Loading...
HomeMy WebLinkAboutStormwater Report - 65 FLAGSHIP DRIVE 7/18/2001 r� DRAINAGE CALCMATIONS & STORMWA TER MANAGEMENT 65 Flagship Drive North r, Massachusetts r PREPARED FOR: I , RANGER DEVELOPMENT 65 Flagship Drive North Andover, MA 01845 July 18, 2001 MHF l 1 . Design n It nt , Inc. ENGINEERS ° PLANNERS ° SURVEYORS 103 Stiles Road ® Suite One ® Salem, NH 03079 TEL (603) 893-0720 FAX (603) 893-0733 FRANK - N4BF Project# 109901 � � '�° V . N 3634 TABLE OF CONTENTS: I Report Cover II Table of Contents III Project Description: Existing Conditions Proposed Work Environmental Impacts Operation&Maintenance Plan IV Drainage System Design V Drainage Summary VI Stormwater Management Form VII Drainage Calculations -Hydrocad Printouts (2, 10 & 100-year Storm Events+ 25-year Rational) VIII Maps: Locus Map F.I.R.M. USGS Map SCS Soils Map Pre&Post-development Drainage Maps PROJECT DESCRIPTION EXISTING CONDITIONS Location: The property consists of 2.8 acres located on the northerly side of Flagship Drive, in North Andover. Topography: The topography of the site consists of a relatively flat area sloping at approx. 2% toward a small wetland area at the rear of the property. This office surveyed the topography by an instrument survey. See attached plan for details. Vegetation: The vegetation consists of mixed deciduous and evergreen trees covering the perimeter and rear of the site. Most of the site is developed and either cleared or paved or covered by building or parking. There is a building on site. Flood Plain and Wetlands: No portion of the site is within the 100 or 500 year floodplains according to the Flood Insurance Rate Map. The site has been inspected for wetlands and the wetland areas flagged and survey located by this office. According to the Natural Heritage Atlas,no rare species or habitat areas are known to be onsite. Drainage/Soils: The drainage pattern on site consists of flow in one direction: from Flagship Drive toward the rear of the site. The only existing drainage facilities on site consist of a small detention area which receives flows from the parking area directly as sheet flow. All other flows make their way uncontrolled toward the wetland at the rear of the property, which has no known outlet. The soils on site are Charlton, a well- draining sandy soil. These soils are very suitable for building/road construction and drainage recharge. PROPOSED WORK Generally, the project proposes the expansion of an existing office building, drainage facilities and necessary grading. The office would be accessed by way of the existing driveway entrance from Flagship Drive. Topography/Grading: The proposed topography of the site would remain as close to existing grades as possible. The proposed building would be set at the same elevation as the existing building. And the parking area would blend to the existing grade at the aisle to the west of the building. The proposed underground detention basin would be positioned under the parking area. See attached plan for details. Drainage: The proposed drainage system would be a closed system,which would provide stormwater treatment for both quality and quantity of runoff. Specifically, catch basins would collect and pipe runoff to an underground detention basin, from which the discharge would be routed through a"Downstream Defender" unit for TSS removal/water quality treatment. Runoff from the proposed roof,however, would be recharged by underground leaching trenches. In the event of storms creating more runoff than the recharge system can handle, an overflow pipe would route water to the detention system and the "Downstream Defender" unit. Thus, no stormwater from the