HomeMy WebLinkAboutStormwater Report - 65 FLAGSHIP DRIVE 7/18/2001 r�
DRAINAGE CALCMATIONS
& STORMWA TER MANAGEMENT
65 Flagship Drive
North r, Massachusetts
r PREPARED FOR:
I ,
RANGER DEVELOPMENT
65 Flagship Drive
North Andover, MA 01845
July 18, 2001
MHF l
1 .
Design n It nt , Inc.
ENGINEERS ° PLANNERS ° SURVEYORS
103 Stiles Road ® Suite One ® Salem, NH 03079
TEL (603) 893-0720
FAX (603) 893-0733
FRANK -
N4BF Project# 109901 � � '�°
V .
N 3634
TABLE OF CONTENTS:
I Report Cover
II Table of Contents
III Project Description:
Existing Conditions
Proposed Work
Environmental Impacts
Operation&Maintenance Plan
IV Drainage System Design
V Drainage Summary
VI Stormwater Management Form
VII Drainage Calculations -Hydrocad Printouts
(2, 10 & 100-year Storm Events+ 25-year Rational)
VIII Maps:
Locus Map
F.I.R.M.
USGS Map
SCS Soils Map
Pre&Post-development Drainage Maps
PROJECT DESCRIPTION
EXISTING CONDITIONS
Location:
The property consists of 2.8 acres located on the northerly side of Flagship Drive,
in North Andover.
Topography:
The topography of the site consists of a relatively flat area sloping at approx. 2%
toward a small wetland area at the rear of the property. This office surveyed the
topography by an instrument survey. See attached plan for details.
Vegetation:
The vegetation consists of mixed deciduous and evergreen trees covering the
perimeter and rear of the site. Most of the site is developed and either cleared or
paved or covered by building or parking. There is a building on site.
Flood Plain and Wetlands:
No portion of the site is within the 100 or 500 year floodplains according to the
Flood Insurance Rate Map.
The site has been inspected for wetlands and the wetland areas flagged and survey
located by this office.
According to the Natural Heritage Atlas,no rare species or habitat areas are
known to be onsite.
Drainage/Soils:
The drainage pattern on site consists of flow in one direction: from Flagship Drive
toward the rear of the site. The only existing drainage facilities on site consist of a
small detention area which receives flows from the parking area directly as sheet
flow. All other flows make their way uncontrolled toward the wetland at the rear
of the property, which has no known outlet. The soils on site are Charlton, a well-
draining sandy soil. These soils are very suitable for building/road construction and
drainage recharge.
PROPOSED WORK
Generally, the project proposes the expansion of an existing office building, drainage facilities and
necessary grading. The office would be accessed by way of the existing driveway entrance from
Flagship Drive.
Topography/Grading:
The proposed topography of the site would remain as close to existing grades as possible.
The proposed building would be set at the same elevation as the existing building. And the
parking area would blend to the existing grade at the aisle to the west of the building. The
proposed underground detention basin would be positioned under the parking area. See
attached plan for details.
Drainage:
The proposed drainage system would be a closed system,which would provide
stormwater treatment for both quality and quantity of runoff. Specifically, catch basins
would collect and pipe runoff to an underground detention basin, from which the
discharge would be routed through a"Downstream Defender" unit for TSS removal/water
quality treatment. Runoff from the proposed roof,however, would be recharged by
underground leaching trenches. In the event of storms creating more runoff than the
recharge system can handle, an overflow pipe would route water to the detention system
and the "Downstream Defender" unit. Thus, no stormwater from the proposed
development would leave the site without treatment. As shown in the attached
calculations, the drainage design would prevent any runoff from damaging the wetland
area. See the attached Drainage Calculations and maps for further details.
Environmental Impacts:
As shown in the drainage summary included herein, drainage and runoff characteristics
would be controlled in conformance with D.E.P.'s Stormwater Management Handbook
and local regulations, preventing possible damage to abutting property or natural features
in the area. The drainage systems were designed for severe storms (up to 100-year).
According to SCS, the soil onsite consists of Charlton, which is a well-drained soil, quite
suitable for construction purposes. On site test holes were also performed to confirm soil
type, depth and suitability in the recharge area. And based on these tests,the soils are
adequate for the drainage design.
In order to safeguard against oil or gas introduction into the drainage system, stormwater
runoff from the parking area would be collected into catch basins with oil hoods and deep
sumps(see Site Plan Details). Such pretreatment of stormwater reduces both suspended
solids and oils in the drainage system and is recommended by DEP's Stormwater
Management Handbook.
Another safeguard against future intrusion of contaminants into the groundwater is the
implementation of an Operation &Maintenance Plan, which provides further TSS
removal and assures proper function of all drainage components.
Further safeguards are proposed on the Site Plan to prevent erosion include a line of silt
fencing. If all the proposed erosion control devises and procedures are adhered to,then
there should be minimal or no damage to neighboring properties from work on this site.
Operation/maintenance plan
The BMPs associated with this project will be owned by Ranger Development.
Any accumulated sediment should be removed from catch basins, dry wells and all drainage pipe
inlets and outlets as soon as possible after heavy precipitation and every spring.
Construction Phase
1) The contractor is to install and maintain drainage facilities as shown on plan(000, by MHF
Design Consultants, Inc., dated July, 2001).
2) All construction of drainage facilities is to be inspected by inspectors from the Town of N.
Andover and MHF Design Consultants, Inc. to verify conformance to the design plan.
Post-Development Phase
The owner/occupant is to be responsible for maintenance of all drainage structures in the
project - including roof drains, dry wells, drain pipes, and detention basin. The future owner is
expected to be Ranger Development, who will ultimately be responsible for compliance with
this O &M Plan.
Regular maintenance is to include the following:
• Sweeping of parking area after every severe storm.
• Inspection of all drainage pipe inlets/outlets and Retention Basin every three months.
® Inspection and cleaning of all Catch Basins and Dry Wells every three months or after all
severe storms.
DRAINAGE SYSTEM DESIGN:
The drainage system was designed utilizing closed systems to achieve reduced rates of runoff at
the boundaries of the developed area and would maintain a similar drainage pattern to the existing
courses. The methodology is SCS TR-20, Type III rainfalls (2, 10 & 100 year events). This is
consistent with the requirements of the town of N. Andover and DEP's Stormwater Management
guidelines. All pertinent calculations represented in the following pages were developed utilizing
Hydrocad Stormwater Modeling software.
References:
1. SCS- TR55(Second Ed., 1986) - for runoff curve numbers.
2. SCS - Rainfall Distribution Maps.
The on-site soils consist of Charlton series, described by SCS as follows:
Charlton Series (SCS Classification `B") consists of gently sloping to
steep, deep (5+ feet), well drained soils on uplands where the relief is affected by
the underlying bedrock. They formed in glacial till ground moraine. Charlton soils
are 60 inches or more of friable fine sandy loam surface soil, subsoil and
substratum with moderate or moderately rapid permeability. Charlton soils have a
very stony or extremely stony surface, except where stones have been removed,
and have stones below the surface. Major limitations are related to slope and
stoniness.
Because some of the proposed work would be within 100'buffer zonesn to wetlands,the project
is subject to DEP's Stormwater Management Policy. Therefore, the drainage system is required
to provide 80%TSS removal and groundwater recharge. We are accommodating Stormwater
Management Policy standards with the design presented, as follows (also see Stormwater
Management Form included herein):
Stormwater Quality Controls:
1. Catch Basins with Oil Hoods and Deep Sumps to capture, treat and redirect stormwater
toward the proposed retention/recharge basin. TSS Removal Rate=25%
— 2. Downstream Defender-which would further treat stormwater for TSS removal and flow
rate to the eastern boundary. TSS Removal Rate=90%+/-.
Groundwater Recharge Provided:
1. Infiltration Trenches -to provide direct recharge of all rooftop stormwater.
Stormwater Quantity Controls:
The Detention Basin was designed such that it would provide controlled discharge through the
outlet structure for the 2, 10 &100-year events at controlled, lower than predevelopment rates.
The overall system thereby achieves the following:
• Control of runoff rates to abutting properties to below predevelopment rates.
• Water quality maintenance—TSS removal from stormwater of more than 80%.
• Groundwater Recharge—through infiltration trenches.
• Storm damage—by reduced runoff rates.
DRAINAGE SUMMARY
(All values shown are peak rates in CFS)
•::. 4.-..ct :::.:::::is �:
:.. " �
a hasto�-in i ? ,c �e � pztxna PostcleveXopment Rate
.Y.:•is Jyw::nt-.v':.:},?}\v.r,-�.'r:....:J:::::::..: .-:-.�::Vt.. :v ':>-: t
>iy:t
: t..vv:. t.......... S_:.:...r.:::v.}> '', .r..;:;,-•.6 ..hti'� r��:v ..:?..
:i:Z{Zv:i i"!..:�:fiv ;:•}}'ti:ti:-:_??J}i'ti'4:"::t•:•::.:..:....:.::?:...........:::?J
.;;::.:}'-J}:-ti.11:<.,•.y}:{:.±;:.},v:%ii:i{v4::vS:%:z{iZ:?_::=i}:-:::.:::.:i:.:.::i:_::::}:-J:}v:. ..:::Z::•
;:{Q>::�.:
il.. ..Yry .n4 4 is%Syi }
:%i:n}•.vi`%'•�v:».ii%1.v:..:.:.<;:i},s:?v:i{{: 'f vt•�.� }�-:itii:r=nv`- "�
r. ea
tits:,>:%:•a.:J:. :.. ...:........:!t:,,:.:.
} ar
] nxn 'An s s Storm ' ei ev-e.%e t# �r 'astc evefopment Mate
>.?
0 03
.}y::nv;:w:- hv:., Z:. ..vv4%::{{?:•?.:t1:'vv:!.,.Jy*'9?�?:.Y,J::.
:.
:.,:-......v::::,,-:. .:v:. =�'v::�:..n-:n:ry r sir•,-:
Q 25
FORM 11 ° SOIL EVALUATOR FORM
ffv41wPai-or : A.5.K .
�5 �► !�);� fir, , N� ��,
LiJCation Address or Lot No. AM- o r-
- —
On-site Review
Deep Hole Number Date: J
�` l Time: I i ego Weather ,>-onn� 1 35m
.. �
Location (identify on site plans a/
Land Use l�J i,n w•,,.° Slope m -' Surface Stones l
Vegetation
Landform .:....... v.... ..
Position on landscape (sketch on the back)
Distances from: 1 0 feet
Open Water Body • lob fast Drainage way
Possible Wet Area 100 feet
Property Lined test
Drinking Water Well tJ//A feet Other
DEED' OBSERVATION HOLE LOG'
Ddpti,from Soil Horizon Sail Texture Soil Color Soil
Other.
surface pncltea! (USDA) lMunsell) Mottling ' (Structure, Stones,GB,uwllrs,Consistency, %
I__tDC7Y Loc s2
YR
so nd 10 \YR
Loom
U Sand 1 c� �( . Bbl � 6(ranvlar
Water In ft Hoia: W q from Pit Faae:
' =.rri►��dM�t x
Eed{nnted 500NW Hirt{ ci aind Watac:
>oa srMVZD FOXM-UM7M
a
FORM 11 - SOIII. EVALUATOR FORM
Location Address or Lot No.
