= 0 FT 2 .6 2 . 4 - Qin= 3. 7 CF5 u 2 . 0 Gout= 3. 7 CF5 3 1 .6 LAG= 0 MIN 0 1 .2 L 1 .8 .6 .4 .2 0 . TIME (hours) f odua ivi t3lu-tJov, IV. tiI.VLJVvnL-1 - nn17111VV vrta �rS�r- TYPE III 24-HOUR RAINFALL= 8.4 IN Prepared by Applied Microcomputer Systems 23 Jan 03 HydroCAD 4 .00 , 000833 (c) 1986-1995 Applied Microcomputer Systems POND 10 Not described Qin = 7 .1 CFS @ 12 . 01 HRS, VOLUME= . 59 AF Qout= 7 .1 CFS @ 12 . 01 HRS, VOLUME= .59 AF, ATTEN= 0--. , LAG= 0 .0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 . 0 FT FLOOD ELEVATION= 0 . 0 FT START ELEVATION= 0 . 0 FT SPAN= 10-20 HRS, dt=. 1 HRS ROUTE INVERT OUTLET DEVICES POND 10 INFLOW & OUTFLOW Not described 7 .0 6 .5 - METHOD 6 .0 PEAK STOR= 0. 00 AF 5 .5 PEAK ELEV= 0 FT 5 .0 4 . 5 Qin= 7 . 1 CFS 1 .0 - .5 Qout= 7 . 1 CFS 3 LAG-- 0 MIN 3 .0 o 2 . 5 2 -0 1 .5 1 . 0 .5 0 .00 v to oo m m TIME (hours) S. POST DEVELOPMENT DRAINAGE. fiat' \ ,ab+ �R-4 , ,1'-'A- la tl ,, �" ,1b5 12M1 - tw � II 1�5 II I II II J II II II � 0 \ II 11 ,20 it Ii ow 1� ° II �� II /tz II • III it too • , ��� If f in apWASw USGov/� 5� r° (Are IZS� Sp > 50 ' ,............ 11- r� vUJ�IJ v&"-jl . TYPE III 24-HOUR RAINFALL= 2 .6 IN Prepared by Applied Microcomputer Systems 23 Jan 03 HydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems WATERSHED ROUTING 5 '� t )SUBCATCHMENT F-] REACH POND LINK TYPE III 24-HOUR RAINFALL= 2 .6 IN repared by Applied Microcomputer Systems 2 Jan 03 droCAD 4 . 00 000833 c 1986-1995 A lied Microcom uter S stems UBCATCHMENT 1 HALF OF ROOF SURFACE PEAK= . 2 CFS @ 11. 99 HRS, VOLUME= . 01 AF ACRES CN SCS TR-20 METHOD . 09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 2 . 6 IN SPAN= 10-20 HRS, dt= . 1 HRS e_thod Comment Tc (min) R-55 SHEET FLOW Segment ID: 1 . 6 mooth surfaces n= . 011 L=64 ' P2=2 . 8 in s=. 005 UBCATCHMENT 2 HALF OF ROOF SURFACE PEAK= .2 CFS @ 11 .99 HRS, VOLUME= . 01 AF ACRES CN SCS TR-20 METHOD .09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 2 . 6 IN SPAN= 10-20 HRS, dt= . l HRS ethod Comment Tc (min) . R-55 SHEET FLOW Segment ID: 1. 6 nooth surfaces n= . 011 L=64 ' P2=2 . 8 in s= . 005 ' / ' UBCATCHMENT 3 PROPOSED PARKING LOT PEAK= . 3 CFS @ 12 .10 HRS, VOLUME= .02 AF ACRES CN SCS TR-20 METHOD . 16 98 PAVEMENT TYPE III 24-HOUR .11 61 LAWN RAINFALL= 2 .6 IN .27 83 SPAN= 10-20 HRS, dt= . 1 HRS =thod Comment Tc (min) 2-55 SHEET FLOW Segment ID: 8 . 3 rass : Short n= .15 L=90 ' P2=2 . 8 in s= .029 ' / ' SALLOW CONCENTRATED/UPLAND FLOW Segment ID: • 5 wed Kv=20 .3282 L=108 '. s= . 029 ' / ' V=3 .46 fps Total Length= 198 ft Total Tc= 8 . 8 „ LL,Q L V- va.r'—, 1\. AILYLV v ” J 1lV�VV J311 TYPE III 24-HOUR RAINFALL= 2 .6 IN ,repared by Applied Microcomputer Systems 2 Jan 03 ydrDCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems uBCATCHMENT 4 SUBCATCHMENT 4 PEAK= 1. 1 CFS @ 11. 99 HRS, VOLUME= . 07 AF ACRES CN SCS TR-20 METHOD .43 98 EXIST PAVEMENT TYPE III 24-HOUR RAINFALL= 2 . 6 IN SPAN= 10-20 HRS, dt=. 1 HRS ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: . 7 mooth surfaces n= .011 L=40 ' P2=2 . 8 in s= . 016 HALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1 . 3 aved Kv=20 . 3282 L=200 ' s= . 015 ' / ' V=2 .49 fps Total Length= 240 ft Total Tc= 2 . 0 UBCATCHMENT 5 SUBCATCHMENT 5 PEAK= .3 CFS @ 12 . 13 HRS, VOLUME= . . 02 AF ACRES CN SCS TR-20 METHOD . 33 79 EXIST WOODS TYPE III 24-HOUR RAINFALL= 2 . 6 IN SPAN= 10-20 HRS, dt= . 1 HRS ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: 10 . 1 rass: Dense n= .24 L=80 ' P2=2 . 8 in s= . 036 ffALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1 .3 Lort Grass Pasture Kv=7 L=112 ' s= . 043 ' / ' V=1 .45 fps Total Length= 192 ft Total Tc= 11 .4 TYPE III 24-HOUR RAINFALL= 2 .6 IN ,repared by Applied Microcomputer Systems 29 Jan 03 droCAD 4 . 00 000833 c 1986-1995 applied Microcomputer Systems EACH 1 Qin = . 3 CFS @ 12 . 10 HRS, VOLUME= . 02 AF Qout= . 3 CFS @ 12 . 10 HRS, VOLUME= . 02 AF, ATTEN= 10, LAG= .4 MIN EPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0 , 0 0 . 0 0 . 0 PEAK DEPTH= .20 FT . 1 0 . 0 0 . 0 n= . 013 PEAK VELOCITY= 3 .5 FPS . 1 0 . 0 . 1 LENGTH= 60 FT TRAVEL TIME = .3 MIN , 2 . 1 . 3 SLOPE= .017 FT/FT SPAN= 10-20 HRS, dt= . 1 HRS . 5 . 3 1 .3 . 5 . 3 1 .5 . 6 . 3 1. 7 . 6 . 3 1 .7 . 6 . 3 1 . 7 . 7 .3 1 .6 EACH 2 Qin = .2 CFS @ 12 . 10 HRS, VOLUME= . 02 AF Qout= . 2 CFS @ 12 .20 HRS, VOLUME= . 02 AF, ATTEN= 0%, LAG= 6 . 0 MIN EPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0. 0 0 . 0 0 . 0 PEAK DEPTH= .19 FT . 1 0 .0 0 .0 n= . 013 PEAK VELOCITY= 2 .4 FPS . 1 0 . 0 .1 LENGTH= 56 FT TRAVEL TIME = .4 MIN 2 .1 .2 SLOPE= .008 FT/FT SPAN= 10-20 HRS, dt= .1 HRS .5 .3 . 9 .5 . 3 1 . 1 . 6 .3 1 .2 . 6 .3 1 .2 . 6 .3 1 . 2 . 7 .3 1 . 1 EACH 3 din = 1 . 1 CFS @ 11 . 99 HRS, VOLUME= . 07 AF bout= 1 .1 CFS @ 11 . 99 HRS, VOLUME= . 07 AF, ATTEN= 10, LAG= 1 MIN EPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0 .0 0 .0 0 .0 PEAK DEPTH= .37 FT .1 0 .0 .1 n= . 013 PEAK VELOCITY= 4 . 1 FPS .2 . 1 .3 LENGTH= 20 FT TRAVEL TIME = .1 MIN .3 .2 .7 SLOPE= . 01 FT/FT SPAN= 10-20 HRS, dt= . l HRS . 7 . 6 3 . 0 . 8 .7 3 . 5 . 9 .7 3 . 8 .9 .8 3 .8 1 .0 . 8 3 . 8 1 .0 . 8 3 . 6 TYPE Ill 24-HOUR RAINFALL= 2.6 IN repared by Applied Microcomputer Systems 29 Jan 03 C1roCAD 4. 00 000833 c 1986-1995 A_ lied Microcom uter Systems DND I DIFFUSORS Din = . 3 CFS @ 12 .10 HRS, VOLUME= . 02 AF Dout= . 2 CFS @ 12 .10 HRS, VOLUME= . 02 AF, ATTEN= 33%, LAG= 0 . 0 MIN .Dpri= . 2 CFS @ 12 . 10 HRS, VOLUME= . 02 AF Dsec= 0. 0 CFS @ 0 . 00 HRS, VOLUME= 0 . 00 AF ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 93 CF 128 . 7 0 0 0 PEAK ELEVATION= 128 . 9 FT 129 .2 1056 264 264 FLOOD ELEVATION= 129 . 7 FT 129 . 7 1056 528 792 START ELEVATION= 128 .7 FT SPAN= 10-20 HRS, dt= . 1 HRS #_ ROUTE INVERT OUTLET DEVICES L S 129 .6 ' 4" ORIFICE/GRATE Q= .5 PI r"2 SQR(2g) SQR(H-r) 2 P 128.. 7 ' EXFILTRATION Q= . 2 CFS at and above 128 . 8 ' ?rimary- Discharge L--2=Exfiltration Secondary Discharge -1=Orif ice/Grate POND 1 INFLOW & OUTFLOW DIFFUSORS . 30 . 28 STOR-IND METHOD .26 PEAK STOR= 93 CF .24 22 PEAK ELEU= 128 . 9 FT . 20 LQ 16 j ti Qin= . 3 CFS 14 gout= . 2 CFS 3 . 12 Qpri = . 2 CFS CD Qaec= 0. 0 CFS_ . 08 i } LAG= 0 MIN . 06 r . 02 0 . 00CS) N M NT n w w M 0 TIME (hours) 1111 111 6'4-nuux X-RINICf3L.L= 6 .0 IN repared by Applied Microcomputer Systems 29 Jan 03 z roCAD 4 00 000833 (c) 1986-1995- Applied Microcomputer Systems POND 1 TOTAL OUTFLOW PEAK= .2 CFS @ 12 . 10 HOURS HOUR 0 . 00 10 20 30 .40 . 50 . 60 . 70 .80 _ . 90 10 . 00 0 .0 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 .0 11 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 . 1 .1 12 . 00 .1 .2 .2 .2 .2 .2 .1 . 1 . 1 0 .0 13 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 14 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 15 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 17 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 18 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 19 .00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 20 . 00 0 .0 POND 1 PRIMARY OUTFLOW PEAK= .2 CFS @ 12 . 10 HOURS 9 lv . vv v .v v . v v .v v . v v . v v . v v . v. v . v v . v v . v 11 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 . 1 . 1 12 . 00 .1 . 2 .2 .2 . 2 .2 . 1 . 1 . 1 0 .0 13 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 . 0 0 . 0 14 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 15 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 17 .00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 18 .00 0 .0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 19 . 00 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 20 . 00 0 .0 POND 1 SECONDARY OUTFLOW PEAK= 0 0 CFS @ 0 . 00 HOURS HOUR 0 .00 10 . 20 . 30 .40 . 50 . 60 .70 80 . 90 10 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 11 . 00 0. 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 12 .00 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 13 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0. 0 0 . 0 14 . 00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 0 .0 0 . 0 0 . 0 15 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0:0 0 . 0 16 .00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 17 . 00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 18 .00 0 .0 0 . 0 0 ,0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 19. 00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0.0 0 . 0 0 . 0 0 . 0 0 . 0 20 . 00 0 . 0 ,repared by Applied-Microcomputer�Systems y 29 Jan 03 d oCAD 4 . 00 000833 c 1986-1995 applied Microcom uter Systems ,OND 3 TRENCH DRAIN Qin = . 2 CFS @ 11 . 99 HRS, VOLUME= . 01 AF Qout= . 1 CFS @ 12 .23 HRS, VOLUME= . 01 AF, ATTEN= 650, LAG= 14 . 8 MIN ELEVATION AREA INC.STOR CUM.STOR PEAK STOR-IND METHOD 316 CF (FT) (SF) (CF) (CF) 127 . 5 163 0 0 PEAK ELEVATION= 129. 4 FT 129 . 0 163 245 245 FLOOD ELEVATION= 129 . 0 FT START ELEVATION= 127 . 5 FT SPAN= 10-20 HRS, dt= .1 HRS ROUTE INVERT OUTLET DEVICES 1 P 128 . 9' 2" ORIFICE/GRATE Q= . 6 PI r-2 SQR(2g) SQR(H-r) POND 3 INFLOW & OUTFLOW TRENCH DRAIN .22 20 STOR-IND METHOD 18 PEAK STOR= 316 CF 16 PEAK ELEV= 129 .4 FT n 14 Din= 2 CFS u . 12 Qout= . 1 CFS 1g LAG-- 14. 8 MIN 3 O . 08 J I 1 LL . 06 - 1 1 02 ( --------------------------- TIME (hours) POND 3 TOTAL OUTFLOW PEAK= 1 CFS @ 12 .23 HOURS HOUR 0 . 00 10 20 30 40 50 60 70 . 80 .90 10 .00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 11 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 12 . 00 0 . 0 .1 . 1 . 1 . 1 . 1 . 1 0 . 0 . 0 .0 0 . 0 13 .00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 14 . 00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0. 0 0 . 0 0 . 0 0 .0 0 . 0 15 . 00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 16 . 00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 17 .00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 18 . 