proposed development would leave the site without treatment. As shown in the attached calculations, the drainage design would prevent any runoff from damaging the wetland area. See the attached Drainage Calculations and maps for further details. Environmental Impacts: As shown in the drainage summary included herein, drainage and runoff characteristics would be controlled in conformance with D.E.P.'s Stormwater Management Handbook and local regulations, preventing possible damage to abutting property or natural features in the area. The drainage systems were designed for severe storms (up to 100-year). According to SCS, the soil onsite consists of Charlton, which is a well-drained soil, quite suitable for construction purposes. On site test holes were also performed to confirm soil type, depth and suitability in the recharge area. And based on these tests,the soils are adequate for the drainage design. In order to safeguard against oil or gas introduction into the drainage system, stormwater runoff from the parking area would be collected into catch basins with oil hoods and deep sumps(see Site Plan Details). Such pretreatment of stormwater reduces both suspended solids and oils in the drainage system and is recommended by DEP's Stormwater Management Handbook. Another safeguard against future intrusion of contaminants into the groundwater is the implementation of an Operation &Maintenance Plan, which provides further TSS removal and assures proper function of all drainage components. Further safeguards are proposed on the Site Plan to prevent erosion include a line of silt fencing. If all the proposed erosion control devises and procedures are adhered to,then there should be minimal or no damage to neighboring properties from work on this site. Operation/maintenance plan The BMPs associated with this project will be owned by Ranger Development. Any accumulated sediment should be removed from catch basins, dry wells and all drainage pipe inlets and outlets as soon as possible after heavy precipitation and every spring. Construction Phase 1) The contractor is to install and maintain drainage facilities as shown on plan(000, by MHF Design Consultants, Inc., dated July, 2001). 2) All construction of drainage facilities is to be inspected by inspectors from the Town of N. Andover and MHF Design Consultants, Inc. to verify conformance to the design plan. Post-Development Phase The owner/occupant is to be responsible for maintenance of all drainage structures in the project - including roof drains, dry wells, drain pipes, and detention basin. The future owner is expected to be Ranger Development, who will ultimately be responsible for compliance with this O &M Plan. Regular maintenance is to include the following: • Sweeping of parking area after every severe storm. • Inspection of all drainage pipe inlets/outlets and Retention Basin every three months. ® Inspection and cleaning of all Catch Basins and Dry Wells every three months or after all severe storms. DRAINAGE SYSTEM DESIGN: The drainage system was designed utilizing closed systems to achieve reduced rates of runoff at the boundaries of the developed area and would maintain a similar drainage pattern to the existing courses. The methodology is SCS TR-20, Type III rainfalls (2, 10 & 100 year events). This is consistent with the requirements of the town of N. Andover and DEP's Stormwater Management guidelines. All pertinent calculations represented in the following pages were developed utilizing Hydrocad Stormwater Modeling software. References: 1. SCS- TR55(Second Ed., 1986) - for runoff curve numbers. 