Can-site Review
Deep Hole Number Date: �' (` '°��� Time: 1 °OCR Weather ���'� )
Location (identify on site plan)
Land Use —Tg nvq •, Slope (%) Z- Surface Stones I 1"
Vegetation
Landform ... .,. w
Position on landscape (sketch on the back)
Distances from:
Open Water Body feet Drainage way 100 feet
Possible Wet Area 100 feet Property Line feet
Drinking Water Well �JfA feet Other
DEEP OBSERVATION HOLE LOG'
Depth from Soil Horizon Soil Texture Soil Color Soil Other
Surface (Inches) (USDA) (Munsell) Mottling (Structure, Stones,GBouwers, Consistency, %
Z/l
10— ZOL, r�ei ��� -�r'tnc1r
YVI 4IC,
S Yi
Gtrctve-1
VERY rMUPQSE0-=PQb^LJljMA
Par.ee Meo.W to.o+opic3
T; III
A
owthlar Stancifi q Water in the NOW: 4 8 ti weeping from PK Face:
J
tier AFMOVm r04M-MWIM
Grate Capacity Check:
(100-year Storm)
Grate# (Model) Grate Open Space Capacity ((&, sump) Design F1ow
CB#1 (R-3570) 2.4 s.f. 8.0 cfs 0.32 CFS ok
CB#2 (R-3570) 2.4 s.f. 8.0 cfs 0.43 CFS A
CB#3 (R-3570) 2.4 s,f. 8.0 cfs 0.70 CFS ok
CB#4 (R-3570) 2.4 s.f. 8.0 cfs 0.62 CFS ok
Pipe Capacity Check:
(100-Year Storm)
Pipe Location Size Type Slone Ca aci Design Flow(Okn.
CB-1 TO DMH-1 12" HDPE 0.005 2.94 CFS 0.32 CFS M
DMH-1 TO CB-2 12" HDPE 0.005 2.94 CFS 0.32 CFS (�)
CB-2 TO DET. 12" HDPE 0.005 2.94 CFS 0.74 CFS (�)
CB-3 TO DET, 12" HDPE 0.010 3.80 CFS 0.70 CFS (�)
CB-4 TO DET. 12" HDPE 0.010 3.80 CFS 0.62 CFS 0)
Infiltration Trench Capacity:
Note: For all trench capacity calculations we used a percolation rate of 2 minutes per inch,
a void ratio of 0.4 for the stone, and that infiltration would only occur at the bottom.
Roof Drain Trenches
Size (stone): 63'long x 13'wide x 1.5'deep = 1229 c.f.
Pipes: 3 pipes x 60'long x 12" diameter= 141 cf = 141 cf
Stone Storage Capacity: 1229 c.f. - 141 c.f. (pipe)
= 1088 c.f. x 0.4 void ratio =435 c.f.
Total Trench Storage Capacity: 435 c.f + 141 c.f =576 c.f.
Storage below pipe (from 0 - 0.5)= 0.5'x 63'x 13' x 0.4 = 163 c.f.
Recharge Rate: 63'long x 13'wide x V/120 seconds= 0.57 cfs
10—
9
Discharge vs Depth 0 n G rate
190
5 80
70 10
60 9
8
4 50 7
w
40 6
Z 5 �
au'. 3 30 w
d
0
uj
w
►'' 20
d
u+ Discharge for Grate w
1' Model R-3570
w ••+�� iQ (2.4 sf.Open) 0
0
rd!0.5'sump=8 cfs
U.
p a
i
uj 0• ,9
Lu
rDischarge for Grate }~ .6 3t
Model R-3570 4
1 (2.4 sf. Open) 5
r 0.3' sump=6.2 cfs 3 Q
9 _��__ _ �_�___� v d
en
.8 2 4 3
.7
6
1
.5 0 1991 Nrwrwh Foundry Company
Grate Capacity
(@ Sump)
O
W
w
z
z
1-
O
�N N
�p O
W iL 0 12 p °
z d 11 211
O
0.10 50 5,000 a�-
40 4x000 12/
30 3,000 / IB
� 15 .
O.05 20 21000 0.90 21
On4 0.70
18--24
0.03 SO
10 1,000 /040 21 27
a w
v 30
Ong w a 0.30 24
� a 33
5.0 500 27--36
4.0 400 ` / ro 020
_ Oni 30 ¢ W 33 42
CL 30 W
y 2.0 200 of a 36 48
� r c
0.10 042--54
U.w 5 W 48 wo FULL 60
0.90 FLnFLOW o Q004 = In f00 0.70
m
O003 H ai 0.60 54 72
0.50
60-78
0.002 a Q5 50 ° O 0.40 66--84
0.40 40 9
C0.130 72 906
0.30 30 ° 78 102
108
0.001 0.20 20 X 0.20 90 12
96
102
!08
QIO 10 114
O=5 O.IO 120
PIPE CAPACITY:
Flow capacities of corrugated polyethylene pipe (CPEP)
Massachusetts Department of Environmental Protection
Bureau of Resource Protection -Wetlands
PA Appendix Stormwater Management Form
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40
A. Property Information
Important:
When filling out 1 The proposed project is:
forms on the
computer, use
only the tab New development ® Yes
key to move
your cursor- ❑ No
do not use the
return key.
Redevelopment ❑ Yes
raa
® No
Combination ❑ Yes (If yes, distinguish redevelopment components from new
development components on plans).
Note: ❑ No
This November
2000 version of 2 Stormwater runoff to be treated for water quality are based on which of the following calculations:
the Stormwater
Management
Form supersedes ❑ 1 inch of runoff x total impervious area of post-development site for discharge to critical areas
earlier versions (Outstanding Resource Waters, recharge areas of public water supplies, shellfish growing areas,
including those swimming beaches, cold water fisheries).
contained in
DEP's ® 0.5 inches of runoff x total impervious area of post-development site for other resource areas.
Stormwater
Handbooks.
3. List all plans and documents (e.g. calculations and additional narratives) submitted with this form:
Site Development Plan by MHF Design Consultants, Inc., dated July, 2001
Drainage Calculations by MHF Design Consultants, Inc., dated July, 2001
B. Stormwater Management Standards
DEP's Stormwater Management Policy (March 1997)includes nine standards that are listed on the
following pages. Check the appropriate boxes for each standard and provide documentation and
additional information when applicable.
Standard#1: Untreated stormwater
® The project is designed so that new stormwater point discharges do not discharge untreated
stormwater into, or cause erosion to, wetlands and waters.
Page 1 of 1
Wpaformldoc•Appendix D•rev.7118/01
Massachusetts Department of Environmental Protection
Bureau of Resource Protection -Wetlands
WPA Appendix tormwater Management Form
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40
B. Stormwater Management Standards (cont.)
Standard#2: Post-development peak discharges rates
❑ Not applicable—project site contains waters subject to tidal action.
Post-development peak discharge does not exceed pre-development rates on the site at the point of
discharge or downgradient property boundary for the 2-yr, 10-yr, and 100-yr, 24-hr storm.
❑ without stormwater controls
® with stormwater controls designed for the 2-yr, and 10-yr storm, 24-hr storm.
® the project as designed will not increase off-site flooding impacts from the 100-yr, 24-hr storm.
Standard#3: Recharge to groundwater
Amount of impervious area(sq. ft.)to be infiltrated: 9140
Volume to be recharged is based on:
❑ The following Natural Resources Conservation Service hydrologic soils groups(e.g. A, B, C, D, or
LIA) or any combination of groups:
(%of impervious area) (Hydrologic soil group) (%of impervious area) (Hydrologic soil group)
(%of impervious area) (Hydrologic soil group) (%of impervious area) (Hydrologic soil group)
® Site specific pre-development conditions: 0.4 cfs .03 of
Recharge rate Volume
Describe how there calculations were determined:
Predevelopment vs Postdevelopment drainage flows were compared for the building area.
List each BMP or nonstructural measure used to meet Standard#3. (e.g. dry well, infiltration trench).
Infiltration Trenches
Does the annual groundwater recharge for the post-development site approximates the annual
recharge from existing site conditions?
® Yes
Page 2 of 1
Wpafonn3.doc•Appendix D•rev.7118101
Massachusetts Department of Environmental Protection
Bureau of Resource Protection -Wetlands
W A Appendix C ® Stormwater Management Form
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40
B. Stormwater Management Standards (cont.)
Standard#4: 80%TSS Removal
® The proposed stormwater management system will remove 80%of the post-development site's
average annual Total Suspended Solids(TSS) load.
Identify the BMP's proposed for the project and describe how the 80%TSS removal will be achieved.
"Downstream Defender" sediment removal unit (TSS removal = 80%+)
If the project is redevelopment, explain how much TSS will be removed and briefly explain why 80%
removal cannot be achieved.
Standard#5: Higher potential pollutant loads
See Stormwater Does the project site contain land uses with higher potential pollutant loads
Policy Handbook
dol.I,page 1-23, (� Yes If yes, describe land uses:
'or land uses of
high pollutant
loading
® No
Identify the BMPs selected to treat stormwater runoff. If infiltration measures are proposed, describe
the pretreatment. (Note: If the area of higher potential pollutant loading is upgradient of a critical area,
infiltration is not allowed.
Standard#6: Protection of critical areas
See Stormwater Will the project discharge to or affect a critical area?
Policy Handbook
Vol.I,page 1-25, Yes If yes, describe areas:
for critical areas.
® No
Massachusetts Department of Environmental Protection
IBureau of Resource Protection -Wetlands
W A Appendix C -Stormwater Management Form
Massachusetts Wetlands Protection Act M.G.L. c. 131, §40
B. Stormwater Management Standards (cont.)
Identify the BMPs selected for stormwater discharges in these areas and describe how BMPs meet
restrictions listed on pages 1-27 and 1-28 of the Stormwater Policy Handbook—Vol. I:
Note: Standard#7: Redevelopment projects
components of
redevelopment
projects which Is the proposed activity a redevelopment project?
plan to develop
previously Yes If yes, the following stormwater management standards have been met:
undeveloped
areas do not fall
under the scope
of Standard 7.
® No
The following stormwater standards have not been met for the following reasons:
® The proposed project will reduce the annual pollutant load on the site with new or improved
stormwater control.
Standard#8: Erosion/sediment control
® Erosion and sediment controls are incorporated into the project design to prevent erosion, control
sediments, and stabilize exposed soils during construction or land disturbance.
Standard#9: Operation/maintenance plan
® An operation and maintenance plan for the post-development stormwater controls have been
developed. The plan includes ownership of the stormwater BMPs, parties responsible for operation
and maintenance, schedule for inspection and maintenance, routine and long-term maintenance
responsibilities, and provision for appropriate access and maintenance easements extending from a
public right-of-way to the stormwater controls.
Drainage Report-O& M Plan Date
Date
Planfritle
Date
Planrritle
Stormwater Management.
Water Quality Calculations
Note: All calculations are based on the area of proposed construction activities. Additional
improvements to the existing site development are indicated on the Site Plan.
Standard # 3: Groundwater Recharge
Proposed recharge system: Infiltration Trenches.
Total Impervious Area: 36,050 s.f.
Impervious Area to be recharged: 9,140 s.f.
Stormwater volume required to be treated= 0.5" x 36,050 s.f. = 1,502 c.f.
Storage Volume in Trenches= 141 c.f (pipe) +435 c.f. (stone) = 576 c.f.
Time to recharge 1,502 cf= 576 cf/0.57cfs= 1011 sec. (17 min.)
Standard # 4: TSS Removal
Explanation of systems:
The two proposed stormwater management systems consists of four parts:
1) Street Sweeping—to remove sediment prior to entering the drainage system.