00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 19 .00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 010 0 . 0 0 .0 0 .0 0 . 0 20 . 00 0 . 0 1]C,Cl3 1.L1 G'f-riVUK KA1NtrALL= G .E7 1N ,repared by Applied Microcomputer Systems 29 Jan 03 yd DCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Svstems ,OND 4 TRENCH DRAIN Qin = . 2 CFS @ 11. 99 HRS, VOLUME= . 01 AF Qout= . 1 CFS. @ 12 .23 HRS, VOLUME= . 01 AF, ATTEN= 650, LAG= 14 . 8 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 316 CF 127 . 5 163 0 0 PEAK ELEVATION= 129 .4 FT' 129 . 0 163 245 245 FLOOD ELEVATION= 129 . 0 FT START ELEVATION= 127 . 5 FT SPAN= 10-20 HRS, dt= .1 HRS ## ROUTE INVERT OUTLET DEVICES 1 P 128 . 9 ' 2" ORIFICE/GRATE Q= . 6 PI r^2 SQR(2g) SQR(H-r) POND 4 INFLOW & OUTFLOW TRENCH DRAIN .22 .20 STOR-IND METHOD 18 PEAK STOR= 316 CF 16 PEAK ELEU= 139 .4 FT Cto . 14 Qin= . 2 CFS . 12 Qout-- . 1 CFS 3 . 10 LAG= 14. 8 MIN o . 08 . 06 .04 f �� .02 �` e@ N r'J 'T LO 0 I-- CD M m TIME (hours) POND 4. TOTAL OUTFLOW PEAK= 1 CFS @ 12 . 23 HOURS HOUR 0 . 00 10 20 30 40 50 .60 .70 . 80 . 90 10 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 11 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0.0 0 . 0 0 . 0 0 .0 12 . 00 0 . 0 . 1 . 1 .1 . 1 . 1 .1 0. 0 0 . 0 0 . 0 13 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0. 0 0 . 0 0 . 0 14 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0. 0 0 . 0 0 . 0 15 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 16 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 17 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 18 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 19 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 20 . 00 0 .0 Vd4Q. LUL V.7' LV. t11YLVV- tl11JJ . TYPE III 24-HOUR. RAINFALL= 2 .6 IN Prepared by Applied Microcomputer Systems 23 Jan 03 gydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems POND 5 Not described Qin = 1 .5 CFS @ 12 . 02 HRS, VOLUME= . 14 AF Qout= 1 .5 CFS @ 12 . 02 HRS, VOLUME= .14 AF, ATTEN= Oo, LAG= 0 . 0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 .0 FT FLOOD ELEVATION= 0 .0 FT START ELEVATION= 0 . 0 FT SPAN= 10-20 HRS, dt= . l HRS # ROUTE INVERT OUTLET DEVICES POND 5 INFLOW & OUTFLOW Not described 1 .4 1 .3 - - METHOD 1 .2 PEAK STOR= 0 . 00 AF 1 . 1 PEAK ELEV= 0 FT .9 Gin= 1 . 5 CF5 u .8 Qout= 1 . 5 CF5 .7 LAG= 0 MIN 3 .6 0 5 . 4 3 .2 . 1 0 . m TIME (hours) F TYPE 111 24-NUUK RAINFALL= 3 .5 IN ,repared by Applied Microcomputer Systems 2 Jan 03 droCAD 4 . 00 000833 c 1986-1995 applied_ Microcom uter Systems- UBCATCHMENT 1 HALF OF ROOF SURFACE PEAK= . 3 CFS @ 11 . 99 HRS, VOLUME= . 02 AF ACRES CN SCS TR-20 METHOD . 09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 3 .5 IN SPAN= 10-20 HRS, dt= .1 HRS ethod Comment Tc (min) . R-55 SHEET FLOW Segment ID: 1 . 6 mooth surfaces n= . 011 L=64 ' P2=2 . 8 in s= . 005 ' / ' UBCATCHMENT 2 HALF OF ROOF SURFACE PEAK= . 3 CFS @ 11. 99 HRS, VOLUME= . 02 AF ACRES CN SCS TR-20 METHOD . 09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 3 .5 IN SPAN= 10-20 HRS, dt=. 1 HRS ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: 1 . 6 mooth surfaces n= .011 L=64 ' P2=2 . 8 in s= .005 UBCATCHMENT 3 PROPOSED PARKING LOT PEAK= .5 CFS @ 12 .09 HRS, VOLUME= . 04 AF ACRES CN SCS TR-20 METHOD .16 98 PAVEMENT TYPE III 24-HOUR .11 61 LAWN RAINFALL= 3 .5 IN .27 83 SPAN= 10-20 HRS, dt=. 1 HRS ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: 8 .3 rass : Short n= . 15 L=90 ' P2=2 . 8 in s= .029 HALLOW CONCENTRATED/UPLAND FLOW Segment ID: .5 aved Kv=20 .3282 L=108 ' s= . 029 ' / ' V=3 .46 fps Total Length= 198 ft Total Tc 8 .8 �v TYPE III 24-HOUR. RAINFALL= 3 .5 IN 2 Jan 03 repared by Applied Microcomputer Systems droCAD 4 . 00 000833 c 1986-1995 Applied Micro com uter S stems UgCATCHMENT 4 SUBCATCHMENT 4 PEAK= 1. 5 CFS @ 11 . 99 HRS, VOLUME= . 10 AF ACRES CN SCS TR-20 METHOD .43 98 EXIST PAVEMENT TYPE III 24-HOUR RAINFALL= 3 .5 IN SPAN= 10-20 HRS, dt=. l HRS Comment Tc (min) method R-55 SHEET FLOW Segment ID. 7 nooth surfaces n= . 011 L=40 ' P2=2 . 8 in s= . 016 ' / ' 1. 3 9ALLOW CONCENTRATED/UPLAND FLOW Segment VID.49 fps aved Kv=20 . 3282 L=200 ' s= . 015 ' / ' ---------- Total Length= 240 ft Total Tc= 2 . 0 UBCATCHMENT 5 SUBCATCHMENT 5 PEAK= .5 CFS @ 12 .12 HRS, VOLUME= .04 AF ACRES CN SCS TR-20 METHOD .33 79 EXIST WOODS TYPE III 24-HOUR RAINFALL= 3 .5 IN SPAN= 10-20 HRS, dt=.l HRS Comment Tc =thod 10 . 1 R-55 SHEET FLOW Segment ID. P2=2 . 8 in s= . 0 rass : Dense n= .24 L=80 ' 36 1 .3 [TALLOW CONCENTRATED/UPLAND FLOW Segment ID: 45 tort Grass Pasture Kv=7 L=112 ' s= . 043 / 1 V=1-. fps ---------- Total Length= 192 ft Total Tc= 11 .4 TYPE 111 L4-HUUK KAINYALL= .3 .5 IN )repared by Applied Microcomputer Systems 29 Jan 03 [yd OCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems :EACH 1 Qin. = .5 CFS @ 12 . 09 HRS, VOLUME= .04 AF Qout= .5 CFS @ 12 . 10 HRS, VOLUME= . 04 AF, ATTEN= 10, LAG= . 3 MIN iEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 811 PIPE STOR-IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH . 25 FT . 1 0 .0 0 . 0 n= . 013 PEAK VELOCITY= 4 .1 FPS . 1 0 . 0 .1 LENGTH= 60 FT TRAVEL TIME = .2 MIN .2 . 1 . 3 SLOPE= . 017 FT/FT SPAN= 10-20 HRS, dt= .1 HRS . 5 .3 1 . 3 .5 .3 1 . 5 . 6 .3 1 .7 . 6 . 3 1 . 7 . 6 . 3 1 . 7 . 7 .3 1 . 6 :EACH 2 Qin = .2 CFS @ 12 . 00 HRS, VOLUME= .04 AF Qout= . 2 CFS @ 12 . 10 HRS, VOLUME= . 04 AF, ATTEN= 0%, LAG= 6 . 0 MIN ,EPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH= . 19 FT . 1 0 . 0 0 . 0 n= . 013 PEAK VELOCITY= 2 .4 FPS . 1 0 . 0 .1 LENGTH= 56 FT TRAVEL TIME = .4 MIN . 2 . 1 .2 SLOPE= . 008 FT/FT SPAN= 10-20 HRS, dt= .1 HRS .5 .3 . 9 . 5 .3 1 . 1 . 6 . 3 1 . 2 . 6 .3 1 . 2 . 6 . 3 1 . 2 . 7 . 3 1 . 1 .EACH 3 , Qin = 1.5 CFS @ 11 . 99 HRS, VOLUME= . 10 AF Qout= 1.5 CFS @ 11 . 99 HRS, VOLUME= . 10 AF, ATTEN= lo, LAG= . 1 MIN EPTH END- AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR=IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH= .43 FT . 1 0 . 0 . 1 n= . 013 PEAK VELOCITY= 4 .5 FPS . 2 . 1 . 3 LENGTH= 20 FT TRAVEL TIME = .1 MIN . 3 . 2 . 7 SLOPE= . 01 FT/FT SPAN= 10-20 HRS, dt= .1 HRS . 7 . 6 3 . 0 . 8 . 7 3 . 5 . 9 . 7 3 . 8 . 9 . 8 3 . 8 1 . 0 . 8 3 . 8 1 . 0 . 8 3 , 6 11rz 111 6q-nUUk( xAINr1A-LP1j= S .5 IN �repared by Applied Microcomputer Systems 29 Jan 03 vdroCAD 4. n0 000833 c 1986-1995 Applied Microcom cater Systems OI:TD 1 DIFFUSORS Oin = . 5 CFS @ 12 . 10 HRS, VOLUME= . 04 AF Qout= . 2 CFS @ 12 . 00 HRS, VOLUME= .04 AF, ATTEN= 600, LAG= 0 . 0 MIN Qpri= .2 CFS @ 12 . 00 HRS, VOLUME= .04 AF Qsec= 0 . 0 CFS @ 0 . 00 HRS, VOLUME= 0 .00 AF ELEVATION AREA INC. STOR CUM.STOR STOR-IND METHOD (CF) (CF) PEAK STORAGE = 303 CF 128 . 7 0 0 0 PEAK ELEVATION= 129 .2 FT 129 .2 1056 264 264 FLOOD ELEVATION= 129 . 7 FT 129 .7 1056 528 792 START ELEVATION= 128 . 7 FT SPAI\1= 10-20 HRS, dt= .l HRS ROUTE INVERT OUTLET DEVICES 1 S 129 . 6 ' 4" ORIFICE/GRATE Q= .5 PI r-2 SOR(2g) SOR(H-r) 2 P 128 . 7.' EXFILTRATION Q= . 2 CFS at and above 128 . 8 ' Primary Discharge ---2=Exfiltration Secondary Discharge �-1=Orifice/Grate POND 1 INFLOW & OUTFLOW DIFFUSORS .50 .45 TOR-IND METHOD 40 PEAK STOR-- 303 CF PEAK ELEV= 129 .2 FT r .35 'O .30 Gin= . 5 CF5 �� Qou-t= . 2 CFS 3 .20 Qpri = . 2 CFS r- -' 05t-,c= 0 . 0 CFS 15 +J i LAG= 0 MIN LL r s f � .05 TIME (hours) TYPE III 24-HUUK RAINFALL= 3 .5 IN ,repared by Applied Microcomputer Systems 29 Ian 03 ydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems POND 1 TOTAL OUTFLOW PEAK= .2 CFS @ 12 . 00 HOURS HOUR 0 . 00 .10 . 20 .30 .40 .50 .60 . 70 . 80 . 90 10 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 11 . 00 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 . 1 .1 .2 12 . 00 .2 .2 . 2 .2 .2 .2 .2 . 2 .2 .2 13 . 00 .2 . 2 . 1 . 1 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 14 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 15 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0-. 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 .0 0 . 0 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 17 . 00 0 .0 0. 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 . 0 0 . 0 18 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 ..0 0 . 0 0 . 0 0 .0 0 . 0 19. 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 20 . 00 0 . 0 POND 1 PRIMARY OUTFLOW PEAK= .2 CFS @ 12 . 00 HOURS HOUR 0 . 00 10 20 30 40 50 . 60 .70 . 80 . 90 10 . 00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 11 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 . 1 .1 .2 12 . 00 .2 .2 . 2 . 2 .2 .2 .2 . 2 .2 .2 13 . 00 .2 .2 .1 . 1 . 1 0 . 0 0 .0 0 . 0 0 .0 0 . 0 14 . 00 0 . 0 0 . 0 .0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 15 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 26 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 17 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 18 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0. 0 0 .0 0 . 0 19 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 20 . 00 0 .0 POND 1 SECONDARY OUTFLOW PEAK= 0 . 0 CFS @ 0 .00 HOURS HOUR 0 .0 .20 .3 0 .6 80 90 10 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 11 . 00 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 12 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 .0 0 . 0 13 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 14 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 15 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 16 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 17 . 00 0 .0 0 .0 0 .0 0 , 0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 18 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 19 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 20 . 00 0 . 