2. SCS - Rainfall Distribution Maps. The on-site soils consist of Charlton series, described by SCS as follows: Charlton Series (SCS Classification `B") consists of gently sloping to steep, deep (5+ feet), well drained soils on uplands where the relief is affected by the underlying bedrock. They formed in glacial till ground moraine. Charlton soils are 60 inches or more of friable fine sandy loam surface soil, subsoil and substratum with moderate or moderately rapid permeability. Charlton soils have a very stony or extremely stony surface, except where stones have been removed, and have stones below the surface. Major limitations are related to slope and stoniness. Because some of the proposed work would be within 100'buffer zonesn to wetlands,the project is subject to DEP's Stormwater Management Policy. Therefore, the drainage system is required to provide 80%TSS removal and groundwater recharge. We are accommodating Stormwater Management Policy standards with the design presented, as follows (also see Stormwater Management Form included herein): Stormwater Quality Controls: 1. Catch Basins with Oil Hoods and Deep Sumps to capture, treat and redirect stormwater toward the proposed retention/recharge basin. TSS Removal Rate=25% — 2. Downstream Defender-which would further treat stormwater for TSS removal and flow rate to the eastern boundary. TSS Removal Rate=90%+/-. Groundwater Recharge Provided: 1. Infiltration Trenches -to provide direct recharge of all rooftop stormwater. Stormwater Quantity Controls: The Detention Basin was designed such that it would provide controlled discharge through the outlet structure for the 2, 10 &100-year events at controlled, lower than predevelopment rates. The overall system thereby achieves the following: • Control of runoff rates to abutting properties to below predevelopment rates. • Water quality maintenance—TSS removal from stormwater of more than 80%. • Groundwater Recharge—through infiltration trenches. • Storm damage—by reduced runoff rates. DRAINAGE SUMMARY (All values shown are peak rates in CFS) •::. 4.-..ct :::.:::::is �: :.. " � a hasto�-in i ? ,c �e � pztxna PostcleveXopment Rate .Y.:•is Jyw::nt-.v':.:},?}\v.r,-�.'r:....:J:::::::..: .-:-.�::Vt.. :v ':>-: t >iy:t : t..vv:. t.......... S_:.:...r.:::v.}> '', .r..;:;,-•.6 ..hti'� r��:v ..:?.. :i:Z{Zv:i i"!..:�:fiv ;:•}}'ti:ti:-:_??J}i'ti'4:"::t•:•::.:..:....:.::?:...........:::?J .;;::.:}'-J}:-ti.11:<.,•.y}:{:.±;:.},v:%ii:i{v4::vS:%:z{iZ:?_::=i}:-:::.:::.:i:.:.::i:_::::}:-J:}v:. ..:::Z::• ;:{Q>::�.: il.. ..Yry .n4 4 is%Syi } :%i:n}•.vi`%'•�v:».ii%1.v:..:.:.<;:i},s:?v:i{{: 'f vt•�.� }�-:itii:r=nv`- "� r. ea tits:,>:%:•a.:J:. :.. ...:........:!t:,,:.:. } ar ] nxn 'An s s Storm ' ei ev-e.%e t# �r 'astc evefopment Mate >.? 0 03 .}y::nv;:w:- hv:., Z:. ..vv4%::{{?:•?.:t1:'vv:!.,.Jy*'9?�?:.Y,J::. :. :.,:-......v::::,,-:. .:v:. =�'v::�:..n-:n:ry r sir•,-: Q 25 FORM 11 ° SOIL EVALUATOR FORM ffv41wPai-or : A.5.K . �5 �► !�);� fir, , N� ��, LiJCation Address or Lot No. AM- o r- - — On-site Review Deep Hole Number Date: J �` l Time: I i ego Weather ,>-onn� 1 35m .. � Location (identify on site plans a/ Land Use l�J i,n w•,,.° Slope m -' Surface Stones l Vegetation Landform .:....... v.... .. Position on landscape (sketch on the back) Distances from: 1 0 feet Open Water Body • lob fast Drainage way Possible Wet Area 100 feet Property Lined test Drinking Water Well tJ//A feet Other DEED' OBSERVATION HOLE LOG' Ddpti,from Soil Horizon Sail Texture Soil Color Soil Other. surface pncltea! (USDA) lMunsell) Mottling ' (Structure, Stones,GB,uwllrs,Consistency, % I__tDC7Y Loc s2 YR so nd 10 \YR Loom U Sand 1 c� �( . Bbl � 6(ranvlar Water In ft Hoia: W q from Pit Faae: ' =.rri►��dM�t x Eed{nnted 500NW Hirt{ ci aind