2) Catch Basins w/Deep Sumps & Oil Hoods -to capture &treat runoff from the parking area.
3) Infiltration Trenches -to treat &recharge to groundwater
4) Downstream Defender-to treat stormwater
The order of treatment for the systems are:
1) Parking area to Catch Basins to Downstream Defender.
2) Roof Drains to Infiltration Trenches.
Drainage Area BMP TSS Removal Rate
Parking Sweeping 10%
Parking Catch Basin 25%
Roof Infiltration Trench 80%
Roof/Parking Downstream Defender 90%+/-
Calculations: TSS Removal
System 1: Parking Areas
Average Annual Load: 1.00 x Street Sweeping removal rate (0.10) =0.10
Load Remaining = 1.00 - 0.10
= 0.90
Remaining Load: 0.90 x Catch Basin removal rate (0.25) =0.23
Load Remaining = 0.90—0.23
= 0.67
Remaining Load: 0.67 x Downstream Defender removal rate (0.80+)=0.54
Load Remaining = 0.67—0.54
= 0.13
TSS Removal Rate=87%+
System 2: Roof Drains
Average Annual Load: 1.00 x x Infiltration Trench removal rate (0.80) =0.80
Load Remaining = 1.00—0.80
= 0.20
TSS Removal Rate= 80%
PRE-DEVELOPMENT:
2, 10, 100-Year Storms
Data for 1099-RANGER-N.ANDOVER: 2-YEAR PREDEVELOPMENT Page 1
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
1 �
0 SUBCATCHMENT R REACH Q POND LINK
SUBCATCHMENT 1 = FLOWS TO WETLAND ->
SUBCATCHMENT 2 = FLOWS TO BOUNDARY - NORTH ->
Data for 1099-RANGER-N.ANDOVER: 2-YEAR PREDEVELOPMENT Page 2
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO WETLAND
PEAK= .84 CFS @ 12.00 HRS, VOLUME= .05 AF
SO-FT CN SCS TR-20 METHOD
6600.00 66 WOODS,B,POOR TYPE III 24-HOUR
11100.00 98 PAVEMENT RAINFALL= 3.10 IN
4400.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS
22100.00 81
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1.2
Paved Kv=20.3282 L=200' s=.02 '/' V=2.87 fps
Total Length= 225 ft Total Tc= 1.7
SUBCATCHMENT 2 FLOWS TO BOUNDARY - NORTH
PEAK= .23 CFS @ 12.12 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
17300 .00 66 WOODS,B,POOR TYPE III 24-HOUR
400 .00 98 PAVEMENT RAINFALL= 3.10 IN
2700.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=. 1 HRS
20400.00 66
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 3.3
Grass: Short n=.15 L=25' P2=3.1 in s=.02
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 5.2
Woodland Kv=5 L=220' s=.02 '/' V=31 fps
Total Length= 245 ft Total Tc= 8.5
Data for 1099-RANGER-N.ANDOVER: 10-YEAR PREDEVELOPMENT Page 1
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
1 �
OSUBCATCHMENT F-] REACH Q POND LINK
SUBCATCHMENT 1 = FLOWS TO WETLAND ->
SUBCATCHMENT 2 = FLOWS TO BOUNDARY - NORTH ->
Data for 1099-RANGER-N.ANDOVER: 10-YEAR PREDEVELOPMENT Page 2
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants , Inc. 17 Jul 01
HvdroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO WETLAND
PEAK= 1.54 CFS @ 11.99 HRS, VOLUME= .10 AF
SO-FT CN SCS TR-20 METHOD
6600.00 66 WOODS,B,POOR TYPE III 24-HOUR
11100.00 98 PAVEMENT RAINFALL= 4.50 IN
4400.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS
22100.00 81
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1.2
Paved Kv=20.3282 L=200' s=.02 '/' V=2.87 fps
Total Length= 225 ft Total Tc= 1.7
SUBCATCHMENT 2 FLOWS TO BOUNDARY - NORTH
PEAK= .62 CFS @ 12.10 HRS, VOLUME= .05 AF
SO-FT CN SCS TR-20 METHOD
17300.00 66 WOODS,B,POOR TYPE III 24-HOUR
400.00 98 PAVEMENT RAINFALL= 4.50 IN
2700.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS
20400.00 66
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 3.3
Grass: Short n=.15 L=25' P2=3.1 in s=.02
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 5.2
Woodland Kv=5 L=220' s=.02 '/' V=.71 fps
Total Length= 245 ft Total Tc= 8.5
Data for 1099-RANGER-N.ANDOVER: 100-YEAR PREDEVELOPMENT Page 1
TYPE III 24-HOUR RAINFALL= 6.40 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
1 �
0 SUBCATCHMENT F� REACH A POND LINK
SUBCATCHMENT 1 = FLOWS TO WETLAND ->
SUBCATCHMENT 2 = FLOWS TO BOUNDARY - NORTH ->
Data for 1099-RANGER-N.ANDOVER: 100-YEAR PREDEVELOPMENT Page 2
TYPE III 24-HOUR RAINFALL= 6.40 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO WETLAND
PEAK= 2.54 CFS @ 11.99 HRS, VOLUME= .16 AF
SO-FT CN SCS TR-20 METHOD
6600.00 66 WOODS,B,POOR TYPE III 24-HOUR
11100.00 98 PAVEMENT RAINFALL= 6.40 IN
4400.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS
22100.00 81
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1.2
Paved Kv=20.3282 L=200' s=.02 '/' V=2.87 fps
Total Length= 225 ft Total Tc= 1.7
SUBCATCHMENT 2 FLOWS TO BOUNDARY - NORTH
PEAK= 1.28 CFS @ 12.09 HRS, VOLUME= .10 AF
SO-FT CN SCS TR-20 METHOD
17300.00 66 WOODS,B,POOR TYPE III 24-HOUR
400.00 98 PAVEMENT RAINFALL= 6.40 IN
2700.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=. 1 HRS
20400.00 66
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 3.3
Grass: Short n=.15 L=25' P2=3.1 in s=.02
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 5.2
Woodland Kv=5 L=220' s=.02 '/' V=31 fps
Total Length= 245 ft Total Tc= 8.5
POST-DEVELOPMENT:
2-Year Storm
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 1
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 18 Jul Ol
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
(J Q (D (D (D Q (D
I I I 1
0 5❑ 6❑
-> 1—31 /2A
A,
OSUBCATCHMENT [-] REACH POND LINK
SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1
SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3
SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4
SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5
SUBCATCHMENT 5 = ROOF -> REACH 6
SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7
SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH ->
REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2
REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3
-- REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1
REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1
REACH 5 = 12"HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1
REACH 6 = 8"PVC ROOF DRAIN -> POND 2
REACH 7 = SUMMATION AT WETLAND ->
POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 2
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1
Data for 1099-RANGER-N_ANDOVER: 2-YEAR POSTDEVELOPMENT Page 3
TYPE III 24-HOUR RAINFALL= 3.10 IN 17 Jul 01
Prepared by MHF Design Consultants, Inc.
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO CB-1
PEAK= .16 CFS @ 11.97 HRS, VOLUME= .01 AF
SO-FT CN SCS TR-20 METHOD
2500.00 98 PAVEMENT TYPE III 24-HOUR
RAINFALL= 3.10 IN
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: •5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=20' s=.01 '/' V=2.03 fps
Total Length= 45 ft Total Tc= .7
SUBCATCHMENT 2 FLOWS TO CB-2
PEAK= .22 CFS @ 11.97 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
3360.00 98 PAVEMENT TYPE III 24-HOUR
RAINFALL= 3.10 IN
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr. (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 3 FLOWS TO CB-3
PEAK= .33 CFS @ 11.97 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
4800.00 98 PAVEMENT TYPE III 24-HOUR
1000.00 61 LAWN,B,GOOD RAINFALL= 3.10 IN
5800.00 92 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 ' /' 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 4
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 4 FLOWS TO CB-4
PEAK= .31 CFS @ 11.97 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
4650.00 98 PAVEMENT TYPE III 24-HOUR
250.00 61 LAWN,B,GOOD RAINFALL= 3.10 IN
4900.00 96 SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: •2
Paved Kv=20.3282 L=40' s=.03 ' /' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 5 ROOF
PEAK= .62 CFS @ 11.98 HRS, VOLUME= .04 AF
SO-FT CN SCS TR-20 METHOD
9140.00 98 ROOF TYPE III 24-HOUR
RAINFALL= 3.10 IN
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 1.2
Smooth surfaces n=.011 L=50' P2=3.1 in s=.005
SUBCATCHMENT 6 FLOWS TO WETLAND
PEAK= .38 CFS @ 11.99 HRS, VOLUME= .03 AF
SO-FT CN SCS TR-20 METHOD
6850.00 66 WOODS,B,POOR TYPE III 24-HOUR
4750.00 98 PAVEMENT RAINFALL= 3.10 IN
11600.00 79 SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 3
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=60' s=.03 '/' V=3.52 fps
Total Length= 85 ft Total Tc= .6
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 5
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH
PEAK= .03 CFS @ 12.08 HRS, VOLUME= 0.00 AF
SO-FT CN SCS TR-20 METHOD
3300.00 61 LAWN,B,GOOD TYPE III 24-HOUR
1400.00 66 WOODS,B,POOR RAINFALL= 3.10 IN
4700.00 62 SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 1.7
Grass: Short n=.15 L=25' P2=3.1 in s=.l
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 2.4
Woodland Kv=5 L=100' s=.02 '/' V=31 fps
Total Length= 125 ft Total Tc= 4.1
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 6
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 1 12"HDPE CB-1 TO DMH-1
Qin = .16 CFS @ 11.97 HRS, VOLUME= .01 AF
Qout= .16 CFS @ 11.98 HRS, VOLUME= .01 AF, ATTEN= 1%, LAG= .4 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .16 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.0 FPS
.20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .3 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 2 12"HDPE DMH-1 TO CB-2
Qin = .16 CFS @ 11.98 HRS, VOLUME= .01 AF
Qout= .16 CFS @ 11.99 HRS, VOLUME= .01 AF, ATTEN= 3%, LAG= .7 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .16 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.0 FPS
.20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .6 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION
Qin = .38 CFS @ 11.98 HRS, VOLUME= .03 AF
Qout= .37 CFS @ 11.99 HRS, VOLUME= .03 AF, ATTEN= 1%, LAG= .4 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .25 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.5 FPS
.20 .11 .24 LENGTH= 40 FT TRAVEL TIME = 3 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 7
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION
.Qin = .33 CFS @ 11.97 HRS, VOLUME= .02 AF
Qout= .33 CFS @ 11.98 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .19 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.0 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME _ .1 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION
Qin = .31 CFS @ 11.97 HRS, VOLUME= .02 AF
Qout= .31 CFS @ 11.97 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .19 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.0 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME _ .1 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 6 8"PVC ROOF DRAIN
Qin = .62 CFS @ 11.98 HRS, VOLUME= .04 AF
Qout= .62 CFS @ 11.98 HRS, VOLUME= .04 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .26 FT
.07 .02 .04 n= .012 PEAK VELOCITY= 4.9 FPS
.13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN
.20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.47 .26 1.55
.53 .30 1.81
.60 .33 1.97
.63 .34 1.99
.65 .35 1.97
.67 .35 1.85
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 8
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 7 SUMMATION AT WETLAND
Qin = .80 CFS @ 12.01 HRS, VOLUME= .09 AF
Qout= .74 CFS @ 12.10 HRS, VOLUME= 09 AF, ATTEN= 8%, LAG= 5.1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD
0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .01 FT
.10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS
.20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN
.30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.43 44.8 105.57
.60 63.6 185.10
.80 86.4 301.28
1.00 110.0 440.46
Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 9
TYPE III 24-HOUR RAINFALL= 3.10 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 1 UNDERGROUND DETENTION SYSTEM
Qin = 1.01 CFS @ 11.98 HRS, VOLUME= .07 AF
Qout= .48 CFS @ 12.15 HRS, VOLUME= .07 AF, ATTEN= 53%, LAG= 10.2 MIN
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 668 CF
0.0 0 PEAK ELEVATION= 1.4 FT
3.0 1414 FLOOD ELEVATION= 3.0 FT
START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.1 HRS
Tdet= 21.2 MIN ( .07 AF)
# ROUTE INVERT OUTLET DEVICES
1 P 0.0' 4" ORIFICE/GRATE
Q=.6 PI r^2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
2 P 2.0' 8" ORIFICE/GRATE
Q=.6 PI r-2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
POND 2 ROOF DRAIN RECHARGE SYSTEM
Qin = .62 CFS @ 11.98 HRS, VOLUME= .04 AF
Qout= .44 CFS @ 12.05 HRS, VOLUME= .04 AF, ATTEN= 28%, LAG= 4.0 MIN
Qpri= 0.00 CFS @ 0.00 HRS, VOLUME= 0.00 AF
Qsec= .44 CFS @ 12.05 HRS, VOLUME= .04 AF
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 69 CF
0.0 0 PEAK ELEVATION= .3 FT
.5 127 FLOOD ELEVATION= 1.5 FT
1.5 476 START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.l HRS
# ROUTE INVERT OUTLET DEVICES
1 P 1.0' 6" CULVERT
n=.012 L=15' S=.01'/' Ke=.6 Cc=.9 Cd=.56
2 S 0.0' EXFILTRATION
Q= .44 CFS at and above .1'
Primary Discharge
--1=Culvert
Secondary Discharge
--2=Exfiltration
POST-DEVELOPMENT:
10-Year Storm
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 1
TYPE III 24-HOUR RAINFALL= 4.50 IN 18 Jul 01
Prepared by MHF Design Consultants, Inc.