0 TYPE III 24-HOUR RAINFALL= 3 .5 IN >repared by Applied Microcomputer- Systems 29 Jan 03 (yd - 3 c 1986-1995 -Applied Micro com uter Systems )OND 3 TRENCH DRAIN Qin . 3 CFS @ 11 . 99 HRS, VOLUME= . 02 AF Qout= . 1 CFS @ 12 . 15 HRS, VOLUME= . 02 AF, ATTEN= 54%, LAG= 9 .5 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 380 CF 127 .5 163 0 0 PEAK ELEVATION= 129 .8 FT 129 .0 163 245 245 FLOOD ELEVATION= 129 . 0 FT START ELEVATION= 127.5 FT SPAN= 10-20 HRS, dt= . 1 HRS ROUTE INVERT OUTLET DEVICES 1 P 128 . 9 ' Z" ORIFICE/GRATE Q=.6 PI r"2 SQR(2g) SQR(H-r) POND 3 INFLOW & OUTFLOW TRENCH DRAIN . 30 . 26 STOR-IND METHOD .26 PEAK STOR= 360 CF .24 PEAK ELEV= 129 .8 FT .22 Lo . 20 Qin= . 3 CFS u . 18 16 Qout= 1 CFS . 14 LAG= 9 . 5 MIN 3 . 12 1 J 10 i LL- 06 . ®4 1 .02 --------------------- 0 .00 + (� RI frl d LCl 0 tn m TIME (hours) POND 3 TOTAL OUTFLOW PEAK- 1 CFS_@ 12 . 15 HOURS HOUR 0 , 00 10 20 30 40 50 60 70 .80 . 90 10 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 11 . 00 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 12 . 00 . 1 . 1 . 1 . 1 . 1 . 1 .1 . 1 . 1 0 . 0 13 . 00 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 14 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 15 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0.. 0 0 . 0 0 . 0 26 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 17 . 00 0 .0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 18 . 00 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 19 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 20 . 00 0 . 0 TYPE III 24-HOUR RAINFALL= 3 .5 IN Trepared by Applied Microcomputer Systems 29 Jan 03 (vdrOCAD 4 . 00 000833 (c) 1986-1995 -Applied Microcomputer Systems )®ND 4 TRENCH DRAIN Qin = . 3 CFS @ 11. 99 HRS, VOLUME= . 02 AF Qout= . 1 CFS @ 12 . 15 HRS, VOLUME= . 02 AV, ATTEN= 54%, LAG= 9 .5 MIN ELEVATION AREA INC.STOR CUM. STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 380 CF 127 .5 163 0 0 PEAK ELEVATION= 129 . 8 FT 129 . 0 163 245 . 245 FLOOD ELEVATION= 129 . 0 FT START ELEVATION= 127. 5 FT SPAN= 10-20 HRS, dt=. 1 HRS # ROUTE INVERT OUTLET DEVICES 1 P 128 . 9 ' 2" ORIFICE/GRATE Q= . 6 PI r"2 SQR(2g) SQR (H-r) POND 4 INFLOW 8 OUTFLOW TRENCH DRAIN .30 . 28 STOR-IND METHOD .26 PEAK STOR= 380 CF . 24 - . 22 PEAK ELEU= 129. 8 FT LO . 20 (+- 18 Q i n= . 3 CFS 16 Gout= . 1 CFS . 14 LAG= 9 . 5 MIN CD CD . 12 1 t . 10 i } . 08 t t .06 t` . 04 . 02 0 . e0m N M Ln 0 r- CC) CP TIME (hours) POND 4 TOTAL OUTFLOW PEAK= . 1 CFS @ 12 . 15 HOURS HOUR 0 . 00 . 10 .20 30 40 50 60 70 80 90 10 .00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 . 0 0. 0 0 .0 - 11 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 12 . 00 .1 .1 . 1 . 1 . 1 . 1 . 1 . 1 l 0 .0 13 . 00 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 14 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0. 0 0 . 0 0 . 0 0 . 0 15 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 26 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0. 0 0 . 0 0. 0 0 .0 17 . 00 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 18 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 19 . 00 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 .0 0 . 0 0 .0 20 . 00 0 .0 v�v- --- TYPE III 24-HOUR RAINFALL= 3 .5 IN Prepared by Applied Microcomputer Systems 23 Jan 03 HydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems POND 5 Not described Qin = 2 .2 CFS @ 12 . 01 HRS, VOLUME= . 21 AF Qout= 2 .2 CFS @ 12 . 01 HRS, VOLUME= . 21 AF, ATTEN= Oo, LAG= 0 . 0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 . 0 FT FLOOD ELEVATION= 0 . 0 FT START ELEVATION= 0 . 0 FT SPAN= 10-20 HRS, dt= . 1 HRS # ROUTE INVERT OUTLET DEVICES POND 5 INFLOW & OUTFLOW 2 . 2 Not described 2 .0 - METHOD 1 .8 PEAK STAR= 0 . 00 AF 1 .6 PEAK ELEU= 0 FT u 1 .2 Din= 2 . 2 CF5 Qout= 2. 2 CFS 1 .8 LAG= O MIN 0 8 � .6 4 .2 8 .8m cv i� 4: in rn m TIME (hours) TYPE III 24-HOUR RAINFALL= 4.8 IN repared by Applied Microcomputer Systems 2 Jan 03 yd )CAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems UBCATCHMENT 1 HALF OF ROOF SURFACE PEAK= . 4 CFS @ 11. 99 HRS, VOLUME= . 03 AF ACRES CN SCS TR-20 METHOD .09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 4 . 8 IN SPAN= 10-20 HRS, dt=. 1 HRS ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: 1. 6 mooth surfaces n= . 011 L=64 ' P2=2 . 8 in s= . 005 UBCATCHMENT 2 HALF OF ROOF SURFACE PEAK= . 4 CFS @ 11 . 99 HRS, VOLUME= . 03 AF ACRES CN SCS TR-20 METHOD .09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 4 .8 IN SPAN= 10-20 HRS, dt=. 1 HRS method Comment Tc (min) It-55 SHEET FLOW Segment ID: 1. 6 nooth surfaces n= . 011 L=64 ' P2=2 . 8 in s= .005 :JBCATCHMENT 3 PROPOSED PARKING LOT ?EAK= . 8 CFS @ 12 . 09 HRS, VOLUME= . 06 AF ACRES CN SCS TR-20 METHOD .16 98 PAVEMENT TYPE III 24-HOUR . 11 61 LAWN RAINFALL= 4 .8 IN .27 83 SPAN= 10-20 HRS, dt=. 1 HRS =shod Comment Tc (min) 2-55 SHEET FLOW Segment ID: 8 . 3 --ass : Short n= .15 L=90 ' P2=2 . 8 in s=. 029 (ALLOW CONCENTRATED/UPLAND FLOW Segment ID: • 5 wed Kv=20 .3282 L=108 ' s= . 029 ' / ' V=3 .46 fps Total Length= 198 ft Total Tc= 8 . 8 TYPE III 24-HOUR RAINFALL= 4 .8 IN >repared by Applied Microcomputer Systems 2 Jan 03 [ydroCAD 4..00 000833 (c) 1986-1995 Applied Microcomputer Systems ;UBCATCHMENT 4 SUBCATCHMENT 4 PEAK= 2 . 0 CFS @ 11 . 99 HRS, VOLUME= .13 AF ACRES CN SCS TR-20 METHOD .43 98 EXIST PAVEMENT TYPE III 24-HOUR RAINFALL= 4 . 8 IN SPAN= 10-20 HRS, dt= .1 HRS fethod Comment Tc (min) `R.-55 SHEET FLOW Segment ID: . 7 mooth surfaces n= .011 L=40 ' P2=2 . 8 in s=. 016 HALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1 . 3 ,aved Kv=20 .3282 L=200 ' s= . 015 ' / ' V=2 .49 fps Total Length= 240 ft Total Tc= 2 . 0 ,UBCATCHMENT 5 SUBCATCHMENT 5 PEAK= . 8 CFS @ 12 . 12 HRS, VOLUME= . 07 AF ACRES CN SCS TR-20 METHOD .33 79 EXIST WOODS TYPE III 24-HOUR RAINFALL= 4 . 8 IN SPAN= 10-20 HRS, dt= .l HRS .ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: 10 .1 rass : Dense n= .24 L=80 ' P2=2 . 8 in s= . 036 HALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1 .3 hort Grass Pasture Kv=7 L=112 ' s= . 043 ' / ' V=1 .45 fps Total Length= 192 ft Total Tc= 11 .4 TYPE III 24-HOUR RAINFALL= 4.8 IN ,repared by Applied Microcomputer Systems 29 Jan 03 ydroCAD 4 . 00 000833 (c) 1986-1995 Applied Microcomputer Systems '.EACH 1 Qin = . 8 CFS @ 12 . 09 HRS, VOLUME= . 06 AF Qout= . 8 CFS @ 12 . 10 HRS, VOLUME= . 06 AF, ATTEN= 1%, LAG= .3 MIN EPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0 . 0 0 .0 0 .0 PEAK DEPTH= .33 FT . 1 0 . 0 0 . 0 n= . 013 PEAK VELOCITY= 4 . 7 FPS . 1 0 . 0 . 1 LENGTH= 60 FT TRAVEL TIME = . 2 MIN .2 . 1 .3 SLOPE= . 017 FT/FT SPAN= 10-20 HRS, dt= . 1 HRS .5 . 3 1 .3 .5 . 3 1.5 . 6 .3 1. 7 . 6 .3 1. 7 . 6 3 1 . 7 .7 .3 1. 6 EACH 2 Qin = . 2 CFS @ 12 .52 HRS, VOLUME= . 06 AF Qout= . 2 CFS @ 12 . 52 HRS, VOLUME= . 06 AF, ATTEN= 0%, LAG= . 1 MIN EPTH END AREA DISCH _(FT) (SO-FT) - (CFS) 8" PIPE STOR-IND+TRANS METHOD 0 .0 0 . 0 0 . 0 PEAK DEPTH= .20 FT .1 0 . 0 0 . 0 n= . 013 PEAK VELOCITY= 2 .4 FPS .1 0 . 0 .1 LENGTH= 56 FT TRAVEL TIME = .4 MIN .2 . 1 .2 SLOPE= . 008 FT/FT SPAN= 10-20 HRS, dt= . 1 HRS .5 .3 . 9 .5 .3 1. 1 .6 :3 1 . 2 .6 .3 1 .2 .6 .3 1. 2 .7 . 3 1. 1 EACH 3 din = 2 : 0 CFS @ 11 . 99 HRS, VOLUME= . 13 AF bout= 2 . 0 CFS @ 11. 99 HRS, VOLUME= . 13 AF, ATTEN= lo, LAG= . 1 MIN. EPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH= .53 FT . 1 0 .0 . 1 n= . 013 PEAK VELOCITY= 4 . 8 FPS .2 . 1 . 3 LENGTH= 20 FT TRAVEL TIME _ . 1 MIN .3 .2 . 7 SLOPE= . 01 FT/FT SPAN= 10-20 HRS, dt= . l HRS .7 . 6 3 . 0 . 8 . 7 3 .5 . 9 . 7 3 . 8 . 9 . 8 3 . 8 1 . 0 . 8 3 . 8 1 .0 .8 3 . 6 11r� 111 Z.-t icri.iixrrsii�- - .v � x ,repared by Applied Microcomputer Systems 29 Jan 03 ydroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems IOND 1 DIFFUSORS Qin = . 8 CFS @ 12 . 10 HRS, VOLUME= . 06 AF Qout= .2 CFS @ 12 .52 HRS, VOLUME= . 06 AF, ATTEN= 740, LAG= 25 .6 MIN Qpri= .2 CFS @ 11 . 90 HRS, VOLUME= . 06 AF - Qsec= 0 . 0 CFS @ 12 .52 HRS, VOLUME= 0 . 00 AF ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 728 CF 128 . 7 0 0 0 PEAK ELEVATION= 129 .6 FT 129 .2 1056 264 264 FLOOD ELEVATION= 129 . 7 FT 129 .7 1056 528 792 START ELEVATION= 128 . 7 FT SPAN= 10-20 HRS, dt= .1 HRS # ROUTE INVERT OUTLET DEVICES 1 S 129 . 6 ' 4" ORIFICE/GRATE Q= .5 PI r^2 SQR(2g) SQR(H-r) 2 P 128 . 7 ' EXFILTRATION Q= .2 CFS at and above 128 . 8 ' Primary Discharge -2=Exfiltration Secondary Discharge �--1=Orifice/Grate POND 1 INFLOW 8 OUTFLOW DIFFUSORS .80 .75 STOR-IND METHOD .70 . 65 PEAK STOR= 728 CF .60 PEAK ELEU= 129.6 FT r, .55 - . 50 - Qin= . 8 CFS u .45 Gout= . 2 CFS .35 Qpri = . 2 CFS o . 30 Qsec= 0. 0 CFS __j . 25 LAG= 25. 6 MIN LL .20 -- ------ . 15 i 1 . 10 t .05 0 .00 N ..- m ;T Ln W r- OD 0) m TIME (hours) TYPE III 24-HOUR RAINFALL= 4 .8 IN >repared by Applied Microcomputer Systems 29 Jan 03 rYa oCAD 4 . 00 000833 (c) 1986-1995 Atablied MicrocoMuter Systems POND 1 TOTAL OUTFLOW PEAK= . 2 CFS @ 12 . 52 HOURS HOUR 0 . 00 10 20 30 .40 .50 . 60 . 70 . 80 . 90 10 .00 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 11 .00 0 .0 0 .0 0 . 0 .1 .1 . 1 . 1 . 1 .2 .2 12 .00 .2 .2 . 2 .2 .2 .2 . 2 . 2 . 2 .2 13 .00 .2 .2 . 2 .2 . 2 .2 .2 . 2 .2 .2 14 .00 . 2 .2 . 1 . 1 . 1 .1 . 1 0 . 0 0 . 0 0 .0 15 .00 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 .00 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 17 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 18 .00 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 19 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 20 .00 0 .0 POND 1 PRIMARY OUTFLOW PEAK= .2 CFS @ 11 . 90 HOURS HOUR 0 . 00 10 20 30 40 50 .60 .70 . 80 . 90 10 .00 0 . 0 0 . 0 0.. 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 11 .00 0 .0 0_. 0 0 . 0 . 1 . 1 . 1 . 1 .1 .2 .2 12 .00 .2 .2 .2 .2 .2 .2 .2 .2 . 2 .2 13 .00 .2 .2 . 2 .2 2 .2 .2 .2 .2 .2 14 .00 .2 :2 . 1 . 1 .1 . 