Watac: >oa srMVZD FOXM-UM7M a FORM 11 - SOIII. EVALUATOR FORM Location Address or Lot No. Can-site Review Deep Hole Number Date: �' (` '°��� Time: 1 °OCR Weather ���'� ) Location (identify on site plan) Land Use —Tg nvq •, Slope (%) Z- Surface Stones I 1" Vegetation Landform ... .,. w Position on landscape (sketch on the back) Distances from: Open Water Body feet Drainage way 100 feet Possible Wet Area 100 feet Property Line feet Drinking Water Well �JfA feet Other DEEP OBSERVATION HOLE LOG' Depth from Soil Horizon Soil Texture Soil Color Soil Other Surface (Inches) (USDA) (Munsell) Mottling (Structure, Stones,GBouwers, Consistency, % Z/l 10— ZOL, r�ei ��� -�r'tnc1r YVI 4IC, S Yi Gtrctve-1 VERY rMUPQSE0-=PQb^LJljMA Par.ee Meo.W to.o+opic3 T; III A owthlar Stancifi q Water in the NOW: 4 8 ti weeping from PK Face: J tier AFMOVm r04M-MWIM Grate Capacity Check: (100-year Storm) Grate# (Model) Grate Open Space Capacity ((&, sump) Design F1ow CB#1 (R-3570) 2.4 s.f. 8.0 cfs 0.32 CFS ok CB#2 (R-3570) 2.4 s.f. 8.0 cfs 0.43 CFS A CB#3 (R-3570) 2.4 s,f. 8.0 cfs 0.70 CFS ok CB#4 (R-3570) 2.4 s.f. 8.0 cfs 0.62 CFS ok Pipe Capacity Check: (100-Year Storm) Pipe Location Size Type Slone Ca aci Design Flow(Okn. CB-1 TO DMH-1 12" HDPE 0.005 2.94 CFS 0.32 CFS M DMH-1 TO CB-2 12" HDPE 0.005 2.94 CFS 0.32 CFS (�) CB-2 TO DET. 12" HDPE 0.005 2.94 CFS 0.74 CFS (�) CB-3 TO DET, 12" HDPE 0.010 3.80 CFS 0.70 CFS (�) CB-4 TO DET. 12" HDPE 0.010 3.80 CFS 0.62 CFS 0) Infiltration Trench Capacity: Note: For all trench capacity calculations we used a percolation rate of 2 minutes per inch, a void ratio of 0.4 for the stone, and that infiltration would only occur at the bottom. Roof Drain Trenches Size (stone): 63'long x 13'wide x 1.5'deep = 1229 c.f. Pipes: 3 pipes x 60'long x 12" diameter= 141 cf = 141 cf Stone Storage Capacity: 1229 c.f. - 141 c.f. (pipe) = 1088 c.f. x 0.4 void ratio =435 c.f. Total Trench Storage Capacity: 435 c.f + 141 c.f =576 c.f. Storage below pipe (from 0 - 0.5)= 0.5'x 63'x 13' x 0.4 = 163 c.f. Recharge Rate: 63'long x 13'wide x V/120 seconds= 0.57 cfs 10— 9 Discharge vs Depth 0 n G rate 190 5 80 70 10 60 9 8 4 50 7 w 40 6 Z 5 � au'. 3 30 w d 0 uj w ►'' 20 d u+ Discharge for Grate w 1' Model R-3570 w ••+�� iQ (2.4 sf.Open) 0 0 rd!0.5'sump=8 cfs U. p a i uj 0• ,9 Lu rDischarge for Grate }~ .6 3t Model R-3570 4 1 (2.4 sf. Open) 5 r 0.3' sump=6.2 cfs 3 Q 9 _��__ _ �_�___� v d en .8 2 4 3 .7 6 1 .5 0 1991 Nrwrwh Foundry Company Grate Capacity (@ Sump) O W w z z 1- O �N N �p O W iL 0 12 p ° z d 11 211 O 0.10 50 5,000 a�- 40 4x000 12/ 30 3,000 / IB � 15 . O.05 20 21000 0.90 21 On4 0.70 18--24 0.03 SO 10 1,000 /040 21 27 a w v 30 Ong w a 0.30 24 � a 33 5.0 500 27--36 4.0 400 ` / ro 020 _ Oni 30 ¢ W 33 42 CL 30 W y 2.0 200 of a 36 48 � r c 0.10 042--54 U.w 5 W 48 wo FULL 60 0.90 FLnFLOW o Q004 = In f00 0.70 m O003 H ai 0.60 54 72 0.50 60-78 0.002 a Q5 50 ° O 0.40 66--84 0.40 40 9 C0.130 72 906 0.30 30 ° 78 102 108 0.001 0.20 20 X 0.20 90 12 96 102 !08 QIO 10 114 O=5 O.IO 120 PIPE CAPACITY: Flow capacities of corrugated polyethylene pipe (CPEP) Massachusetts Department of Environmental Protection Bureau of Resource Protection -Wetlands PA Appendix Stormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 A. Property Information Important: When filling out 1 The proposed project is: forms on the computer, use only the tab New development ® Yes key to move your cursor- ❑ No do not use the return key. Redevelopment ❑ Yes raa ® No Combination ❑ Yes (If yes, distinguish redevelopment components from new development components on plans). Note: ❑ No This November 2000 version of 2 Stormwater runoff to be treated for water quality are based on which of the following calculations: the Stormwater Management Form supersedes ❑ 1 inch of runoff x total impervious area of post-development site for discharge to critical areas earlier versions (Outstanding Resource Waters, recharge areas of public water supplies, shellfish growing areas, including those swimming beaches, cold water fisheries). contained in DEP's ® 0.5 inches of runoff x total impervious area of post-development site for other resource areas. Stormwater Handbooks. 