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
0 0 0
ago 0
o � o
OSUBCATCHMENT R REACH APDND ci LINK
SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1
SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3
SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4
SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5
SUBCATCHMENT 5 = ROOF -> REACH 6
SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7
SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH -'
REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2
REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3
- REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1
REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1
REACH 5 = 12"HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1
REACH 6 = 8"PVC ROOF DRAIN -> POND 2
REACH 7 = SUMMATION AT WET( AND -'
POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 2
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 3
TYPE III 24-HOUR RAINFALL= 4.50 IN 17 Jul 01
Prepared by MHF Design Consultants, Inc.
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO CB-1
PEAK= .24 CFS @ 11.97 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
2500.00 98 PAVEMENT RATYPE III
SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tr. (min)
TR-55 SHEET FLOW Segment ID: •5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=20' s=.01 '/ ' V=2.03 fps
Total Length= 45 ft Total Tc= .7
SUBCATCHMENT 2 FLOWS TO CB-2
PEAK= .32 CFS @ 11.97 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
3360.00 98 PAVEMENT TYPE III 24-HOUR
RAINFALL= 4.50 IN
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 3 FLOWS TO CB-3
PEAK= .51 CFS @ 11.97 HRS, VOLUME= .03 AF
SO-FT CN SCS TR-20 METHOD
4800.00 98 PAVEMENT TYPE III 24-HOUR
1000.00 61 LAWN,B,GOOD SPAN= N
10-20 HRS, HRS
5800.00 92
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POST)EVELOPMENT Page 4
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 4 FLOWS TO CB-4
'PEAK= .46 CFS @ 11.97 HRS, VOLUME= .03 AF
SO-FT CN SCS TR-20 METHOD
4650.00 98 PAVEMENT TYPE III 24-HOUR
250.00 61 LAWN,B,GOOD RAINFALL= 4.50 IN
4900.00 96 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 5 ROOF
PEAK= .91 CFS @ 11.98 HRS, VOLUME= .06 AF
SO-FT CN SCS TR-20 METHOD
9140.00 98 ROOF TYPE III 24-HOUR
RAINFALL= 4.50 IN
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: 1.2
Smooth surfaces n=.011 L=50' P2=3.1 in s=.005 '/'
SUBCATCHMENT 6 FLOWS TO WETLAND
PEAK= .72 CFS @ 11.98 HRS, VOLUME= .05 AF
SO-FT CN SCS TR-20 METHOD
6850.00 66 WOODS,B,POOR TYPE III 24-HOUR
4750.00 98 PAVEMENT RAINFALL= 4.50 IN
11600.00 79 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 3
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=60' s=.03 '/' V=3.52 fps
Total Length= 85 ft Total Tc= .6
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 5
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5.1 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH
PEAK= .12 CFS @ 12.03 HRS, VOLUME= .01 AF
SO-FT CN SCS TR-20 METHOD
3300.00 61 LAWN,B,GOOD TYPE III 24-HOUR
1400.00 66 WOODS,B,POOR RAINFALL= 4.50 IN
4700.00 62 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tr. (min)
TR-55 SHEET FLOW Segment ID: 1.7
Grass: Short n=.15 L=25' P2=3.1 in s=.1
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 2.4
Woodland Kv=5 L=100' s=.02 ' /' V=31 fps
Total Length= 125 ft Total Tc= 4.1
Data for 1099-RANGER-N_ANDOVER: 10-YEAR POSTDEVELOPMENT Page 6-
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants , Inc. 17 Jul 01
HydroCAD 5 11 001710 (c).,,1986-1999 Applied Microcomputer Systems
REACH 1 12"HDPE CB-1 TO DMH-1
Qin = .24 CFS @ 11.97 HRS, VOLUME= .02 AF
Qout= .24 CFS @ 11.98 HRS, VOLUME= .02 AF, ATTEN= 1%, LAG= .3 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .20 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.1 FPS
.20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .2 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 2 12"HDPE DMH-1 TO CB-2
Qin = .24 CFS @ 11.98 HRS, VOLUME= .02 AF
Qout= .23 CFS @ 11.99 HRS, VOLUME= .02 AF, ATTEN= 3%, LAG= .7 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .20 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.1 FPS
.20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .6 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION
Qin = .55 CFS @ 11.98 HRS, VOLUME= .04 AF
Qout= .54 CFS @ 11.98 HRS, VOLUME= .04 AF, ATTEN= 1%, LAG= .3 MIN
DEPTH END AREA DISCH
(FT) (S-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .30 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.7 FPS
.20 .11 .24 LENGTH= 40 FT TRAVEL TIME = .2 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 7
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999-Applied Microcomputer Systems
REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION
Qin = .51 CFS @ 11.97 HRS, VOLUME= .03 AF
Qout= .51 CFS @ 11.97 HRS, VOLUME= .03 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .24 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.4 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=. 1 HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION
Qin = .46 CFS @ 11.97 HRS, VOLUME= .03 AF
Qout= .46 CFS @ 11.97 HRS, VOLUME= .03 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .23 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.3 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME _ .1 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 6 8"PVC ROOF DRAIN
Qin = .91 CFS @ 11.98 HRS, VOLUME= .06 AF
Qout= .90 CFS @ 11.98 HRS, VOLUME= .06 AF, ATTEN= 0%, LAG= . 1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .32 FT
.07 .02 .04 n= .012 PEAK VELOCITY= 5.4 FPS
.13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN
.20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.47 .26 1.55
.53 .30 1.81
.60 .33 1.97
.63 .34 1.99
.65 .35 1.97
.67 .35 1.85
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 8
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 7 SUMMATION AT WETLAND
Qin = 1.28 CFS @ 12.03 HRS, VOLUME= .15 AF
Qout= 1.22 CFS @ 12.11 HRS, VOLUME= .15 AF, ATTEN= 5%, LAG= 4.8 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD
0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .01 FT
.10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS
.20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN
.30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.43 44.8 105.57
.60 63.6 185.10
.80 86.4 301.28
1.00 110.0 440.46
Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 9
TYPE III 24-HOUR RAINFALL= 4.50 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 1 UNDERGROUND DETENTION SYSTEM
Qin = 1.51 CFS @ 11.98 HRS, VOLUME= .10 AF
Qout= .82 CFS @ 12.12 HRS, VOLUME= .10 AF, ATTEN= 46%, LAG= 8.8 MIN
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 1058 CF
0.0 0 PEAK ELEVATION= 2.2 FT
3.0 1414 FLOOD ELEVATION= 3.0 FT
START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.1 HRS
Tdet= 21.5 MIN ( .1 AF)
# ROUTE INVERT OUTLET DEVICES
1 P 0.0' 4" ORIFICE/GRATE
Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
2 P 2.0' 8" ORIFICE/GRATE
Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
POND 2 ROOF DRAIN RECHARGE SYSTEM
Qin = .90 CFS @ 11.98 HRS, VOLUME= .06 AF
Qout= .44 CFS @ 11.90 HRS, VOLUME= .06 AF, ATTEN= 51%, LAG= 0.0 MIN
Qpri= 0.00 CFS @ 0.00 HRS, VOLUME= 0.00 AF
Qsec= .44 CFS @ 11.90 HRS, VOLUME= .06 AF
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 270 CF
0.0 0 PEAK ELEVATION= .9 FT
.5 127 FLOOD ELEVATION= 1.5 FT
1.5 476 START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.1 HRS
# ROUTE INVERT OUTLET DEVICES
1 P 1.0' 6" CULVERT
n=.012 L=15' S=.01'/' Ke=.6 Cc=.9 Cd=.56
2 S 0.0' EXFILTRATION
Q= .44 CFS at and above .1'
Primary Discharge
I 1=Culvert
Secondary Discharge
-2=Exfi1tration
POST-DEVELOPMENT:
25-Year Storm
* Rational Method
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 1
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
(D (D G) (D (Do
a o a o
ono A
A , o
0 SUBCATCHMENT [] REACH POND LINK
SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1
SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3
SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4
SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5
SUBCATCHMENT 5 = ROOF -> REACH 6
SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7
SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH ->
REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2
REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3
REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1
REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1
REACH 5 = 12"HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1
REACH 6 = 8"PVC ROOF DRAIN -> POND 2
REACH 7 = SUMMATION AT WETLAND ->
POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 2
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1
Data for 1099-RANGER-N_ANDOVER: 25-YEAR POST * RATIONAL * Page 3
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO CB-1
PEAK= .28 CFS @ 10.10 HRS, VOLUME= 0.00 AF
SO-FT CN RATIONAL METHOD
2500.00 98 PAVEMENT DURATION= 6 MIN
INTEN= 5.00 IN/HR
SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .2
Paved Kv=20.3282 L=20' s=.01 '/' V=2.03 fps
Total Length= 45 ft Total Tc= .7
SUBCATCHMENT 2 FLOWS TO CB-2
PEAK= .38 CFS @ 10.10 HRS, VOLUME= 0.00 AF
SO-FT CN RATIONAL METHOD
3360.00 98 PAVEMENT DURATION= 6 MIN
INTEN= 5.00 IN/HR
SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .2
Paved Kv=20.3282 L=40' s=.03 '/ ' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 3 FLOWS TO CB-3
PEAK= .61 CFS @ 10.10 HRS, VOLUME= .01 AF
SO-FT CN RATIONAL METHOD
4800.00 98 PAVEMENT DURATION= 6 MIN
-- 1000.00 61 LAWN,B,GOOD INTEN= 5.00 IN/HR
5800.00 92 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .2
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 4
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 4 FLOWS TO CB-4
PEAK= .54 CFS @ 10.10 HRS, VOLUME= 0.00 AF
SO-FT CN RATIONAL METHOD
4650.00 98 PAVEMENT DURATION= 6 MIN
250.00 61 LAWN,B,GOOD INTEN= 5.00 IN/HR
4900.00 96 SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: •2
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 5 ROOF
PEAK= 1.03 CFS @ 10.10 HRS, VOLUME .01 AF
SO-FT CN RATIONAL METHOD
9140.00 98 ROOF DURATION= 6 MIN
INTEN= 5.00 IN/HR
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 1.2
Smooth surfaces n=.011 L=50' P2=3.1 in s=.005
SUBCATCHMENT 6 FLOWS TO WETLAND
PEAK= 1.05 CFS @ 10.10 HRS, VOLUME= .01 AF
SO-FT CN RATIONAL METHOD
6850.00 66 WOODS,B,POOR DURATION= 6 MIN
4750.00 98 PAVEMENT INTEN= 5.00 IN/HR
11600.00 79 SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .3
Paved Kv=20.3282 L=60' s=.03 '/' V=3.52 fps
Total Length= 85 ft Total Tc= .6
i.