1 .1 0 . 0 0 . 0 0 .0 15 .00 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 16 .00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 17.00 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 18 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 19 .00 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 20 . 00 0'..0 POND 1 SECONDARY OUTFLOW PEAK= 0 . 0 CFS @ 12 .52 HOURS HOUR 0 . 00 10 20 30 40 50 .60 .70 . 80 . 90 10 .00 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 11 .00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 12 .00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0.0 0. 0 0 . 0 0 .0 13 .00 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 .0 0 .0 14 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 15 .00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 16 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 17 .00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 18 .00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 19 .00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 .0 20 .00 0 . 0 TYPE III 24-HOUR RAINFALL= 4.8 IN )repared by Applied Microcomputer Systems 29 Jan 03 (yd :)CAD 4 . 00 000833 c 1986-1995 A_ lied Microcom uter Systems )OND 3 TRENCH DRRAIN Qin = .4 CFS @ 11 . 99 HRS, VOLUME= .0.3 AF QOut= .2 CFS @ 12 . 13 HRS, VOLUME= . 02 AF, ATTEN= 490, LAG= 8 . 6 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 465 CF 127 .5 163 0 0 PEAK ELEVATION= 130 .4 FT 129 . 0 163 245 245 FLOOD ELEVATION 129 . 0 FT START ELEVATION= 127 .5 FT SPAN= 10-20 HRS, dt= . l HRS ROUTE INVERT OUTLET DEVICES 1 P 128 . 9' 2" ORIFICE/GRATE Q= .6 PI r"2 SQR(2g) SQR(H-r) POND 3 INFLOW & OUTFLOW TRENCH DRAIN .40 STOR-IND METHOD : 35 PEAK STAR= 465 CF 30 PEAK ELEV= 130 . 4 FT Cf- 25 Din= . 4 CF5 u Dout= . 2 CFS .20 r` LAG= 8. 6 MIN 3 � � CD . 1 5 ++ 1 L 10 r 1k .05 - -- 0 M' �n L-0 r- OD 0) m TIME (hours) POND 3 TOTAL OUTFLOW PEAK= 2 CFS @ 12 . 13 HOURS HOUR 0 .0 10 20 30 40 50 60 70 80 90 10 . 00 0 . 0 0 . 0 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 11 . 00 0 .0 0 . 0 G . uu 0 .0 0 .0 0 . 0 0 .0 0 . 0 .1 .1 12 . 00 .2 .2 .2 .2 . 2 . 1 . 1 . 1 . 1 . 1 13 . 00 . 1 0 . 0 0 .0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 14 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 15 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 17 : 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 18 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 19 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 20 . 00 0 . 0 -XYYL III 24-HOUR RAINFALL= 4.8 IN )repared by Applied Microcomputer Systems 29 Jan Q3 droCAD 4 . 00 000833 c 1986-199 -Applied Microc m uter S stems ©� 4 TRENCH DRAIN Qin = .4 CFS @ 11 . 99 HRS, VOLUME= . 03 AF Qout= . 2 CFS @ 12 . 13 HRS, VOLUME= . 02 AF, ATTEN= 49%, LAG= 8 . 6 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 465 CF 127 .5 163 0 0 PEAK ELEVATION= 130 . 4 FT 129 .0 163 245 245 FLOOD ELEVATION.= 129 . 0 FT START ELEVATION 127 .5 FT SPAN= 10-20 HRS, dt= .1 HRS ROUTE INVERT OUT DEVICES 1 P 128 . 9 ' 2" ORIFICE/GRATE Q= . 6 PI r"2 SQR (2g) SQR(H-r) POND 4 INFLOW & OUTFLOW TRENCH DRAIN .40 STOR-IND METHOD .35 PEAK STOR= 465 CF 30 PEAK ELEQ= 130 . 4 FT .25 Qin= .4 CFS Qout= . 2 CFS .20 - LAG= 8. 6 MIN 3 � 1 0 . 15 ! .J 1 Lj_ . 10 +� �1 t � r r N F9 d r LA t0 IT OA 6) m TIME (hours) POND 4 TOTAL OUTFLOW PEAK= 2 CFS @ 12 . 13 HOURS HOUR 0 . 00 10 20 30 40 50 60 70 80 . 90 10 .00 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0. 0 0 . 0 0 . 0 0 . 0 11 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 . 1 . l 12 . 00 .2 .2 . 2 .2 . 2 . 1 . 1 . 1 . 1 . 1 13 . 00 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 14 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 15 . 00 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 17 .00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 18 . 00 0 . 0 0 . 0 0 . 0 0 . 0. 0 . 0 0 . 0 0 . 0. 0 . 0 0 . 0 0 .0 19 .00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 20 . 00 0 . 0 TYPE III 24-HOUR RAINFALL= 4.8 IN 23 Jan 03 Prepared by Applied Microcomputer Systems 3 droCAD 4 .00 000833 c 1986-1995 Appli ed Microcomputer Systems POND 5 Not described Qin = 3 . 1 CFS @ 12 . 01 HRS, VOLUME= . 31 AF Qout= 3 .1 CFS @ 12 . 01 HRS, VOLUME= .31 AF, ATTEN= 0%, LAG= 0 . 0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 .00 AF PEAK ELEVATION= 0 .0 FT FLOOD ELEVATION= 0 . 0 FT START ELEVATION= 0 .0 FT SPAN= 10-20 HRS, dt= . 1 HRS ROUTE INVERT OUTLET DEVICES POND 5 INFLOW & OUTFLOW Not described 3 .0 - METHOD 2 .8 2 . 6 PEAK STOR= 0. 00 OF 2 . 4 PEAK ELEU= 0 FT 2 .2 2 .0 - .8 Ain= 3. 1 CFS u 1 6 Clout= 3. 1 CFS 1 .4 - LAG= 0 MIN 0 1 .2 - 1 .0 LL g .6 .4 .2 21 CS) N M Ln w oo 0 CD TIME (hours) E TYPE III 24-HOUR RAINFALL= 8 .4 IN 2 Jan 03 >repared by Applied Microcomputer Systems [yd :)CAD 4 . 00 000833 c 1986-1995 A lied Microcom uter S stems ;UBCATCHMENT 1 HALF OF ROOF SURFACE PEAK= . 7 CFS @ 11 .99 HRS, VOLUME= .05 AF ACRES CN SCS TR-20 METHOD . 09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 8 .4 IN SPAN= 10-20 HRS, dt=. 1 HRS [ethod Comment Tc (min) 'R-55 SHEET FLOW Segment ID. 1 . 6 mooth surfaces n= .011 L=64 ' P2=2 . 8 in s= . 005 iUBCATCHMENT 2 HALF OF ROOF SURFACE PEAK= . 7 CFS @ 11 . 99 HRS, VOLUME= . 05 AF ACRES CN SCS TR-20 METHOD . 09 98 HALF OF ROOF SURFACE TYPE III 24-HOUR RAINFALL= 8 .4 IN SPAN= 10-20 HRS, dt=. 1 HRS ethod Comment Tc min R-55 SHEET FLOW Segment ID: 1 . 6 mooch surfaces n= .011 L=64 ' P2=2 . 8 in s=. 005 UBCATCHMENT 3 PROPOSED PARKING LOT PEAK= 1 . 7 CFS @ 12 .09 HRS VOLUME= . 13 AF ACRES CN SCS TR-20 METHOD .16 98 PAVEMENT TYPE III 24-HOUR .11 61 LAWN RAINFALL= 8 .4 IN 27 83 SPAN= 10-20 HRS, dt=. 1 HRS ethod Comment Tc (mid R-55 SHEET FLOW Segment ID: 8 .3 rass : Short n= .15 L=90 ' P2=2 . 8 in s= .029 S HALLOW CONCENTRATED/UPLAND FLOW Segment ID: aved KV=20 .3282 L=108 ' s= . 029 1 / 1 V=3 .46 fps Total Length= 198 ft Total Tc= 8 . 8 -EYI'B III 24-HOUR. RAINFALL= 8 .4 IN >repared by Applied Microcomputer Systems 2 Jan 03 Ey roCAD 4 . 00 000833 (c) 1986-1995 Applied Microcomputer Systems ;UBCATCHMENT 4 SUBCATCHMENT 4 PEAK= 3 . 6 CFS @ 11 . 99 HRS, VOLUME= . 23 AF ACRES CN SCS TR-20 METHOD .43 98 EXIST PAVEMENT TYPE III 24-HOUR RAINFALL= 8 .4 IN SPAN= 10-20 HRS, dt= .1 HRS :ethod Comment Tc (min) 'R-55 SHEET FLOW Segment ID: . 7 mooth surfaces _ n= .011 L=40 ' P2=2 . 8 in s=. 016 HALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1 .3 aved Kv=20 .3282 L=200 ' s= . 015 ' / ' V=2 .49 fps Total Length= 240 ft Total Tc= 2 . 0 UBCATCHMENT 5 SUBCATCHMENT 5 PEAK= 1. 8 CFS @ 12 . 11 HRS, VOLUME= . 14 AF ACRES CN SCS TR-20 METHOD .33 79 EXIST WOODS TYPE III 24-HOUR RAINFALL= 8 .4 IN SPAN= 10-20 HRS, dt= .l HRS ethod Comment Tc (min) R-55 SHEET FLOW Segment ID: 10 . 1 rass : Dense n= . 24 L=80 ' P2=2 . 8 in s= . 036 HALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1. 3 port Grass Pasture Kv=7 L=112 ' s= . 043 ' / ' V=1 .45 fps Total Length= 192 ft Total Tc= 11.4 s TYPE III 24-HOUR RAINFALL= 8 .4 IN )repared by Applied Microcomputer Systems 29 Jan 03 ly roCAD 4 . 00 000833 (c) 1986-1995 Applied Microcomputer Systems ,EACH 1 Qin = 1 . 7 CFS @ 12 . 09 HRS, VOLUME= . 13 AF _Qout= 1 . 6 CFS @ 12 . 09 HRS, VOLUME= . 13 AF, ATTEN= lo, LAG= .3 MIN )EPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH= .59 FT . 1 0 . 0 0 . 0 n= . 013 PEAK VELOCITY= 5 . 1 FPS . 1 0 . 0 . 1 LENGTH= 60 FT TRAVEL TIME = .2 MIN .2 . 1 . 3 SLOPE= .017 FT/FT SPAN= 10-20 HRS, dt= . l HRS .5 .3 1 .3 . 5 .3 1 .5 . 6 .3 1 . 7 . 6 .3 1 . 7 . 6 .3 1 . 7 . 7 .3 1 . 6 .EACH 2 Qin = .4 CFS @ 12 .51 HRS, VOLUME= . 13 AF Qout= .4 CFS @ 12 .53 HRS, VOLUME= . 13 AF, ATTEN= Oo, LAG= 1 . 0 MIN EPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH= 28 FT .1 0 . 0 0 . 0 n=' . 013 PEAK VELOCITY= 3 .0 FPS . 1 0 . 0 . 1 LENGTH= 56 FT TRAVEL TIME _ .3 MIN .2 .1 .2 SLOPE= . 008 FT/FT SPAN= 10-20 HRS, dt= . l HRS .5 .3 .9 . 5 .3 1 . 1 . 6 .3 1 .2 . 6 .3 1 .2 . 6 .3 1 .2 . 7 .3 1 .1 EACH 3 Qin = 3 . 6 CFS @ 11 .99 HRS, VOLUME= .23 AF Qout 3 . 6 CFS @ 11 . 99 HRS, VOLUME .23 AF, ATTEN= 1%, LAG= . 1 MIN EPTH END AREA DISCH -(FT) (SO-FT') (CFS) 12" PIPE STOR-IND+TRANS METHOD 0 . 0 0 . 0 0 . 0 PEAK DEPTH= .82 FT .1 0 . 0 . 1 n= . 013 PEAK VELOCITY= 5 .2 FPS .2 .1 .3 LENGTH= 20 FT TRAVEL TIME, = .1 MIN .3 .2 . 7 SLOPE= . 01 FT/FT SPAN= 10-20 HRS, dt= . l HRS . 7 . 6 3 . 0 . 8 . 7 3 . 5 .9 . 7 3 . 8 .9 . 8 3 . 8 1 . 0 . 8 3 . 8 1 .0 .8 3 . 6 a-YYr, 111 Z4-nuux xaLiMrrALL= O .'f .LLV repared by Applied Microcomputer Systems 29 Jan 03 ydro lied Microcomputer Systems OND 1 DIFFUSORS Qin = 1 . 6 CFS @ 12 . 09 HRS, VOLUME= . 13 AF Qout= .4 CFS @ 12 .51 HRS, VOLUME= . 13 AF, ATTEN= 74%, LAG= 25 .3 MIN Qpri= .2 CFS @. 12 . 61 HRS, VOLUME= .10 AF Qsec= .2 CFS @ 12 .51 HRS, VOLUME= . 02 AF ELEVATION AREA INC. STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 1868 CF 128 . 7 0 0 0 PEAK ELEVATION= 130 . 7 FT 129 .2 1056 264 264 FLOOD ELEVATION= 129 . 7 FT 129 . 7 1056 528 792 START ELEVATION= 128 . 7 FT SPAN= 10-20 HRS, dt= . l HRS # ROUTE INVERT OUTLET DEVICES 1 S 129 . 6' 4" ORIFICE/GRATE Q= . 5 PI r^2 SQR(2g) SQR(H-r) 2 P 128 .71 EXFILTRATION Q= .2 CFS at and above 128 . 8 ' Primary Discharge -2=Exfiltration Secondary Discharge -1=Orif ice/Grate POND. 1 INFLOW & OUTFLOW DIFFUSORS I . 6 1 .5 STAR-IND METHOD 1 . 4 PEAK STOR= 1868 CF 1 .3 - 1 . 2 PEAK ELEV= 130 . 7 FT 1 . 1 Din= 1 . 6 CFS U . 9 Qout= . 4 CFS 3 7 Qpri = 2 CFS o .6 Qsec= . 2 CFS . 5 LAG= 25. 3 MIN .4 .3 .2 - 0 . 0 N M NT to 0 r- oa rn m CM TIME (hours) TYPE III 24-HOUR RAINFALL= 8 .4 IN ,repared by Applied Microcomputer Systems 29 Jan 03 dre)CAD 4 . 00 000833 c m 1986-1995 lied Microco uter Systems POND 1 TO'T'AL OUTFLOW PEAK= .4 CFS @_ 12 . 51 HOURS HOUR 0 .00 .10 .20 0 .40 .50 . 60 70 . 80 . 90 10 . 00 0 .0 . 1 . 1 .1 . 