3. List all plans and documents (e.g. calculations and additional narratives) submitted with this form: Site Development Plan by MHF Design Consultants, Inc., dated July, 2001 Drainage Calculations by MHF Design Consultants, Inc., dated July, 2001 B. Stormwater Management Standards DEP's Stormwater Management Policy (March 1997)includes nine standards that are listed on the following pages. Check the appropriate boxes for each standard and provide documentation and additional information when applicable. Standard#1: Untreated stormwater ® The project is designed so that new stormwater point discharges do not discharge untreated stormwater into, or cause erosion to, wetlands and waters. Page 1 of 1 Wpaformldoc•Appendix D•rev.7118/01 Massachusetts Department of Environmental Protection Bureau of Resource Protection -Wetlands WPA Appendix tormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 B. Stormwater Management Standards (cont.) Standard#2: Post-development peak discharges rates ❑ Not applicable—project site contains waters subject to tidal action. Post-development peak discharge does not exceed pre-development rates on the site at the point of discharge or downgradient property boundary for the 2-yr, 10-yr, and 100-yr, 24-hr storm. ❑ without stormwater controls ® with stormwater controls designed for the 2-yr, and 10-yr storm, 24-hr storm. ® the project as designed will not increase off-site flooding impacts from the 100-yr, 24-hr storm. Standard#3: Recharge to groundwater Amount of impervious area(sq. ft.)to be infiltrated: 9140 Volume to be recharged is based on: ❑ The following Natural Resources Conservation Service hydrologic soils groups(e.g. A, B, C, D, or LIA) or any combination of groups: (%of impervious area) (Hydrologic soil group) (%of impervious area) (Hydrologic soil group) (%of impervious area) (Hydrologic soil group) (%of impervious area) (Hydrologic soil group) ® Site specific pre-development conditions: 0.4 cfs .03 of Recharge rate Volume Describe how there calculations were determined: Predevelopment vs Postdevelopment drainage flows were compared for the building area. List each BMP or nonstructural measure used to meet Standard#3. (e.g. dry well, infiltration trench). Infiltration Trenches Does the annual groundwater recharge for the post-development site approximates the annual recharge from existing site conditions? ® Yes Page 2 of 1 Wpafonn3.doc•Appendix D•rev.7118101 Massachusetts Department of Environmental Protection Bureau of Resource Protection -Wetlands W A Appendix C ® Stormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 B. Stormwater Management Standards (cont.) Standard#4: 80%TSS Removal ® The proposed stormwater management system will remove 80%of the post-development site's average annual Total Suspended Solids(TSS) load. Identify the BMP's proposed for the project and describe how the 80%TSS removal will be achieved. "Downstream Defender" sediment removal unit (TSS removal = 80%+) If the project is redevelopment, explain how much TSS will be removed and briefly explain why 80% removal cannot be achieved. Standard#5: Higher potential pollutant loads See Stormwater Does the project site