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 5
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH
PEAK= .33 CFS @ 10.10 HRS, VOLUME= 0.00 AF
SO-FT CN RATIONAL METHOD
3300.00 61 LAWN,B,GOOD DURATION= 6 MIN
1400.00 66 WOODS,B,POOR INTEN= 5.00 IN/HR
4700.00 62 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 1.7
Grass: Short n=.15 L=25' P2=3.1 in s=.1
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 2.4
Woodland Kv=S L=100' s=.02 '/' V=31 fps
Total Length= 125 ft Total Tc= 4.1
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 6
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 1 12"HDPE CB-1 TO DMH-1
Qin = .28 CFS @ 10.10 HRS, VOLUME= 0.00 AF
Qout= .25 CFS @ 10.10 HRS, VOLUME= 0.00 AF, ATTEN= 11%, LAG= 0.0 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .21 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.2 FPS
.20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .2 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=. l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 2 12"HDPE DMH-1 TO CB-2
Qin = .25 CFS @ 10.10 HRS, VOLUME= 0.00 AF
Qout= .19 CFS @ 10.10 HRS, VOLUME= 0.00 AF, ATTEN= 24%, LAG= 0.0 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .18 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.1 FPS
.20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .6 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION
Qin = .57 CFS @ 10.10 HRS, VOLUME= .01 AF
Qout= .50 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 11%, LAG= 0.0 MIN
DEPTH END AREA DISCH
(FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .30 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.7 FPS
.20 .11 .24 LENGTH= 40 FT TRAVEL TIME = .2 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 7
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION
Qin = .61 CFS @ 10.10 HRS, VOLUME= .01 AF
Qout= .60 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 2%, LAG= 0.0 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .26 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.6 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION
Qin = .54 CFS @ 10.10 HRS, VOLUME= 0.00 AF
Qout= .53 CFS @ 10.10 HRS, VOLUME= 0.00 AF, ATTEN= 2%, LAG= 0.0 MIN
DEPTH END AREA DISCH
(FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .25 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.5 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 6 8"PVC ROOF DRAIN
Qin = 1.03 CFS @ 10.10 HRS, VOLUME= .01 AF
Qout= 1.00 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 3%, LAG= 0.0 MIN
DEPTH END AREA DISCH
(FT) (SQ-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .34 FT
.07 .02 .04 n= .012 PEAK VELOCITY= 5.5 FPS
.13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN
.20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.47 .26 1.55
.53 .30 1.81
.60 .33 1.97
.63 .34 1.99
.65 .35 1.97
.67 .35 1.85
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 8
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 7 SUMMATION AT WETLAND
Qin = 1.30 CFS @ 10. 10 HRS, VOLUME= .02 AF
Qout= .84 CFS @ 10.19 HRS, VOLUME= .02 AF, ATTEN= 35%, LAG= 5.4 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD
0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .01 FT
.10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS
.20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN
.30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=. 1 HRS
.43 44.8 105.57
.60 63.6 185.10
.80 86.4 301.28
1.00 110.0 440.46
Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 9
DURATION= 6 MIN INTEN= 5.00 IN/HR
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 1 UNDERGROUND DETENTION SYSTEM
Qin = 1.63 CFS @ 10.10 HRS, VOLUME= .02 AF
Qout= .39 CFS @ 10.22 HRS, VOLUME= .02 AF, ATTEN= 76%, LAG= 7.5 MIN
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 470 CF
0.0 0 PEAK ELEVATION= 1.0 FT
3.0 1414 FLOOD ELEVATION= 3.0 FT
START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.1 HRS
Tdet= 21.3 MIN ( .02 AF)
# ROUTE INVERT OUTLET DEVICES
1 P 0.0' 4" ORIFICE/GRATE
Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
2 P 2.0' 8" ORIFICE/GRATE
Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
POND 2 ROOF DRAIN RECHARGE SYSTEM
Qin = 1.00 CFS @ 10.10 HRS, VOLUME= .01 AF
Qout= .44 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 56%, LAG= 0.0 MIN
Qpri= 0.00 CFS @ 0.00 HRS, VOLUME= 0.00 AF
Qsec= .44 CFS @ 10.10 HRS, VOLUME= .01 AF
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 130 CF
0.0 0 PEAK ELEVATION= .5 FT
.5 127 FLOOD ELEVATION= 1.5 FT
1.5 476 START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.1 HRS
Tdet= 4 MIN ( .01 AF)
# ROUTE INVERT OUTLET DEVICES
1 P 1.0' 6" CULVERT
n=.012 L=15' S=.01'/' Ke=.6 Cc=.9 Cd=.56
2 S 0.0' EXFILTRATION
Q= .44 CFS at and above .1'
Primary Discharge
I-1=Cu 1 vert
Secondary Discharge
-2=Exfiltration
POST-DEVELOPMENT:
100-Year Storm
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 1
TYPE III 24-HOUR RAINFALL= 6.00 IN
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5.11 001710 (c) 1986-1999 Applied Microcomputer Systems
WATERSHED ROUTING
❑
4 F
E -> 0 A
z F71
0 SUBCATCHMENT F-] REACH Q POND LINK
SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1
SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3
SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4
SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5
SUBCATCHMENT 5 = ROOF -> REACH 6
SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7
SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH ->
REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2
REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3
REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1
REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1
REACH 5 = 12°HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1
REACH 6 = 8"PVC ROOF DRAIN -> POND 2
REACH 7 = SUMMATION AT WETLAND ->
POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 2
TYPE III 24-HOUR RAINFALL= 6.00 IN
Prepared by MHF Design Consultants, Inc. 18 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 3
TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01
Prepared by MHF Design Consultants, Inc.
HvdroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 1 FLOWS TO CB-1
PEAK= .32 CFS @ 11.97 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
2500.00 98 PAVEMENT TYPE III 24-HOUR
RAINFALL= 6.00 IN
SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: •5
Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 ' /' 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=20' s=.01 ' /' V=2.03 fps
Total Length= 45 ft Total Tc= .7
SUBCATCHMENT 2 FLOWS TO CB-2
PEAK= .43 CFS @ 11.97 HRS, VOLUME= .03 AF
SO-FT CN SCS TR-20 METHOD
3360.00 98 PAVEMENT TYPE III 24-HOUR
RAINFALL= 6.00 IN
SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 3 FLOWS TO CB-3
PEAK= .70 CFS @ 11.97 HRS, VOLUME= .05 AF
SO-FT CN SCS TR-20 METHOD
4800.00 98 PAVEMENT TYPE III 24-HOUR
1000.00 61 LAWN,B,GOOD RAINFALL= 6.00 IN
5800.00 92 SPAN= 10-20 HRS, dt=.l HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: •3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 4
TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01
Prepared by MHF Design Consultants, Inc.
HydroCAD 5 11 001710 (c).. 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 4 FLOWS TO CB-4
PEAK= .62 CFS @ 11.97 HRS, VOLUME= .04 AF
SO-FT CN SCS TR-20 METHOD
4650.00 98 PAVEMENT TYPE III 24-HOUR
250.00 61 LAWN,B,GOOD R INFALL= 6 00 INdt =. 1 HRS
4900.00 96
Method Comment Tr- (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps
Total Length= 65 ft Total Tc= .5
SUBCATCHMENT 5 ROOF
PEAK= 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF
SO-FT CN SCS TR-20 METHOD
9140.00 98 ROOF TYPE III 24-HOUR
RAINFALL= 6.00 IN
SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tc (min)
TR-55 SHEET FLOW Segment ID: 1.2
Smooth surfaces n=.011 L=50' P2=3.1 in s=.005
SUBCATCHMENT 6 FLOWS TO WETLAND
PEAK= 1.11 CFS @ 11.98 MRS, VOLUME= .07 AF
SO-FT CN SCS TR-20 METHOD
6850.00 66 WOODS,B,POOR TYPE III 24-HOUR
4750.00 98 PAVEMENT RAINFALL= 6 00 INdt =.1 HRS
11600.00 79
_ Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: .3
Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 3
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Paved Kv=20.3282 L=60' s=.03 ' /' V=3.52 fps
Total Length= 85 ft Total Tc= .6
1.
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 5
TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01
Prepared by MHF Design Consultants, Inc.
HvdroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH
PEAK= .25 CFS @ 12.02 HRS, VOLUME= .02 AF
SO-FT CN SCS TR-20 METHOD
3300.00 61 LAWN,B,GOOD TYPE III 24-HOUR
1400.00 66 WOODS,B,POOR RAINFALL= 6.00 IN
4700.00 62 SPAN= 10-20 HRS, dt=.1 HRS
Method Comment Tr (min)
TR-55 SHEET FLOW Segment ID: 1.7
Grass: Short n=.15 L=25' P2=3.1 in s=.l 2.4
SHALLOW CONCENTRATED/UPLAND FLOW Segment ID:
Woodland Kv=5 L=100' s=.02 '/' V=31 fps
Total Length= 125 ft Total Tc= 4.1
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 6
TYPE III 24-HOUR RAINFALL= 6.00 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 1 12"HDPE CB-1 TO DMH-1
Qin = .32 CFS @ 11.97 HRS, VOLUME= .02 AF
Qout= .32 CFS @ 11.98 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .3 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .23 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.4 FPS
.20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .2 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=. l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 2 12"HDPE DMH-1 TO CB-2
Qin = .32 CFS @ 11.98 HRS, VOLUME= .02 AF
Qout= .31 CFS @ 11.99 HRS, VOLUME= 02 AF, ATTEN= 2%, LAG= .7 MIN
DEPTH END AREA DISCH
(FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .23 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 2.4 FPS
.20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .5 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=. l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION
Qin = .74 CFS @ 11.98 HRS, VOLUME= .05 AF
Qout= .73 CFS @ 11.98 HRS, VOLUME= .05 AF, ATTEN= 1%, LAG= .3 MIN
DEPTH END AREA DISCH
(FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .35 FT
.10 .04 .06 n= .012 PEAK VELOCITY= 3.0 FPS
.20 .11 .24 LENGTH= 40 FT TRAVEL TIME = .2 MIN
.30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 2.29
.80 .67 2.67
.90 .74 2.91
.94 .77 2.94
.97 .78 2.91
1.00 .79 2.73
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 7
TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01
Prepared by MHF Design Consultants, Inc.