1 . 1 .1 . 1 . 1 . 1 11. 00 .1 . 1 .1 . 1 . 2 .2 .2 . 2 12 . 00 .2 . 3 .4 .4 .4 .4 .4 .4 13 . 00 .4 .4 .3 .3 .3 .3 .3 . 3 14 . 00 .3 .2 .2 . 2 . 2 .2 .2 . 2 .2 2 15 . 00 .2 .2 .2 .2 .2 . 2 .2 . 2 16 . 00 .2 . 1 .1 . 1 . 1 . 1 .1 . 1 0 . 0 0 . 0 17 . 00 -0 .0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 18 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 19 . 00 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 20 . 00 0 .0 POND 1 PRIMARY OUTFLOW PEAK= .2 CFS @ .12 . 61 HOURS HOUR 0-Q0* 10 20 30 40 50 60 .70 80 .90 10 . 00 0 .0 . 1 .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 11 . 00 .1 . 1 .1 . 1 .2 .2 .2 .2 12 . 00 .2 . 2 .2 . 2 .2 . 2 .2 . 2 .2 . 2 13 . 00 2 . 2 .2 . 2 .2 . 2 .2 . 2 2 2 14 . 00 .2 . 2 .2 .2 .2 . 2 .2 . 2 15 . 00 . 2 .2 .2 . 2 .2 . 2 .2 . 2 16 . 00 .2 . 1 .1 . 1 . 1 . 1 . 1 . 1 0 . 0 0 . 0 17 .00 0 .0 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 18 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 19 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 20 . 00 0 . 0 POND 1 SECONDARY OUTFLOW PEAK- 2 CFS @ 12 51 HOURS HOUR 0 ,00 .10 .20 .30 .40 . 60 7 0 0 10 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 . 0 . 0 0 . 0 0 . 0 11 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 12 . 00 0 . 0 . 1 .2 .2 .2 . 2 . 2 . 2 . 2 . 2 13 .00 . 2 . 2 .1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 14 . 00 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 . 0 0 . 0 0 . 0 15 . 00 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0. 0 0 . 0 0 . 0 0 . 0 17 . 00 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0. 18 . 00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 19 .00 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 20 . 00 0 . 0 - TYPE III 24-HOUR. RAINFALL= 8.4 IN ,repared by Applied Microcomputer Systems 29 Jan 03 -15 Applied Microcom ter Systems dA . 03 19 ,OND 3 TRENCH DRAIN Qin = . 7 CFS @ 11 . 99 HRS, VOLUME= .05 AF Qout= . 4 CFS @ 12 .12 HRS, VOLUME= . 04 AF, ATTEN= 460, LAG= 8 . 1 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 670 CF 127 .5 163 0 0 PEAK ELEVATION= 131. 6 FT 129 . 0 163 245 245 FLOOD ELEVATION= 129 . 0 FT START ELEVATION= 127 . 5 FT SPAN= 10-20 HRS, dt= .1 HRS ROUTE INVER OUTLET DEVICES 1 P 128 . 9 ' 2" ORIFICE/GRATE Q= . 6 PI r"2 SQR(2g) SQR(H-r) POND 3 INFLOW & OUTFLOW TRENCH DRAIN . 70 STOR-IND METHOD .65 .60 PEAK STOR= 670 CF .55 PEAK ELEU= 131 .6 FT r, .50 - .45 Oin= . 7 CFS u .40 Qout= . 4 CFS. .35 - LAG= 8. 1 MIN 3 .30 .25 t .20 + . 15 i 1 � .05 �� ��`- ---- --- 0 , 0'b N M v- M TIME (hours) POND 3 TOTAL OUTFLOW PEAK= 4 CFS @ 12 .12 HOURS HOUR 0 .00 . 10 .20 .30 .40 .50 .60 .70 .80 . 90 10 .00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 .0. 0 . 0 0 . 0 0 . 0 0 .0 11 .00 0 . 0 0 .0 0 .0 0.0 0 . 0 . 1 .1 . 1 .2 .2 12 .00 .3 .4 .4 .3 . 3 . 2 .2 .2 . 1 .1 13 .00 . 1 . 1 . 1 .1 . 1 . 1 . 1 . 1 0 . 0 0 . 0 14 .00 0 . 0 0 .0 0 . 0 0 .0 0 .0 0 .0 0 . 0 0 .0 0 .0 0 . 0 15 .00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 16 .00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0..0 17 . 00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 18 .00 0 . 0 0 .0 0 . 0 0 .0_ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 19 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 20 .00 0 . 0 TYPE III 24-HOUR RAINFALL= 8 .4 IN 29 Jan 03 repared by Applied Microcomputer Systems droC D 4. 00 000833 c 1986-1995 Applied Micro com uter Systems OND 4 TRENCH DRAIN Qin = . 7 CFS @ 11. 99 HRS, VOLUME= . 05 AF Qout= . 4 CFS @ 12 .12 HRS, VOLUME= . 04 AF, ATTEN= 460, LAG= 8 . 1 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) PEAK STORAGE = 670 CF 127 . 5 163 0 0 PEAK ELEVATION= 131. 6 FT 129 . 0 163 245 245 FLOOD ELEVATION= 129 . 0 FT START ELEVATION= 127 .5 FT SPAN= 10-20 HRS, dt= .l HRS ROUTE INVERT OUTLET DEVICES 1 P 128.91 2" ORIFICE/GRATE Q= . 6 PI r^2 SQR (2g) SQR(H-r) POND 4 INFLOW & OUTFLOW TRENCH DRAIN .70 STOR-IND METHOD .65 PEAK STOR= 670 CF .6e .55 - PEAK ELEV= 131 .6 FT .45 Din= . 7 CFS u 40 Dout= 4 CFS .35 � ` LAG= 8. 1 MIN .30 t i .25 LL .20 ! . 1 5 .05 ------ 0 .00m N m d Ln 1-0 f- O " m m TIME (hours) POND 4 TOTAL OUTFLOW PEAK= .4 CFS_.. @ 12 . 12 HOURS HOUR 0 .00 .10 .20 .30 .40 .50 .60 .70 . 80 .0 10 .00 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 .0 11 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 .1 . 1 .1 .2 .2 12 . 00 .3 .4 .4 .3 .3 .2 .2 13 . 00 .1 . 1 . 1 .1 . 1 . 1 . 1 . 1 0 . 0 0 . 0 14. 00 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 15 .00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 16 . 00 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 17 . 00 0 .0 0 . 0 0 . 0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 18 . 00 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 .0 0 . 0 19 . 00 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 20 . 00 0 . 0 TYPE III 24-HOUR RAINFALL= 8 .4 IN Prepared by Applied Microcomputer Systems 23 Jan 03 HvdroCAD 4 00 000833 (c) 1986-1995 Applied Microcomputer Systems POND 5 Not described Qin = 5 .7 CFS @ 12 .02 HRS, VOLUME= . 59 AF Qout= 5 .7 CFS @ 12 .02 HRS, VOLUME= .59 AF, AT TEN= 0*-. , LAG= 0 .0 MIN ELEVATION AREA INC.STOR CUM.STOR - METHOD (FT) (AC) (AF) (AF) PEAK STORAGE = 0 . 00 AF PEAK ELEVATION= 0 , 0 FT FLOOD ELEVATION= 0 . 0 FT START ELEVATION= 0 .0 FT SPAN= 10-20 HRS, dt= . 1 HRS ROUTE INVERT OUTLET DEVICES POND 5 INFLOW & OUTFLOW Not described 5 .5 5 .0 - - METHOD PEAK STOR= 0 . 00 AF 4 .5 PEAK ELEU= O FT CIO 3 .5 Gin= 5 . 7 CFS u 3 .0 Uout= 5 . 7 CFS 3 2 .5 LAG= 0 MIN 01 2 .0 Lj- 1 .5 1 .0 .5 0 TIME (hours) f r—=---------- ---------- I 16' X 22' II q I I I / I 9 9 1/4' SLOTS I I A INSPECTION COVER 119 I I i 911 II I Ilp I I w I I 3. --- I I REINFORCED RIB II II 1 1 1 1 II 9 1 1 J_L 1 _wt_____--_ I _J PLAN VIEW FENIALE KEY UFi1NG HOOKS N 12�•cP7 SIDE VIEW �j 2 3/4' SECTION VIEW DALE KEY N INVERT N .s J DISTRIBUTION LINE RUNNING RIGHT END VIEW WIDTH of CHAMBER NOTES:. 1. CONCRETE: 4,000 P.S.I. 0 28 DAYS, 2 WEIGHT PER LIMT APPROX 1,900 Ibs, 3. H-20 VMEEL LOADING HANCOCK ASSOCIATES Land Surveying-Civil Engineering-Environment Consulting SHEET No. of D 235 Newbury Street D 626 Main Street CALCULATED BY J � DATE Danvers,MA 01923 Bolton,MA 01740 (978)777.3050 (978)779-6767 CHECKED BY DATE Fax(978)774-7816 Fax(978)779-2228 SCALE ............_............_;.............: ..... ...... ..........._..__......_.-...._.....' — T�/ cc i=Y/t lcx ...._ 7 ._....CcCfJ �ch ..._.._-................_..._��..Gc!.._�`�._.._L .±....IZG.._C.... 1.....s._ t7._i_QQ ..._� 5 ,..._S_a.lC _............_..-_.......-._......_ ...... ..... ... .... .. ................. ..;.:.. .... .._............. ........ .._......._...._. ....- .... IC . C . T i i I ZS — ...... ........:.............................._............_............. 2.. ....... S €� Z 7.... v o ................... ............. Z. ......-......... ....27 r f. .. 0 Z ....... ...( .. .......f.. C _�. _..._.... ......... ..... ..... ...... ........ f9 Ar 3 ... ._......;.....'...�..............3...1...Z/._,.M......c�..... Sr ......... ._.-. _.r.. .....�...'............_ 43 r D%5.......... .... .... ......... ........ ..... ..... Sc� — Z ... Q6ol .............r . " ..u.._........... ..... SJ i I i i .. ... .. ...... i f5 ......... .................... .. it ..... ...... ._ ... ...... .... :. — — ...... ...... ... ..... .................................. ... ... ...... ............ t .2 �2 .. _ . 2 . 3 �..,.. _ 5:0 ft . Q. 2 _ 5. ._...... .....__...... ................ 1 ..... .. ooq_/_ ..............-................................_...._ ... ...... ..... , .. _ ._.. r _ fit) b�°_.`.... ... .. 1,"1- .` _....._:.:..... _........... .... k f i i J 9 i [ ii i i ........... ...... ._.. .... ............. _.... ..... ...... ...... ....._ ..... .... ...._ ..... ...... ...... .._..........i............ ........._..A....._............... ...... _.- i f ..o.G - s ._. . ._.. .._. HA COCK ASSOCIATES JOB Land Surveying-Civil Engineering-Environment Consulting SHEET NO. OF ❑235 Newbury Street ❑626 Main Street CALCULATED BY DATE Danvers,MA 01923 Bolton,MA 01740 (978)777-3050 (978)779.6767 Fax(978)774.7816 Fax(978)779-2228 CHECKED BY DATE SCALE ......_>......_..._....._...._i._.. . ..... ...... ..... ..._ ..... ...... ...... ..... ...... ..... ..... ..... ..... _... _ ..... ..... ..... ..._. ...... ..... ..... __. _ ...._ ..� 4C :..�...._=.._ ..............1 ...._. ..............._ ........................ ..._�,Ftt-i. ..��,...... ;.......�. _ _. ..............:..._......:._..........:...........:....... ..;... ....... ...._. ...... ..... ............. ,�.. ............. vfrS....... ....;._ .. r : 275 2 X 253 . x _............ __.............. ...... 2 70 ...... ....................... ...... : ....:.... ...:.... ...... ..... _... ... ............ __._.._.. ... .. t,... .._ . .._... ..,._. ... ............ _ ... ............................ a f.... . �. ... ..:.... ..... ..................... .. ...... .... ..._. ;23,7 bc! �'s _. _ _...__._......... :....... ..................._..._._........__..._..................; ...... ly .... :... ....... . .. ....:. ...... 1..... c�tt�........ ......4 �'ic.�/ ..... ... _...... ....._.. .... z�... ` ...........t............:..........._,........... ... ......... ....... ..... ...... ..... .._lJ. ..2....... .......:......... .._. _.... .... _ z CA(�A:✓c_71y � e. 2....... .............._.. ............. ..,.........._.................... ...._....._. _... ` ...... ;.... ........ _. ............. .. c....�,a...._ ...._T.....__..s.. < ... .... ............. _ .. ..... ..... 1 ....da- l � � ._G0. 7 O1.... - ..._... .. ......... .... ............ y' �/,d � � 2dvS yG G J cuf�c i k_... ...._V ................ T ..__....._..........._`................_.._.._..............._......... ..:........ .....F...........:<................._........ :..........:............:.............:......_ HANCOCK ASSOCIATES JOB Land Surveying-Civil Engineering.Environment Consulting SHEET NO. OF 0 235 Newbury Street 0 626 Main Street CALCULATED BY DATE Danvers,MA 01923 Bolton,MA 01740 (978)777-3050 (978)779.6767 Fax(978)774.7816 Fax(978)779-2228 CHECKED BY DATE SCALE 777 .....:, ...... ...... .... ...... ..... .. .... G Cwt 'l q C Y r c� ; A�tI ...._......... ..............._ ...........z..........._.. ..... ... .. .. .... .. ..... a .. .... _ . .. ._ n ..: 62i . ._, . .._(: ............. ... ...............: , . .. ... .. ..... .-Ii ...�....-.. ... i ` Z -........-...........-;-.........-:...........,�............z. L ....: ; . . .........h-..5.....`(c r............._�3., .... ..........._:.....I...._..i . : � c CZtUG f��5.'6'........�..�......................':..........._ ..i..................................._'__...... ..... _.... ...... ..... ...... .... -.. ..... ...... .... .... i - ................ ...... ..... ...... ....I .... l .S 10 �3/�'A� ._.......J............_i................._._._...............i._.._....._i......... ...... ...... ...... ..... ..... ...... _... ..... ...... ..... ..... _.... ..... ..... ..... ...... ._.... ...-. ...... ...... ...... ...... ._... _ ...... 1... ..-1...- ._..................._......................_............................:r--..................... .... ..... ._..... ...... ..... ...... ...... ...... ..... ...... ...._ ..... - ...... ..... ..... -..... ..... ..... ..... ..... ..... ..... : ' : : : : : . : : . . . : : ' ; ; : . : . . : : : . . ; : ; : : . . ; : t . : . : . . ...; . :.........................: -.... .....----........;........ . . .. :....� ......I.:................ ..........;.-......-......-... .... � -� ...........i.............;-.... I i : ..............��..........�...�.......�.....:.............4- .. i-...........:....-.....;............. .......................:.............4 .......�... ..............�... . : . : : i . .....�:�.............:-....�.....................I...�....- � . .....� - : : : : ; : ; . . : . . . . . : : i . . . . : . . i : . . . : ; : : : : . ; ; . : ! : - : ; : i : : - : : z i . : : : : : : . . : . : . : - : . : : : : : : : : ; : : : I . : : : : . : : . . ; i � : : . . - : . . : � ! . .- ; . : . ; . � : : : : : : . ; : : - . ; : . ' : ! i . : : : . . : : . . � : I . : : ; : : : : : . . : � i : : . . : . : : : : ; : . � * : : . . : i . . . .- .........;. ......--.........i..............:--......... -.......----.... � . . - .... ........I-.;......... -.. �...... . . ......... ......:....... -4-- I.........-................-- ....�.........I . . -. ..... �. . ...... L......-....:�............T..... :. ....- .... I . . t ......: ...-�.. ..... ;..............i-... .. ....- � : �......�...;--..........t................�......-,--......- I . : : 1 : ; : : : : . : i ; . . ; I ! : : ; . . : : : : : . . . : i : : : : : ; : : . : : : : : : : ; : : : . * : ; * ; : : ; : � . . . : ; ; : : . . . ; : : . . ! I : : . I . : . : . : ; : : i � i . : : . � : : : : : : : : : i . : : : : : . : : : t : : : : . : : : : : ; : � : : . ; ! ; ; . : : : : : : : : : : t : : : i : ; ; : i . : : : : : : : t : : : � : : : . : : : : : : : ; : : � : ;I . : ... :.... ........�.......: -......; :-...�....................v..........�,. - ---�- ... ........I........;. : : : . ;...�........... . . ......... ......--'.. .... .....:......... ........i-..........�..... .... .................I................ .-�. � ...-... ...-�............. I ...... . ; I..-. ,...�.....�...-.........1. I : ; + i I i . : . : :"'"'''1"'" : . . . : �... .. 1........ - � : . . ; ! . : . . � : i : : : : : . : : : : : . . : : . . : : : : : : . - : ; : : : ; ; i : z : ; : . . : . . ; . ; : ; : . . : : : : : i : : : : : : f : : : I . . . . . . ! : : : ; . . : : : : t ; : : : : : � : : : ; : � : ; i ; : � . : : ; : : : : : : : : � : : : : : : ; : : . ; : : : : t : : : : : : i : � : : : ; : : : : : : ; : : : : . : : : . I : : : ; . . : . . I : : : : i : : ; : : : : . : I . . I I . . I . . . . . I . 2-5 Table 2-2.--Runoff curve numbers for selected agricultural, suburban, and h• urban land use. (Antecedent moisture condition II, and Ia = 0.25) HYDROLOGIC SOIL GROUP 7 LA,', USE DESCRIPTION A^ 3� C ' Cultivated land! ; without'conservation treatment 72 81 88 91 with conservation treatment 62 71 78 81 Pasture or range land: poor condition 68 79 86 89 good condition 39 61 74 80 Meadow: good condition 30 58 71 78 Wood or Forest land: thin stand, poor cover, no mulch 45 60 77 83 7. good cover?/ 25 55 70 77 Open Spaces, lawns, parks, golf courses, cemeteries, etc. good condition,.- grass cover on 75% or more of the area 39 61 74 80 fair condition: grass cover on 50% to 75% of the area 49 69 79 84 Commercial and business areas (85%. impervious) 89 92 94 95 Industrial districts (72: impervious). 81 88 91 93 tj Residential.- : ?HOC c7✓r� 7/,'�'!� Average lot size O C Average��%-gmpervious- y 1/8 acre or less 65 77 85 90 92 1/4 acre 38 - 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 25 54 70 80 85 1 acre 20 51 68 79 84 Paved parking lots, roofs, driveways, etc.!/ 98 98 98 98 Streets and roads: paved with curbs and storm sewers!/ 98 98 98 98 gravel 76 85 '--89 91 dirt 72 82 87 89 1/ For a more detailed description of'agricultural land use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, Aug. 1972. z/ Good cover is protected from grazing and litter and brush cover soil. Cure numbers are computed assuming the runoff from the house and drivevay is directed towards the street with a minimum of roof water .directed to lavns where additional infiltration could occur. . The remaining pervious areas (lavn) are considered to be in good pasture condition for these curve numbers. !/ In some warmer climates of.the country a curve number of 95 may be used. rR�+�l SAS ►�J��✓AL — '�_� 5 t�tet r , . .. �: ...v t:--r -;_.� .•a�i sa - ��xa'�f5�.d{� ���"gs�'C ���1fgt�� +�� � `'•`Jr � Fvfi:� ��s��'�i,�r,5�1{Z, ateJ ,!4 '-} -x r 1^ � � �. 6 st "�, •'rG' 4 �.b .y�J''.' -�."'^�, s• - . �� _a. -., ,� '� a- :,"SFk'11k•.. a�d.}B §"� ,it� 4,, Y� C_,yr^s.a ( ,(F}, �c-� ti - --� _0: c''. s._ .U�����' �r a ' -` s ,r" `t 'f _s^z -' �L' t ,er?>.. €� .. �v- p _ .` syY�s`"' rt`t < st{. -� �.�(.. vt ' g '. `•� ' . s 4y a� fy. f: ti4r� ? '.._ ! 3 .,: t�.R - � � i �-" w r°?r`<y...,.. ss ,� L�,t7J�F....Y^b r s''• y sF` _yY .� �" >_-�s {'3� .:y zc- .. t?...� � ?;?= ,:" ..`"• i,l�.r.�'�, °LIr`Z �. ` Mh' i z F� ` F R. ii� y w #. 4.y -a•. e '�z. �� y F` 1 '•r~ .x -�yrF� ,_`. af- A fit- s, zn •. - } r -� 7 x `� , r r" ," �tC.`vz •.,�-zs% • S�r-{ 'r .-�. , _ t P.• , a �, � - �� `a? �'.Y§. `ks•tt, �,rof v'mss. Ct r ` t s ' ' t , ;� . t��za ,tit r fih� 9F,�i s �;�� r �� •, ���`��r,' �'+ d: aeil�. mz .5 t t yaY d "'.1.,�-Y•w, 1> � A�' 015, `ac`^ e r •~' ��'sr''✓ 'Y�� �oc'_ Y � _ s � E�.-3t,•eSftr �`+� � j c+p '" 7y�`i ,, - 'E8 � �Y - a:. �.�,-. r 4. < ,,• ? '..ry- •� '7, ri Wit-'` . I,-. 3.•_'``_ {,t _ v�5 FY. '�t _P�}{' � � ;4'}l".' � '°""NIMBI •. j,1y# k.$,c J ,s: ,r,.'_ : Y- �v ����-�Tr� �_ rE1�.� Ik- {.: Yr��F��£_-.3� -� Sa v� rr'�`.{�'e�iF���v�ttL• q �a� E.7�-� �.- i. •t� r M4 r •` c ` L.• u ,:, 1.,?"' - - > -yid .AlJa � yksNatr°als,:s�+j - rzt 3a 7 t' tj z- [h+I'_ • 4_ �+1 'tl F - � r,"y':c' i r l��* to-� Ef - -y-: �� 1 �a 44A 'IN " �� �,�...• � f . tL'ti}�.�_ eel ..,-<. ay gx -': eay�tr c�,-�r y rr �. � "�F?j4 '$-•• '�' �Y t�r<N� 3 F..��t$`t u `��`:2.T�.. ''�� �{'--.3 �fi'��2�c'.J�`r �; ��c€`' �.- t� J J ir7�,p.� :t t;;a ;� `�* •- b �;at -�-.! �x �f I crate ft`ar €5 :{_:tl�'r�.•tMf"i�At rick -v A .14 �q� t:.f� P �.1 •E: Y7 -�[-.it �a'r a..c"v�`,.`a.. E ._ sa`ii.. .. f x r �_ tL _ Y •c -- sVZ.g'3 Ta-r�- ,r "C -.j,' Y•i i `{ an '. � �- -;r • l�:l,y r 5f,�'p, c�� zsr.t r. r F J. .. c" r:. 4z`r� `. 2{n vt �3; q Y�• ate_ s� �,;lI C £e �M � s �$ I i$ 4 ..�' .. S'l E �s-`�s'* 15- v �s�. Ja`. ,C"4 ss ""'',: -e rt3 - '�'t •5.5}�i.'�`it t _ta.- t•t' ��ti--r ra ;s v f���.-�: `�: � t '�.� [r r :r-� � �fi '{">:�-' `� t���r, i r { � �i3 �r'.f����. o i� �" 9 t{��rl��3,•.Yaa Vic. !r'l? rs i. �}�: •K s <J-. sr,, - �; u '1}'.�d �v f a -J, y 7 "_ Uy i'W-. i - 1 isf t ' ^,y .. Y � ,s'...•'� $ t 4;' 1' l� c se 4s 3(i��` • v �. ryyz. �• 1t1� t r t} .t`- { �( a�z9 e { \5. yc .-;' �. ? ,G� r�. :t0�.- w rs - +' s`•r_ • r.. ? k- TL-§.�°ni. .< ty _ '.i a"�41. ' .::°.'r.�.. .- `v' v.n".' !'._ �"x3 F.y"• 'M R`! - t.>.tC`cyt. 1 +1. .� f' `.$�.2. -$'E,,,>✓a' r f ra 1! t'�l� t#t,. iRf- 7.�-'-L ?`-+1 •7F;t."z& 4�E-uS St� �, r� r; �j !(a's < d3 rtS,�l�.; .fit,:•r= J y?.-. :-t r. ;-t �.r. '� 'J-��icr��YS..�'a s _ fv� i �,.;,0.i ;�� ;�� �7 t.: 5�;��l l�•�ry �� �.R \2r atf4��,tv . :�"� ,''YY� Ea��: t:,1fs } .°, q`'�';. :'�'� �?,�,� `t`ra.� '-3�1� � �� fi':�":�''A t. aG,t :s �.�. 1.•'x,4 � ��,y+:. �_x��'�� �{��,, i.tl 't i�'§ t-i •tt���� ��a T �t Ti•:•�' 1 , `t,jdi- � (tr°,•a 9�-r�1 .j��'d, fa. � t}\.:.. j "} .I � 1�? � Ms'+-. ' G ,lz'„.�tyt?:?3a,:'f..�:..f,s,�"4 r'.tx•7 tR.��L�f\,r-7rt f�'f y-F rv:.'J-�"==�'u r 7 �6 r Cr}-YC-tc Go!Y:.�5 t,��"fi t 3'tS t r t i f lf{y,�st�t't xy§r-;ss.``:}r:.'�..-.��r�"g f 2:t.:t.5 l 4 r'fi��r?x-•f s o L„..f"�,Yfi r3-nsom n.._.F:'l+,i J>r r7f J`Nt 4 1 t�3-,-`:-°�at.,i s=+t�v d€F,._',�0 S�li--.u 2 i;,'c.-.s.\S--5.,z;a_::3:�:;'�i 5.`;� K r/�:,�. 7 3t Y-�,.F ai r'.`T...,nf�r..,i�Fs_A.1---Y"�\�3.�1'��,tr}s sr-7•:5 ti�,{_,_:�_,j A t t$�Cs 3 x f��?ti t�X t mt•"F t-Jd,�l t-r y z L 3.-r�i?-�J.•�=t r 1rr2'-j y r°#3 s f3'y:1'z..-,,l 3 C><�,N him- t „0,11 cd ✓„ 5 ; F,j°�`ctpt�k CC�.'.aror��l.r Ca.v•t=,5.",.,,:=!T`:r t3s 4'u af�z.- 'K,.t,.,�;.c;i,�;t�:+w`�'E•"c+1'._a ( t, r {fir-,.r--.. - = t.9 +.], , s2r-�_`` t-.., Frt 1;;;," £✓-_- -,e`i, t>, �� ,�'- ;{.'�..•.F y:aY.=s�1'r,.>rti r'\^,i: �':�.,-�t•�"� '�' z 7 ?s -�A'ty,.'