contain land uses with higher potential pollutant loads Policy Handbook dol.I,page 1-23, (� Yes If yes, describe land uses: 'or land uses of high pollutant loading ® No Identify the BMPs selected to treat stormwater runoff. If infiltration measures are proposed, describe the pretreatment. (Note: If the area of higher potential pollutant loading is upgradient of a critical area, infiltration is not allowed. Standard#6: Protection of critical areas See Stormwater Will the project discharge to or affect a critical area? Policy Handbook Vol.I,page 1-25, Yes If yes, describe areas: for critical areas. ® No Massachusetts Department of Environmental Protection IBureau of Resource Protection -Wetlands W A Appendix C -Stormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 B. Stormwater Management Standards (cont.) Identify the BMPs selected for stormwater discharges in these areas and describe how BMPs meet restrictions listed on pages 1-27 and 1-28 of the Stormwater Policy Handbook—Vol. I: Note: Standard#7: Redevelopment projects components of redevelopment projects which Is the proposed activity a redevelopment project? plan to develop previously Yes If yes, the following stormwater management standards have been met: undeveloped areas do not fall under the scope of Standard 7. ® No The following stormwater standards have not been met for the following reasons: ® The proposed project will reduce the annual pollutant load on the site with new or improved stormwater control. Standard#8: Erosion/sediment control ® Erosion and sediment controls are incorporated into the project design to prevent erosion, control sediments, and stabilize exposed soils during construction or land disturbance. Standard#9: Operation/maintenance plan ® An operation and maintenance plan for the post-development stormwater controls have been developed. The plan includes ownership of the stormwater BMPs, parties responsible for operation and maintenance, schedule for inspection and maintenance, routine and long-term maintenance responsibilities, and provision for appropriate access and maintenance easements extending from a public right-of-way to the stormwater controls. Drainage Report-O& M Plan Date Date Planfritle Date Planrritle Stormwater Management. Water Quality Calculations Note: All calculations are based on the area of proposed construction activities. Additional improvements to the existing site development are indicated on the Site Plan. Standard # 3: Groundwater Recharge Proposed recharge system: Infiltration Trenches. Total Impervious Area: 36,050 s.f. Impervious Area to be recharged: 9,140 s.f. Stormwater volume required to be treated= 0.5" x 36,050 s.f. = 1,502 c.f. Storage Volume in Trenches= 141 c.f (pipe) +435 c.f. (stone) = 576 c.f. Time to recharge 1,502 cf= 576 cf/0.57cfs= 1011 sec. (17 min.) Standard # 4: TSS Removal Explanation of systems: The two proposed stormwater management systems consists of four parts: 1) Street Sweeping—to remove sediment prior to entering the drainage system. 2) Catch Basins w/Deep Sumps & Oil Hoods -to capture &treat runoff from the parking area. 3) Infiltration Trenches -to treat &recharge to groundwater 4) Downstream Defender-to treat stormwater The order of treatment for the systems are: 1) Parking area to Catch Basins to Downstream Defender. 