HydroCAD 5.11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION
Qin = .70 CFS @ 11.97 HRS, VOLUME= .05 AF
Qout= .70 CFS @ 11.97 HRS, VOLUME= .05 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .28 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.7 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.70 .59 3.23
.80 .67 3.77
.90 .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION
Qin = .62 CFS @ 11.97 HRS, VOLUME= .04 AF
Qout= .62 CFS @ 11.97 HRS, VOLUME= .04 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD
0.00 0.00 0.00 PEAK DEPTH= .26 FT
.10 .04 .08 n= .012 PEAK VELOCITY= 3.6 FPS
.20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN
.30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS
.70 .59 3.23
.80 .67 3.77
.90 . .74 4.11
.94 .77 4.15
.97 .78 4.11
1.00 .79 3.86
REACH 6 8"PVC ROOF DRAIN
Qin = 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF
_ Qout= 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF, ATTEN= 0%, LAG= .1 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 8" PIPE PEAK DEPTH=RANS METHOD
(FT)
0.00 0.00 0.00
.07 .02 .04 n= .012 PEAK VELOCITY= 5.7 FPS
.13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN
.20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.47 .26 1.55
.53 .30 1.81
.60 .33 1.97
.63 .34 1.99
.65 .35 1.97
.67 .35 1.85
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 8
TYPE III 24-HOUR RAINFALL= 6.00 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
REACH 7 SUMMATION AT WETLAND
. Qin = 2.47 CFS @ 12.03 HRS, VOLUME= .22 AF
Qout= 2.28 CFS @ 12.11 HRS, VOLUME= .22 AF, ATTEN= 8%, LAG= 4.8 MIN
DEPTH END AREA DISCH
(FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD
0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .03 FT
.10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS
.20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN
.30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS
.43 44.8 105.57
.60 63.6 185.10
.80 86.4 301.28
1.00 110.0 440.46
Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 9
TYPE III 24-HOUR RAINFALL= 6.00 IN
Prepared by MHF Design Consultants, Inc. 17 Jul 01
HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems
POND 1 UNDERGROUND DETENTION SYSTEM
Qin = 2.06 CFS @ 11.99 HRS, VOLUME= .15 AF
Qout= 1.65 CFS @ 12.09 HRS, VOLUME= .15 AF, ATTEN= 20%, LAG= 6.5 MIN
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 1262 CF
0.0 0 PEAK ELEVATION= 2.7 FT
3.0 1414 FLOOD ELEVATION= 3.0 FT
START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=. l HRS
Tdet= 19 MIN ( .15 AF)
# ROUTE INVERT OUTLET DEVICES
1 P 0.0' 4" ORIFICE/GRATE
Q=.6 PI r'2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
2 P 2.0' 8" ORIFICE/GRATE
Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d)
POND 2 ROOF DRAIN RECHARGE SYSTEM
Qin = 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF
Qout= .76 CFS @ 12.11 HRS, VOLUME= .08 AF, ATTEN= 37%, LAG= 7.7 MIN
Qpri= .32 CFS @ 12.11 HRS, VOLUME 0.00 AF
Qsec= .44 CFS @ 11.80 HRS, VOLUME= .08 AF
ELEVATION CUM.STOR STOR-IND METHOD
(FT) (CF) PEAK STORAGE = 443 CF
0.0 0 PEAK ELEVATION= 1.4 FT
.5 127 FLOOD ELEVATION= 1.5 FT
1.5 476 START ELEVATION= 0.0 FT
SPAN= 10-20 HRS, dt=.l HRS
Tdet= 4.3 MIN ( .08 AF)
# ROUTE INVERT OUTLET DEVICES -
1 P 1.0' 6" CULVERT
n=.012 L=15' S=.01' /' Ke=.6 Cc=.9 Cd=.56
2 S 0.0' EXFILTRATION
Q= .44 CFS at and above .1'
Primary Discharge
I I=Culvert
Secondary Discharge
-2=Exfiltration
s�
GREAT POND RD.
o
� � O
z
v
w �uZ Sl '�C9cs MARION ORO�
cHE� tip
cHESTNT sj. HILLSIDE ST Rp, •� /
9y0 ANDOVE BY-PASS
C / � 114
H
125 R AOR�IyG ��i� �• g
s�qN �' �Qg�•,�.�Q�
�R SITE
133
Wq��RI LOCATION MAP
Rq (NOT TO SCALE)
• �..:. • ,f �I; `+.i r :::a�f .F\ s �< n.r , � \S, 1 +. ���\ v \\ti,` f s-/Cr`�rl�f'^' ~SJ` ll+ VA
' {r�n1(�i`i1 ('"t � <- 7�tts > '\ \ �} r ��i CiS:, �. � �/^ a Zf {+ryj r 1: � !✓
i'1. >.. r)( k 't `� i >',� y'�i�'v ,5�� `�� L s _\17TH S` { ,\ :£ �<, ��k�� ' Y r j.- � �. �y✓ `
ti'6 r ti,�F� '}""• ,e?..j r j )i d S 'p> € y' , > ;%''' \ '.
'x331-. t : y ► :> r t S' t l �k3�rk, r � C ...� � ! � � � ��s .. � � � / t t J Jf.,L � {`f�.
r
� '! 1 •�r.� 1��0� "iti1-w �t C tis J (�� � �t �
♦ ��-.. J i .} ':'e r k• d tr t e j�;y ^^'-. l�r ,ti A � ,�
. i * - 134 ` • 3:;Vj"rs \\.s. + �, �t` y Al
{i .•ri I f 1 1 t f S.- Ys"s �) t.. _f ♦ a �\
'!?
'1i, a'
:�: ?4 #; }�♦i i11� •t\t + °�?, j��,s j43,�f�� /. � � blr c� Qp}: -r'--�1•r';� 7v��� i'�-- �`-� ry
.ti•--- '� f�M {' 3 { 1r7 tr; ,.� 3, t �Y i T� ,> � rf� 4f'4 f .�'� '�^'-,���Qfj � 4.
V: • �'�t It1 f :��f� rl1S 54#�f� �t �t t� t. •� f t,. r`}E 1r �,� � 4 r-:
:-
:.•`/"Cod.,9e > t 1 t ., f\� `, r �'f 2r 3 ` i-'°5` t ,r�sjifs£•s..rr \a, M9 _
r � n t F7f
, � \t � %! f s\, �t .:,., '�✓ f*" � t 3 �,� 3 3 -�r- '� o;sy � r "� "S :\
l \ 1; _ � t .� � (�� ✓r�/ n, \T tF 7 r l f ` r wt�,.✓'t, f 1 < 1 7"
Af
'�:\ 3. , ' � �,(Sp�rf• 33? �\�`J�'rf t, S £.< r) t',s f �>k,! �� .3 �' ��r-. Z��iIFi"Y fr ..., (.�
�:r r '?' a�,r.,,� t s� ;� �, �'./n t }�>€'k { r)E t f ;:;r �-w:a..��7.:,✓'�\`.�. .�"^'�"r �\`_t t ,
r fr - yn )/{// ,b t i S 3 _ ' _ ♦ 4 r HA 1 i1 �4RKkit i
}' s. S j^ 1, K' ... .,,•r. -rt> x f r,l . :4 c ;'�% il,�Q.!'r'�'
q+ :.r:•, �y } 1 ) i \ i .,j z r i h, ,\ :r `_ f 4't ' J.P` /•
th t� •Tl S' � L''.�: ) � {t\ ..:' � r�' � f,<�,C ` 3 i�, < YT r� S ::�k) f �r- ?;5 rs`'.
f :. �>~ !: ' �3 r:f� ! '°`r--.•,_?\._. 5 i, riS 1. P 5 r r r � r ,r,;/\..-r^^F�..
}1f n�r.t Jl '}Cr�'f T ♦� , ) `:r �•1 /:� ;." r N ♦ r �.;, ,j :
f �.1 1 fresh 'T rV. � � -�� � �. )� �; f ♦ ~ 1�k,� I , r-�(,' �-�-'. r '^.'.rte", u
it .,,f''I I i; ��; j k{�•f iJ1 s+� 'i�, f i � .`.s\\ t f}+ S�\� "v� r � i f {4_t 'r '/ .ems �. ° •�t�
",t�� j� t f�',', ds 'SS' {� �, {mot _ / t#.� )'s,. <,x\ ♦�tl, a\i 3 �.'>\ ft k }- s r ..1� } t ✓ } ,f ��,
)
n i e 1
C".�C t{{l t + `:l+ ✓!" ) , 1.`t \ S' : .a. k } ,``t #.;`i + ,^"`✓
GI��iy 7�`! e . \ ''*�• � � s ✓ t { S4 .a ' t r r2���, r S �...: i♦ ``�r t �s�,� 2 �1 �• Ct ., �� � S� � �'�
I•�t`,rfi'}.; . i ��: � � z 9M t , t r h `� >: �''�'- 3 ),F,� i�\r t hS�\ F: v ' �} ' ...«IEEE... � :
�.',t j l- \.r# , , er ,iu�,r,, \\ 1 S .-�-.. Y, t : \ -,3 • f � rk �M
\ � ) '� \1� i•:. / -'� � `z'�• 3.�i�i � < < 't�Y l\, r:.. ft#.. s '(,
'k��F�� q" ter+, \�` � � � �}s� f � .�}�\a t 9lik � • \�: r ,' , 7::s �,.....,�� r�-,----'•
rt- J ; ``' �i� ``# �'� I � +,'. r l'�'•�\ �t 77;�
.
',
��' fx lj "t ""�`Y� � it •� A- �S,' a j f �\'/"'�' � wt.v� \\ .. {,T _ � �1 \ t, tf � t i f:. .
\� �. '� .:::f,� 4 ,. .;.: �.l3.✓..-,.,rly' f t �i�\�i<l./ r rt '... `t �l� •��\:., - } � ) s.. 2 i ,��
> .+>tr j ✓�\f L.., ,,,. J t r ,�'r .-.r r } j a r rC_{ _.._i...✓,-«-;,3 - >/_.r f" r
3 t
..�.: ^.•a:
?{ �1 ,rd
'".r j "',v r �"?'J 3�� � °1 J 1`..-.✓�� C�..-. � .�.a< �::j��>sC}}�:r`�{ ?t.k,^,� r ,.,.f�,�ff �/ �•�) \ \ ����"'- � ✓ ,�-�`��1 r 3 � l_
t, r
am t ( ��I .k, t(`'. .:a;,3',I r
t :r X33 ` St\ q—✓F r. �`• \'� =tf r
r `f r Ft -;� S �'�."_ F' ,1 s #� :: <` �\,:�4".�i•--"- t ^ ?�.. k, 'f: �* t'' •` t.y
--t
i BJyQt. .y i :.t .( J � Y 5 u:.:.G' 'tip^h��l�l :-r-'<'..•<Y v S�'" \ 'v >: f^' 1
#i#£
t! r.� t w � { i t.^+\ i �tv,..".+` ''1 { �-� A t �`%�?: # ll f >�"" � � # Z}♦ E s4. f
BM�4+�`i � tit �.�•.�Y kph � `l` 13 1� ,rf` v-'�r! r �✓ # F r '� r t,=:.�� �- tt t �.j \4� �\���.
t 93 3'„�� � ;r.-sx- r s• 1.�� F '�f' V' j f������> �'`r/ ! � \ i
C1F� S. ,: \ t '.1�~s /t it'Y.i qr 1 t� rf '•` r",�\
If '�j
.. ^i .....,. \� � � �. r.f r k .! moo/ /r'.r,• .+''yf' ` ... s F � �^'°"�<��r Y\;t C xCs..% ',i ,_-�t.