�.F fit, .,,-,�� �`�•�s&��i � r y t r t .at'�i E'`�'it',r'�7�"'�'+"A°y� `�� �'E��+:�-,�t`-'�1 - 3.:y1 j r$ g k }fit' r- r a {, a-q• 's r.. ,..s 1,'." t q! S fi-,,i'^� ..' ` _ 3 X i e � �9p _ '"'I kk 1�5� '•( '� 4d �' .t+'r '1 isS ..9:LJ¢ f•, t§ ,�' 't ? `�{`�,. �'' :F' <- � e•.,}}'a's, z- ,�$aq t'` r�-� •� "``fit \t� e.?�+J� p, �""''3k 4 _..; ''o- ti-3r r--. }-xr' "yr :fir t 6 34 EE tTR• c�`g ^,' , sJr S 3� t's,•i - i J 'p61 fi. - �- ,�'� 5 "Mn I' \4• .,.s r 4 4 � f� 1, :F' �?!, ,:•,•- t�' ;4 f'ft;ti eta�.-�',vir'� 4� t_-S:i � _41 3- b2;.;,r..+ a_.3r- r .F +`•i.n "rr er :s o �. 'A \ } x a. �}+ - ! r2`' '`r 'zr• `'� '_r' !-���rfi`` x ..�rf 3 - r.'F,�p � FOR � f;3+� z ifs+_tJgii ��?,� ,� y � CCG�''�-��•': ,. tS ` :,y[t t''Tf.x 5 1 i` .'�} b�T -•k'.. �" fix..c },.y t i.L c i b •�- .,,a Wi 0- "°zr3i�s.%.-t't-r t,�s}r F�.' "^ _ °ti" €-fi 5-'• F E # .._..YM i],�U., „ •- 4 of.: �+ .1 {i 7� L .�y� , '"Cy1tY j {I Y(Yl5 l y" �+c 4gJ)1 ps,3 xr_y! ri�t{ `f'�� ;�_�tl'f p-L'`x ':•.,. 1•sl s{rr y 9: e_ 1,' d a°'Z,yh�y, °/ffi�.: `;_'3`Frrz r.{ r. �h t•t e i h -ttlFs ^ } °'ii' tN"v', Yt�t- t •:b `:t fiz{ 1_ rf` a �`' -rr ti.�. r r io J •t �'( �� �. �- ��a ur �?� " r is'..+ ..,> s,j��-•°�-o-� 1-rr s 4..�• y S,f ia�:: `{t�C�. rr.l�4 t.f! �h '�' .•Z r ,. fi. sY°i�' t,t : v, t : -�; $ Z•a, -1\-„cf y ,• t jr' 4 �t', r s1 rl- , �, �. t a rt f S .y s `6J � , irk'v yt r "r�' 19_"4.T s tt'3s> t t f f ✓ _ , } r $xFx'�:. la r5ar(' e..i r -5 \..1>' NOT '+. d- u ..a'.. tir t_J,.; 'r+^n 2Y { iJ id..t-"{•`c +� �{ } sYr -. t -i •'- .•r°� r �-, e�J -�"�:J `� n� � ° tr'�ts•Sr - � �v�s Ti y '. x- �;r -:-;'; {f .-.se y „ c)1`-,?r f rf k3:.� ?F F?�[ `�(s -.L j`Sa`ydd�C 7 i1- '�d).Jl` S rr , t try}Sn rr�'Er,,>.r; 4`"� Ft h 7tR tk.y-'a '.J e[rr ' " r.i 1 r.=x* f f x-; .yToteeJt � S' f`q'�'xc s :4`•,.SF .L -t 3�®t .?, �t,Y yf tFF a r ttr .: "+� F�' ,wr �il lY ttl } y--.:�, f t _:- a 1 S j r f L 't Y Bi'.,� z •,z7 ; :: z. ar y r > r t s f *4 1 J, 7 r .7 6-v t i t } {"oast Bill D:.t d" r t tT tit sC J 4 t ys c .r �,�!� / ' a�"'.}:)- -Fei 4 V -rY, :+6'L✓' Ty _ , ' ..! y 1% {�v YTi j '' F s, x- :e ^.+ t p a iZ �, n< '•.'t1� .} i rs'r`s� x If�r`I z s�5 �s t "t }, ,t4 0, z: :J `y>'ity •' ptaut Y)� t t tr Jf1 tF a, K t . a ? x..i t t r \ zp ^ 415t' t F og '}` i' "A`, ! ;.t�1� i i 1 J� V r. f t , j y - L i•t M 4..t,$- 4' cf S _.39 Iy -. : 3r fl,i.l 31`r .y �t€`�� ft S t ;�i Ifd °wa�.•t tis ty h 4 �►`, � t t 5 G ei Tt . x. k , ) ,r p Y . .-Wily Sf r a .j� r \ r. ;z.,x.. 1 .L--. p'r'y r ti t. t r ,.L r k t - cl ittr r{ 1 { t - 'i •. 4 t r. '>,�5:4r - '{ • is k_.,ei ..i o. {. ytA_r t:. 1. �.X - fy•Rl�S j £ep K Y�` ft3 p Kt. �� �' s I i € �Y� 166 Soil survey TABLE 16.--SOIL AND WATER FEATURES--Continued Flooding Hi h water table Risk of corrosion Soil name and (Hydro-I I IPotentiall map symbol I bogie]Frequency ] Duration (Months I Depth I Kind ]Months I action IUncoated (Concrete Ft I I I I I I I L I I ScA---------------I C (None--------I --- I --- 10-1.OIPerched (Nov-MaylHigh-----(High-----(Moderate. Scitico I 1 1 I I I I I I I SgB, shB, shC, I I I I I I I I I SmB, SoB, SoC----I 0 (None--------I --- ( --- 11.5-3.OIPerchea (Nov-MaylModerate ILow------]High. Scituate ] I I I I I I I SpA, .SpB----------I C (None--------1 --- I --- I 0-1.5IPerched INov-MaylHigh-----[Moderate (Moderate. Shaker I I I I I I I I I I I I I I I I I I I I SrA, SrB----------I B (None--------I --- I --- 11.5-3.0]ApparentlDee-AprlModerate ILow------(High. Sudbury I I I I I I I I I .Ss----------------I D IN-one--------I --- I --- I 0-1.OIApparentlJan-DeelHigh-----(High-----(High. Swansea I I I I I I I I I I I I I I I I I I I I UAC. I I I I I I I I I I Udipsamments ] I I I I I I UD. I I I I I I I I I Udorthents I I I I I I I I I I I I I I I I I I I I Ur*. I I I I I I I I I I Urban land I I I I I I I I I I I I I I I I I I I I WaA, WaB----------1 C j (None--------I --- I --- 1 0-1..OIApparentlNov-AprlHigh-----ILow------(High. I I I I I I I Walpole We----------------I C (None--------1 --- I --- I 0-1.51ApparentlSep-JunlModerate (Moderate lHigh. Wareham ] ] I ] I I I I I I Wf----------------I D (None--------I --- I --- I 0-1.OIApparentlNov-JunlHigh-----(High-----(High. Whately Variant I I I I I I I I I I I I I I Wh----------------I D (None--------I I +1-0.11Perched ISep-JunlHigh-----(High-----(High. --- I --- Whitman I I I I I I I I I I I I I I I I I I I I WnA, WnB, WnC, I I I I I I I I I I WnD--------------I A (None--------I --- I --- I >6.0 1 --- ILow------ILow------(High. --- I Windsor I I I I I I I I I I WrB, WrC, Ws B, I I I I I I I I I I WsC, WsD---------1 C INone--------I --- I --- 11.5-3.OlPerched INov-MaylHigh-----ILow------IModerate. Woodbridge I I I I I I I I I I I I I I I I I I I I * See description of the map unit for composition and behavior characteristics of the map unit. r 1UAINU JLIJ JOB Engineering Associates SHEET No. CF 235 Newbury Street,Danvers,MA 01923 (978)777.3050 Fax(978)774-7816 CALCULATED BY DATE p 12 Farnsworth Street El 626 Main Street Boston,MA 02210 Bolton,MA 01740 CHECKED BY DATE (617)350-7906 (978)779-6767 SCALE iii I I ; i i ! i _ I ? Pty i I i i i ....i.... ....:..... ..... ....... i Y!€tr C! i i j i € ? ...!......... I ...... i .. I ' I I I t !.. • I ..._:..............!...... i S :.........................'........................._'?..............?.............d.........._?.� ...... ..... ..... ...... .......i............!:..... ....a.... i ! , i i ! s- I ! , ! ? :E LL: ............ ..........._ ........1 x1 0..! _- ...t..........._..........................i..........._ + ? ... ! ; l�f-.......7..''.��...� C ............ ..... r 4 ! , i i ; i ; i I i i I ! I i i ( ? i � i f ............e.........................................:.............i......... ...._'..........................!..........................i.............?...................... ?..._.... ...... ! ? ! ! .........?.............1......_................ i 1.............r....... I i� i ! ! i i f ? I ? ; ? ! i I ! ? ..... ..... ..... ..... _ ...... ...... ..... ..... ...... ...... ..... ..... ...... I ! r i {. ! ! i ._. ..... _..... ! ... ..... ..... ..._ .........i...._....... ..._......._;_......................._,...._........i. .......... :............!.............t.............,............_i................... _..p.... t r i ' i i i i E - ....i.... ! ! ' ! ! .... ..... _ .._. ..... ..... ..... ..... ...... ...... ...... ; i i i i ? ° � I ; ' ' i I ; ! ! ; :............... !........_.;.............•....... ! ? 1.............:...................._..- ...... ..... ..._ ...... ? _... i ..... ...... ..... i............_I.............i........ �............. ;.... I € ..... ! ? ._.. I ...... ...... _....._ ? ..... I I ...{..............�....__....I..........._• E........._.. i t. �. i ; ....'. ;......._.... �` i i I ' I .i....._................................I. I......... ' '.........._�.......... ! ...... ! ..... ? ...... ' ..... .........?............i............•1......... ..................._I.............�............!........ ...... ? ..... ......._. ............:.............:...................................._.: I ............. p �.... ...i.... i �.... Y ....f_.. : ; 1 ;..........._s i ..... ...... I ..... I 1.............;..._........'....... ...... i i i ? i !..........................�..............; 1.........._r.............i...... ► .............(................. I.... ....;._..........;.... ( ...... .............;.............;..._:........1......_.....' 4 ............! ............... ....... ..... .. .................._..................._.......................... ....i_...........1............. E i - j —i I. �' i ? ion x �.. l"j r ...._+........._'........................_............_!......................................:...................................._.'.............a.............d......... ...... ...... ..... .... .... I.............i.............1..........._'......... .............s......._....�....... ; ? } i i { i �.... p.... ....... ....'..._ ....j... i 4 ! i .... ...... ...... .........1..._.....................1................................................._...�.:........... .............:..........................s............. .. i..............,..... I.......�. _ ...._ �� . .... I .. .... ... E I .?............i.............!. ?.............!......... ...... ...... ..... ._... ......_........... ..... ? _.... ....................._i...:.........!.............j........_.._i.............?._..........d............. ...'..._................_...e.......................................y' , `..... ..... F ..... ...... ......... ....4.... i z ! I I ..i.............j.............(.........:...1.............i..........._1..........................-,.............a................:........................1.........._.r.. ..... « .....:._j.......... ...... ...... ..... ......._j.............. ... ! E I ^_ ? J E T` J u4-w-1 .. �......_... ..........?........._............_+....... .�._ .. -........!.....c_ G..IQ 18...._;�'� .:...................._?.......................... ..............:_......_...l.............p..............;............_.............o.............!.......................•.•d i ! I ? i , 7 I i ? P ! r I ! ! I j ; = i t ! i ! , .......i.............'........................._;......... ..... _.... ...... ...... ..... ...... ...... ..... ...... ..... ..... ...... ...... ! ! i t ..s.......... ! ! ! ! ..... ...... ..... ...... ...._ ..... ..... ...... ..... ..... ..... ...... ..... ..... ...... .... ..... j i I ? i j I i ? I i i I i .3.............r.............i............ ! .....`. ..... ...._ ..... ...... ...... ..... ... ...... .... ..... ...... ...... ..... .........i.......... ...... ..... ...... ...... ..... ..... ..... ..... ..... ..... ................e........,.... _ ...p.... I ! ! i i ! F i 7 I .... i i i .... ..... ...... ..... ..... ...... ..... ! i Y `d 'J I i ? ! f vo.. :. ......