�*�'.�r !. v:;„ � f r •.-�� ) � �t ::tf5'r) r r �:- r ' :� ...,..�, .. 4 + \ ,ot0 C� � <..
� E y �h� �'Yjt /1 EI €t�f t' -� � � a”�� Qf :, (� � 'ii,`✓r :if �1 _, �. '.''?. � 4'rsI
\. � }� \�•,�r `.11t.��i4( >�`\"•� � 4. try 'r" �y. "•.. '?`�t tl' l A /`< # ,' t •'���a.. )t #� as 1 ;� \f 3 ..
l t'� , .>'' ` „r,J • \""-h�.� ,y
3 ;
'-----,.,r•-�-�- { r"-. �a.J`!�:� + .``�tr��.. .. ( (r r s`'1 v3��? t�+""�Z' \'{f_ j S r�J-
?` ! t 3 r: ��i`"t.� :✓ 3 r �( „Jt « � t j !s: ,�.., \��+:,,-'i 3 tf�tf44 t
(� � �`' ;�� �( i r r :�• •, it T:i i,,. t j� `•t� L:U {I',>\\ m�': \ 4t {1f>j 1 \s k•".
'k� t' � 1 � ^' Y ;v :F � -�."� Yj C' k:.�. s � ns tti tip� t 1.i.�� r •..•:
: `L \^'\ Y .+J f � i r\ i r .rd.s:• , 'Ir ♦ i �' � S%l '-t \ � 7 � ,q
c�•+...`^\; ":y�'�� t � )I � S'%: �� x �j f� r �> >\� fi}4 .' �`s �� r���D�D E',A��i#?:•� � �.��`j t ,:<�
r ,i \ t •t �� ft f }� yr / •d t �`` i• tj; �3(s t t� h1 4!< Ai } CI3"'t3t�,�s)4 `t�� N
t *�� ✓ l/' '` ( (�t y sf3 � ti x F r `,i+—^-�- �T .t�t3 r ) k fi- i,rn.��,
DT
�'i;� +'k+• '�� A�s_Cr rs` _� _;4 Y t�7 1� 43- �yTwJl:. Y71, r �.�� r...,y.�J :1i � +,,. jr ����-,1 f,.e�tli \.;'
'r7ki, s}o '' e � , � r ��1 \ � 3�{� �r 4> \�,�:.�• s •c (`\ Sc � y`�` i z t' { t +✓ , r�F ''Z�'� t ` .<
sTS�i"C _.a- , �• t t 2 �f,%xt! t t 3 - n v. �t'�{ f �r t SjI�•_. \`'- S> �__.. "''"' `�' ` s) ,�,'.
Y" »u ;`T f f` - c r �•�� r r �Y si f i s.,r �v�'_'"`�; � 1/ r'
T�,A'
�.� . '��.. �t`)1#>���.. ;. �1•<.�� f t �t 4 r 3�: ,\...!.:1 'ter. ... r.t i-, r `� r ! (.,<
Copyright(C)1997,Maptech,Inc.
{� fgfte ` t
r ....�� ► ',., 1y�;3 1.� (C �I C�.�' t .. -.JS§ r d y r p `nitt t' �1 - 5'F
s '$i7
� -
� s.R :✓.� *YL o e�w.wtar .� J l � \�,,�.• ,� fr�s, r.Y! � {_� -•`. , �� i t7''�+•�j
T%rlr '. ��' Z � �b � r �'°"°i�,l r' ,� �y l ,�`"'' r �x`rJr f��3'� �w�,�rb -, ��tir r.�• +-� �1. f,rll � �...
tYeU�vi
nd
},� '. � I:�Y} �;,,. 11 S � r��ys�• -�F� t a � d 1 �> ��4 -.r ��: � r �.r,1` s .._
Qs};_''(r�.,�,ry�y��tt
/,-� •r` ti ,/Jr f 1� .�~. '\� t � � �r'�'� '+� y�z.?� :/j �yP � \{• .�Fr'ry�y tnrdi
k.€ . I� r .p+� ��} ``..V qq}//}f_ .r r.�},.,y, '• ' l�+ad.-• �y i a �r I. �� -mara s3.-.s
� \ Stl � t / � ��� r ` �F •�, 4r1; r„�`� r f.f�- -• ti--"-.�pa i 5 � y�t. -. _�T
P � �� } 'Sh p '/�N:f 1�4 f
f
T 1 �' � � ',�fA - t{ r� .�•r r �4�� -Y y�� J� �. e �r'r .`N-�'z`+,�r .-.,1 t
c et pp 1 § ' S �” {� r fi Hl -,�� � fc�l � �5.� �'•ay`'•�-• J .{ -
�. 111 7f w / ,^. u 3 s{(p"n%•,4 r
r 4 t i ws���xA•-„ ' ° `� ` ,a`�' R _� � °w. r '+r and`-- �'�/
�`,. 1 F-�" ,r v�; .,r"`� �� :°t �i�� o � t'�` 1.• � ti��1�I r1...b r r��r���4 p e°
-
r J x .j �1ti tN MllpHr, .\ .IV s. `'� z S [I r�S e \,f -($1tf.� ill'� '� r 111\f- 1 dll /r r✓
led t
".�t .r.,�„
s •' �. o "•��l,�.a it < sr 5 , r 19�� -r- �� •. .��-'
".� t ,, i� In •1., �Sirr r.�. 1 '(.f �� : �/ 1r � t.tl� 4 � t ,{ `{'p�' '-� `i.� 1 ":, ImEa'�ir` Ij1
f5'.i �� , s A 4.. -� ` t�� �1�• rr'.tf7 ,J �,Jf}37�5 y: � 't}t t�,�. ss y .tr'� ' { �I -,i'
� N I-, , `• t .'S ` � it y ` "+«� } r.2 � � �..'V• C .J ! '����! L\."' 1, y -� ,� i
tI , � `fit II,lr l/ ✓ �� �- � �'� � r G � M4 r�, r `- r a f?,s
•� ,' ,r re, ;}r 1 y 1 � zt ,( �:.: �r r ,1 ✓' }'"1 `% $ a' J r � ¢ , Jrs O I.'
'� I, (r � � �� r * �t 11� �lad�... k a w.f`� I � .1•'� r k ..'fbdnl `"X r, � `Zi l'
� r •P�-\ f Lrz t r i >` � 7r t.. .y, ll � T s+.- � l -
-f 1 �� z' -�- '%-�� �,t \ ? .� � '��i c r i r `�� ��a�p� 4 C `} ,3 ,'' � ,� jai `� i i %•,•:' �-:.-r1;7• t� �1
�� f I .; a x i �-�J,� _ ��i 7.v� r .��} C /�. •�'r � •,,` � � �''. L i
�� +y�( �;.. '\\t} .'•I '�:,., �' �5�+ rte'- ''f� � }i lyt1�C- +a.v�i$�.. �r i t ^>1 r ry. �J i r#,%� �y } L)_ `1� 4 ..•
� •e �j .c l M1.c� � � � t !? a r �r t-��p%!�� to'�7�°i. i riy RFv� Q
SITE
''^,'' rltt�'a r� �-, f 1!1, ��t r ��1 i� �r �, �:-4�1��1�� ?�- �` �5 /t� f u r.i ` ,y.,� o..Q• } J r Prt �� t� `'
'ar i'. c4'L ''r 1'/;fit."fr. tr i�. � I � � `� k ii•"f� � k t� • y
•. eM 1. ..t r` R -. ko
4 ► 1 �� v� �O�� ri{� r y\ ,. r �1` - ),�...•.. 1�'+' K „+, ' '��rY4 C a',..w y �4�.7�k +�.�t '_t �l,` y t` n ro- mac--J'�' ..,�:
r l { :�� °� �' 1`',1,*' 4 � ''w,? Q r�i'`r� r -.-•---r a� 3 r r �" —�~ '�
.� I r r t) ,h �� f y;t�/ \i' :. "ti. L�n���� � ai�i• P'�kr_- e4 ���yy .,!e tt
'�. 5' 7 .f !. � r L r c r ie r 4 ro■e r I $"' �I
1'•. tt sy{ Ir -^� 5 , 4 � r�Aa����. (fir .:"i �r I •l a f ��� v� M•�i
% l vial I r .. � `cY rE Y 'ti $.. ...Nl��� _s. It �:� 13 f• +�l�h £�" .� '
5 r 'l V .I.:.f .. 'S• �Y ''r I' 1
r` : r , �• y�Nr-�{' _ 1.�-r(,�9 .��1 r 'y��% s x ':i, �ti fp
0,5 0 0.5 1 Miles See County Index Maps to SOUTH GROVEU
locate adjacent quadrangles
•,: ti f.;� rf'^'*�,t.� Y.:,.� t \ 1 ,, j -kf(ir' S - —�.,sf!�.. ''�«....,�—t
' 1 \\ —+; ! }4�.-„.�/Y)'�,"8 r c^ry, "�-•-j,- .$ -:C JIr'..r< It(.:_t ,. \ s "Y i t�''�”,
r` .'g.}ry 1} 1 -'c7a'L Ltam'. r,��1"(j"' ••y� 4 y�� .�'s.�" �fr I '1� � 11 - ✓'.�'!' �U Jt �rr
?�� � _ s G 3 i., � �\ ;t�5�1�, t It\r ?�i.4 r-.���1•PFD `r! rS
I✓ 1
r"'t -� Tt
±� �� t t r• ,I r Vy \ 1 r r\ 'I try I 5 -,. : r1
k E T O
, r
Al I
1 c '_�.tr -ir i1 _ + I + � r�,�I\y, -. n• �� dt ..a'Jq 7l i� ��r `I r S <{I �� � <.�7'
' � .� ,r �1��'(j',`� 1. � '`F' nt •.' �, ,: Qt.��:1 �`O�"� ` '�� �� O ,:« ,?;F .a;�t�° ts�.. °`��n.ut'_ 1 ,-d � �w...
',� � `t� � '}.•� wv. s ,�F r• I t I } t� 1 r r Z ,a '#- }�..�7 7NN.� L,T- % K �"a4,-� }
iP i \1 �• ��'! � j t^ �� �'j rc,t.- +,•� � jr w ,rS - , f .�
-
t � w
tJl�lr(}$yr
N
i1! r
L
''• q r`w,'.` °'� 1 tFi t� '� y��i>��'t�e I) :r'�'k. r1 �" � I
� I ', "" ��°��,,.. ':. � v✓� l '3 �`t � � t. \ r t tl t�_),'vy� � � y� ;I JI r °.t
f° 1 � -� a n � o I �_.J ��-�-'-'S` �--•-±f '"'b4 r /��r F��' f_ d
✓'drce�'t+
I '•�- 0 '+_• � 1< � � a i -�xh :.'�.!(' )[ �\,�1: 1 (dti'*s..�\ � �.f,�-1'Cv ?° � td'7�-.c 8 4 � s \i ..
f I ' �• w '4 - 11 t;,��4�k"y�'.. .i ' } "r �) 1 � i;r,Y�{,r�� K �j I ,1�F t J 4 :: G ,'tl �!
rl .f. /. 'N l�I a j � ( 7 4� ,�.c d r l rjy 1{,;+,.�•,.t.:.YYtS I t,� '-°:'": ��E�l r ,. r� •
f v . J �� a '' E' Y ," � { �� 1�1 •t ;' a'r '� 5 jt k t q 7�1 �,f
� D•I I C ``../,`" !(. ;i \5�.1 �� �.�I..
ft
f � f r '�, �{a I r ;. `• � '�� r,�j,.!''Lafe.;t� -'J'1 ,rT�`�t tr' !. t�1y t, r et �' Q�''� r 1 7�
\� :•.j ' ,�`, .` N �' rs " � L r s i'! - •=1,�-'.-:IiF�`r t � `� j. '.!. , I: ° _
♦ 1,1' _._� �i-k °�, 9t- - %r �,.�\'•htu �-:�,,,,� �14--'•1—'. � �'4r _ I � . .. s r.�t
-, '?�. f. rte-- •�.tee. r t.t�`S;it �„3kl``G tx 1. �=z� -, " 1'. 1 I ern P 1J 't
' SITE
ekgorAiK'~ e:
Fn,�es�
,.14 �• 3 f `;\, r y f�P JCJ�i ' B ,N `jam t i �.� �> "��� .1` � � ' ,,.
T
T 1 3
1 7 i r r:.' 7i e4z i'
( tJ Y ..i � 1...' � ��f"�FI -�t :. Ir �/� it � r f(�.. tt t 'K-k ��: �' cy.�L �A4X9p D��9•�A7 �PA I�SJ���F
Xr.- a,. j!�lt,"�' , !o-p�� ( F r I \ro�f y' sr 7•r.J t -0 !F !1'�0� { .rr��r ' 1�.
s .� .'1� "`, _JY ���, •� x� �'�' �L rt•_ t, '`I 1 yoeq� !_ '+-`t� n��`�r I��('�t7U�.. �V2' %4.
r .o". �� 7, t j � l `k. [fir'• t tul ,1 !.� :!L t � t� r t
1•= '},,,s. E f�' �' 7 - _..�'i �° . t ,S.-y -*s 5.,"-.�'- r �u9 r -'e'r.` t I - .tj o j
f.
)
.a:�
} _... � t t `�`•.p �y r j1.'f �, _-:�r
t t � t"�,C.` -'.r�- - 1 1 �AtdT t_ 4 P`•1!'L i �r' i f I,, t a' �,I�_ll' i. :4 '..
l! � -"'t. r + r r - ° 1 ta�n4ty � � rO rl�i� r•y ��F �:� ,�� `+may - t _" ''�
•t �}, Ic.fr�- �`"" ��`ry�� ' "' t� 4nr��ti ���-tl•� .(!/� � ._. }! I�J} +}1 ti� � _ a �,
_
t >pv} 7 r�L'�
I -.-4� St'_'_`�•.. ,�. I'., a "`�:'.15i SyL 7F'�, $ F I r tit.0 ., f u a :�,- _ ' "' - .-s .- r7 �.,,J 4,:!�I!.
1
0.5 0 0,5 1 Miles See County Index Maps to
i locate adjacent quadrangles SOUTH GROVELANI
rA
MAP 98D LOT 18
N/F MORTON INTERNATIONAL, INC._
e. 100 NORTH RIVERSIDE PLAZA
�—GRASS --� CHICAGO, IL 60606-1598 "
BOOK 4864 PAGE 221
l N56'05'59"E 230.00' N� I
r^� !�o C�"r'.cs'.r.�X�._�:CS �� l _:rJ.�^CXXXX"�'X�IX.�`X7 cY, n• J
I o � z7777777 ,m�Y �y Y Y �
SITE
1p
G,Q,
' EDGE OF WETLAND AS AL aor• N 0
DELINEATED BY EPSILON ASSOCIATES LOCATION MAP
IN APRIL, 2001r� <)
�5 � ao% .,e``? 1 Z l � (ewr To SCALE)
S9. a' Y' 1
AL ,F T . �; ' 1�xti` ° NOTES:
bti i /Y �F s�Y 1) MON MUM INDUSTRIAL
SIZE-ZE:1 80.000 S Ft.
��'p ' / ti' / ti' MAP 1 071 �! �° MINIMUM LOT FRONTAGE: 150 ft. 9
x; „',°''
(D, ;yn SETBACKS
p x�° �, a y LOT 76 Front 50 ft.
ay `� Side 50 ft.
120,718 S Ft.
q' I e" Rear 50 ft.
s. \y q• yl'/ Ta' _ Jy1. / 2,771 AC.f / XL' 6 REFER TO THE TOWN OF NORTH ANDOVER ZONING ORDINANCE FOR
MAP 107C LOT 74 VERIFICATION, ADDITIONAL RESTRICTIONS AND PERMITTED USES
yh° ' ' / a / •, i ~ n° N/F WJG NOMINEE TRUST 2)LOCATION OF UNDERGROUND UTILITIES IS APPROXIMATE ONLY.
i
321 IPSWICH ROAD ADDITIONAL UNDERGROUND UTILITIES OTHER THAN THOSE SHOWN
d ^ ' x yam` �l�✓ 6 - 4 x xna4 R ^ BOXFORD, MA 01920 MAY BE ENCOUNTERED.
:-O-N =�— J`^�
,y „ R BOOK 4513 PAGE 99 3) ELEVATIONS SHOWN HEREON ARE BASED ON NGVD DATUM.
F y'� % \ / ,��• " 3 ,ye ae`'' x�aXtia' �l 0 50'± HIGH.
SHOWN ARE AT THE TOE OF CURB, CURBS ARE
PLAN RFEFERENCES:
I �u I / , - 1)NORTH ESSEX REGISTRY OF DEEDS PLAN $8352.
ONE STORY ` �. y` a J c0r:c —1100D PLATFORIA
0 $1t' 2)NORTH ESSEX REGISTRY OF DEEDS PLAN,y9650.
C01',ICRETE 0 e°tiE
BLOCK i >o "
BUILDING l t ry
� }B i 1 0, \ x
1
xti> 4 6' xry �\�r r — LEGEND
�,. vp ny� - e y 00 cn, UTILITY POLE
ti ?R r I 1" 5 " 4- TUMINOUS \ ry
ry�o9 ? e a' ,1h' tip- // CONCRETE \\ z'
.�,y' � x ❑ CATCH BASIN
r`�j ' AI �l .�.�'y y I ° \/ xyc, f f \' �> e ® SEWER MANHOLE
FIRE HYDRANT
9 2., tdV.=246.413 y'
WATER VALVE
GAS VALVE
GAS LINE
yF 'Lyy6�. �\h \�1ry`IFJ'.� 6' -W
/ r / WATER LINE
xrya��
/ Y a }i, .° I h^':.� }ti. A/ a'�•' \I 1e^�. , �y r. ` , N_
CHAINUNK
FENCE
DITCH Cr!
t W STONEWALL
ONE STORY
in COP',ICRETE BLOCK / OF SPACES ON
R.O.W.
o M
SPOT ELEVATION
1 S
, ' x , 23,800 SFf y"y
CONIFEROUS TREE
FF-Z4E.08
y n, EDGE OF WETLAND AS C
/ °I I a zti4 ail I �k1 BY EPSILON ASSOC. IN
PREDEVELOPMENT DRAINAGE
MAP fO7C LOT 76
m + LOh
ARE 2°E!,e`. a I. ja tt
�1 N, yy �° 65 FLAGSHIP DRIVE
x V OWNER OF RECORD NORTH ANDOVER. MASSACHUSETTS 01845
GLOBAL REALTY TRUST PREPARED FOR:DRIVE/ a, ° ¢ry x=^� y' �'� x NORTH FLAGS R )!A 01846 RANGER DEVELOPMENT
BOOK 2400 PACE 164 65 FLAGSHIP DRIVE
NORTH ANDOVER, MASSACHUSETTS 01845
pp�
J 103 Stops Road, One
Solpm,Naw Hamphlr0 phlro 03030
79
(603)893-0720
GRAPHIC SCALE — _ = ENGINEERS-PLANNERS•SURVEYORS
MHF Design Consultants. Inc.
SCALE: 1'=40' DATE: JANUARY 29, 2001 IO �P,lYN2
N0. DESCRIPTION BY DATE DRAWN BY: CHECKED 8Y: PROJECT N0. I SHEET NO.
(
IN Fjwr REVISIONS DMC MSG 109900 2
1 Inch- 40 ft
G�Rrw Pow RM
-- GPP.SS — G�
' �\. C ,u 0
°
/ f 7. 41 6244
C3 SITE)
o n,
1 �(ck
LOCATION MAP
(NOT TO SCALE)
LA
CiO O ,
-72 FOl? ' N
1jA7
N } GRAPHIC SCALE
U, Q
IN FM
I Inch 30 ft.
M o \ .�. /" — �,� t N N
M LEGEND
V '-g S • (ill
N
m' \\\\ / \ / n O O —•— GAS LINE
Dx \ 11y, ..`\ W `m unLrry POLE —e— WATER LINE
° O J O CATCH BASIN .o--o—o- CFWNUNK FENCE
U)u-'T � / O • —0I✓00- STONEWALL
`L 11 T c. B SEWER MANHOLE
mvz I �\ �� 0, IT C0ti O Q � �•�� 'l� OD _pr ® I OF SPACES ON R.O.W.
`1 f G FIRE HYDRANT
M �`/` \ EDGE w \ 4r wATER VALVE SPOT QEVATION
Z = I r II�`2 ) pO GAS VALVE CONIFEROUS TREE
N G ` /
Mtn O D I \' �' M 1 .=244.6_
Oz m
c)
vo
m j 2 Q r� -
\, WOOD PLATFORM
\ s `cO"-P' '- N �(n C7 —1 -u ( �) EDGc
00 0
�! ♦ \ N 'TI z ��
00 m D c) / Zee r
II c) D
s (n Q I /
/ i /
l B \\\ .,�I,IV 244.48,aa`w-
NO.1 DESCRIPTION I BY DATE
REVISIONS
POSTDEVELOPMENT DRAINAGE
AIAP 107C LOT 76
m X �_ B ^ , I `\ F3 \ 65 FLAGSHIP DRIVE
sl
MM ) I, \ Ct NORTH ANDOVER, MASSACHUSETTS 01845
3 PREPARED FOR:
/ �\ \ DITCH RANGER DEVELOPMENT
65 FLAGSHIP DRIVE
tl;,.. , ; / I NORTH ANDOVER, MASSACHUSETTS 01845
G-' r i s B / w 3 MT m�--1 of 103 Stiles Road,S.R.Ona
-4 �` m a) 'D 7{,� — Salem,New Hompshim 03079
M .i..7 W (603)893-0720
/ // / Z_t x Z ENGINEERS•PLANNERS•SURVEYORS
�{ -' , / n\D n MHF Design Consultants, Inc.
DRO.
I - - SCALE: 1'=30' DATE:JULY 16,2001 N
�099SP.AWING DWO
DRAWN 8Y: CHECKED BY: PROJECT NO. SHEET NO.
DMC MSG 109900