_....:........._.. .... _..............:............._._..........: m _ . .... ..... ...... .......... : I .... ...... ..... .. .... ; ry .•. .. 7. ! ! .........:.............._...........:............._.............a................:........_.................. ...... ..... ..... ...... ...... ..... .....: ...... ..... ..... ...... ....a.... ! .......................................... .:. .......... .... ..... ..... ...... ...... .........:................ ....:.... ......... ....... .......... ......... ................................................: ...... ..... ... - ............................e............................... .. c S o ...... ..... ...1.... ...F... i i i y) ! e � ;�- s eT : � 5�'° Z.._�f¢/ .. ...._X._:...........3: ..... .......:.... ......:............. 5.�..........,..._......_............. ........ ...... .3.` ,... ....�4 .........._ .. ..._.....:4i� ....... J�t' 1. ..._CU ................ € . ! .......:..........................................,............• ........ ....>.... ....... .... i i i ! Vortechnics' " TECHNICAL BULLETIN NO . 1 Vortechs TM Stormwater Treatment System Performance: Removal Efficiencies for Selected Particle Gradations 100% a 90% 80% 70% 5 60% W 50% 40% 0 30% E 20% 10% 0% 0 10 20 30 40 50 60 70 80 90 100 Operating Rate (gpm/sgft) —E-150 um X 50 um —t—Typical Gradation These performance curves are based on laboratory tests using a full scale Vortechs Model 2000. The testing protocol used is summarized on the following page. The 150-micron curve demonstrates the results of tests using particles that passed through a 100-mesh sieve and were retained on a 150-mesh sieve. The 50-micron curve is based on tests of particles passing through a 200-mesh sieve and retained on a 400-mesh sieve. A gradation with an average particle size (d5o)of 80 microns, containing particles ranging from 38-500 microns in diameter was used to represent typical stormwater solids. As the graph clearly shows, Vortechs Systems maintain positive total suspended solids (TSS) removal efficiencies over the full range of operating rates. This allows the System to effectively treat all runoff from large,infrequent design storms as well as runoff from more frequent low-intensity storms. Vortechs Systems are designed to treat peak flows from 1.6 cfs up to 25 cfs without bypassing. However, external bypasses can be configured to convey peak flows around the System if treatment capacity is exceeded. The Vortechs System can be configured to direct low flows from the last chamber of the System to polishing treatment when more stringent water quality standards are imposed. In all configurations, high removal efficiencies are achieved during the lower intensity storms, which constitute the majority of annual rainfall volume. Vortechs Systems are sized based on flow rate rather than volume, which allows effective treatment of runoff from the entire storm, including high-intensity flows. This design basis addresses the deficiencies of conventional volume-based BMPs, which capture the first half or whole.inch of runoff but may bypass prematurely, allow resuspension of previously captured pollutants, and/or wash out at higher flow rates. For more information about the Vortechnics sizing methodology, please refer to Technical Bulletin No, 3. Vortechnics" Laboratory Quality Control Brief The following protocol contains standard operating procedures for Total Suspended Solids (TSS)testing in the Vortechnics laboratory. These guidelines were followed in the creation of the preceding performance curves. Sediment Source Sediment samples are sorted according to ASTM Special Technical Publication 477 B, which establishes sieve analysis procedures. U.S. Standard Sieves in a Gilson SS-15 sieve shaker are used to separate particles to the various fractions required for our tests.To ensure uniformity of those fractions, an unsorted sample is sieved until less than 1% of that sample passes through the sieve in one minute. All sediment recovered after a test is dried and re-sieved according to this procedure before reuse. Unless otherwise specified, mineral sediments with a density of 2.65g/cm3 are used. Flow Calibration and Regulation Flow calibration is accomplished by calculating the head at the baffle wall required to produce a given flow rate through the orifice and the weir in the flow control wall. Flow is regulated by a 12-inch butterfly valve located upstream of the Vortechs System. In order to simulate field conditions, flow rates are changed gradually to avoid flow surges through the System. The test flow rate is set by observing the head in the Vortechs System and adjusting the regulating valve accordingly. Before any samples are collected, the valve must remain fixed for a period equal to half of the detention time so that flow equalizes throughout the System. Each test group is planned so that flow rates increase incrementally in consecutive tests. Sediment Metering All sediment is injected into the inlet pipe via a '/o-inch flexible hose using a Watson Marlow 5058 peristaltic metering pump. For TSS tests, a known gradation of sediment and water are combined in approximately a 112 pound/gallon ratio in a holding tank and homogenized by a mixing propeller powered by a 1/3 horsepower motor. The mixer is activated at least 5 minutes before testing commences and runs continuously throughout the test. The metering pump is activated,for a period of time equal to at least half of the detention time of the Vortechs System at the test flow rate, before the first influent sample is taken. The pump must run continuously until the last effluent sample is taken. Sample.Collection All influent samples are taken from a 6-inch gate valve located upstream of the Vortechs System. A collection bin housing a 500 mL sample container is positioned beneath the valve. Five seconds before each sample is taken, the valve is quickly opened and closed to eliminate any interference from particles that have settled in the low velocity region of the gate. This eliminates artificially high influent readings. The time that the influent sample was taken is recorded and the corresponding effluent sample is collected after, a period of time equal to the detention time. Effluent grab samples are collected at the discharge pipe, by sweeping the mouth of a 500 mL bottle through the exiting flow stream. Samples are annotated and refrigerated until they can be analyzed. Sample Analysis TSS samples are analyzed in the Vortechnics laboratory, following EPA method 160,2, a method for the measurement of total non-filterable solids. Volume measurements are accurate to 0.6 mL using a 500 mL graduated cylinder. An Acculab V-1 analytical balance with a readability of 0.001 g is used to measure mass. Revised June 2002 uANCOCK Engineering Associates 235 Newbury Street,Danvers, MA 01923 . Memo To: RFD From:Charlie Ogden CC: JAP Date: 02/46/2002 Re: 9265—Unnie Grasso 10 Commerce Way, North Andover Soil Testing for Potential Drainage Area I performo a soil test at 10 Commerce Way, North Andover on 2/4/02 with Vinnie Grasso. There was about 16" of a loamy sand, and then 10 feet of a gravelly sandy loam. i found evidence of seasonal high groundwater at 52". No water was observed. The perc rate was 7 minutes per inch in the gravelly sandy loam. The client did have a question regarding a time deadline. He thought there was a deadline to do something and that was why .we were "rushing" things. Julie mentioned that the old wetland delineation approval expired on a certain date (2/4/02 ?), but we've re-delineated the line. Was there any other deadlines to meet? 6 Page 1 FORM I i - SOIL EVALUATOR hOltNI rage 2 of 3 Location Address IO 6,cw mer-ce-W)c6 On-site Review _ Date:. —Time;Deep Hole Number � Weather Location (identify on site plan) Land Use Ga �nercSaC Slope (°1°) Surface Stones 40 tOu4re.A Vegetation Landform , Positions on landscape (sketch'on.the back) Distanoe,-from: Open Water Body. feet' Drainage way. feet Possible Wet Area L (10± feet Property Line .._...30t- fdet Drinking Water Well N A feet Other DEEP OBSERVATION HOLE LOG' Depth from Soil Horizon Soil 7ex4- (Munsell)oil Color Soil Other' Surface(Inches) (USD Mottling (Structure,Stones-, Boulders,Consistency, % Gravel) 0 ��L toY�"�/ ltl�o;SSiv�l <�rl~q b �.'5 zsy�j3 Miss�,c, -t'r 100 Sam 9rav2i e�.hr3 cobL�(es �(�-- IZO C,2- z,5Y 51+ e- 521ll Massive -;ab e. 5Y r°l Z�_/ 1 7 SK(Z 41(y SuC QKtV rrotd+lc�� Sir!'=> • �evJ y�c�11 bo�l�-�r, Parent Material(geologic) DepthtoBedroc%: Depth io Groundwater: Standing water in the Hole: P0ne— weeping from Pit Face: Y104e, Estimated Seasonal High Ground Water: KEY S 5artd .� •�ih� UEP APPROVED POPAt- 12/07/95 L.S L-oNm5 5anc� 5 L Sandy L.pZm S;L 5ili- Loan,-, �C rave 7� FORM 12 - PERCOLATION TEST Location Address . I0 CavWA;Arce. W" COMMONWEALTH OF MASSACHUSETTS or'Y A- )dove-r , Massachusetts Percolation Test* Date:. �l d� Time:, Observation Hole # ' ps l De th.of Perc P 3� •�Z I - d Start Pre-soak ;t End Pre-soak ; Time at 12" Time at 9" Time at 6" Time.(9"-6") ZJ rn�✓�. Rate Min./Inch bex • • re�-err�a:-° Site Passed ❑ Site Failed ..... ................................................................_...................................................._......�....._ Performed Sy: Ghasle� 0�Jer-....y. gr�ck E ine. in Assoc11Ae5 Witnessed Sy: UP10 - Comments: .�..� nEP AMoviFJo-FORM-1=19s ' •I vV 11-I v v�.�- (FD) L=23.53' 518" N 2928'000. W (D) i 311.45' LOT LOT.AREA. . 114,-014;,--k S.F. 2.6174 fS.F. AREA EXCLUDING POND.• ,,1 91, 100 .fS.F. CBA: I 60,040 z`S.F. GV 4 o � w _01 ALL zj E- EVA TON \ C ONC UR N, I a CD, �Zlz D=34 28'09\ =25.00' PROPOSED .04' ° LANDSCAPING do Ch._ \ U77LITY EASEMENT s 11'13 �ZZ SEE DE M.& A' !.. i C I \ N 4 4 a a APPROX. UMIT OF