2) Roof Drains to Infiltration Trenches. Drainage Area BMP TSS Removal Rate Parking Sweeping 10% Parking Catch Basin 25% Roof Infiltration Trench 80% Roof/Parking Downstream Defender 90%+/- Calculations: TSS Removal System 1: Parking Areas Average Annual Load: 1.00 x Street Sweeping removal rate (0.10) =0.10 Load Remaining = 1.00 - 0.10 = 0.90 Remaining Load: 0.90 x Catch Basin removal rate (0.25) =0.23 Load Remaining = 0.90—0.23 = 0.67 Remaining Load: 0.67 x Downstream Defender removal rate (0.80+)=0.54 Load Remaining = 0.67—0.54 = 0.13 TSS Removal Rate=87%+ System 2: Roof Drains Average Annual Load: 1.00 x x Infiltration Trench removal rate (0.80) =0.80 Load Remaining = 1.00—0.80 = 0.20 TSS Removal Rate= 80% PRE-DEVELOPMENT: 2, 10, 100-Year Storms Data for 1099-RANGER-N.ANDOVER: 2-YEAR PREDEVELOPMENT Page 1 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING 1 � 0 SUBCATCHMENT R REACH Q POND LINK SUBCATCHMENT 1 = FLOWS TO WETLAND -> SUBCATCHMENT 2 = FLOWS TO BOUNDARY - NORTH -> Data for 1099-RANGER-N.ANDOVER: 2-YEAR PREDEVELOPMENT Page 2 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO WETLAND PEAK= .84 CFS @ 12.00 HRS, VOLUME= .05 AF SO-FT CN SCS TR-20 METHOD 6600.00 66 WOODS,B,POOR TYPE III 24-HOUR 11100.00 98 PAVEMENT RAINFALL= 3.10 IN 4400.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS 22100.00 81 Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1.2 Paved Kv=20.3282 L=200' s=.02 '/' V=2.87 fps Total Length= 225 ft Total Tc= 1.7 SUBCATCHMENT 2 FLOWS TO BOUNDARY - NORTH PEAK= .23 CFS @ 12.12 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 17300 .00 66 WOODS,B,POOR TYPE III 24-HOUR 400 .00 98 PAVEMENT RAINFALL= 3.10 IN 2700.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=. 1 HRS 20400.00 66 Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 3.3 Grass: Short n=.15 L=25' P2=3.1 in s=.02 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 5.2 Woodland Kv=5 L=220' s=.02 '/' V=31 fps Total Length= 245 ft Total Tc= 8.5 Data for 1099-RANGER-N.ANDOVER: 10-YEAR PREDEVELOPMENT Page 1 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING 1 � OSUBCATCHMENT F-] REACH Q POND LINK SUBCATCHMENT 1 = FLOWS TO WETLAND -> SUBCATCHMENT 2 = FLOWS TO BOUNDARY - NORTH -> Data for 1099-RANGER-N.ANDOVER: 10-YEAR PREDEVELOPMENT Page 2 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants , Inc. 17 Jul 01 HvdroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO WETLAND PEAK= 1.54 CFS @ 11.99 HRS, VOLUME= .10 AF SO-FT CN SCS TR-20 METHOD 6600.00 66 WOODS,B,POOR TYPE III 24-HOUR 11100.00 98 PAVEMENT RAINFALL= 4.50 IN 4400.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS 22100.00 81 Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1.2 Paved Kv=20.3282 L=200' s=.02 '/' V=2.87 fps Total Length= 225 ft Total Tc= 1.7 SUBCATCHMENT 2 FLOWS TO BOUNDARY - NORTH PEAK= .62 CFS @ 12.10 HRS, VOLUME= .05 AF SO-FT CN SCS TR-20 METHOD 17300.00 66 WOODS,B,POOR TYPE III 24-HOUR 400.00 98 PAVEMENT RAINFALL= 4.50 IN 2700.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS 20400.00 66 Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 3.3 Grass: Short n=.15 L=25' P2=3.1 in s=.02 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 5.2 Woodland Kv=5 L=220' s=.02 '/' V=.71 fps Total Length= 245 ft Total Tc= 8.5 Data for 1099-RANGER-N.ANDOVER: 100-YEAR PREDEVELOPMENT Page 1 TYPE III 24-HOUR RAINFALL= 6.40 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING 1 � 0 SUBCATCHMENT F� REACH A POND LINK SUBCATCHMENT 1 = FLOWS TO WETLAND -> SUBCATCHMENT 2 = FLOWS TO BOUNDARY - NORTH -> Data for 1099-RANGER-N.ANDOVER: 100-YEAR PREDEVELOPMENT Page 2 TYPE III 24-HOUR RAINFALL= 6.40 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO WETLAND PEAK= 2.54 CFS @ 11.99 HRS, VOLUME= .16 AF SO-FT CN SCS TR-20 METHOD 6600.00 66 WOODS,B,POOR TYPE III 24-HOUR 11100.00 98 PAVEMENT RAINFALL= 6.40 IN 4400.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=.1 HRS 22100.00 81 Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 1.2 Paved Kv=20.3282 L=200' s=.02 '/' V=2.87 fps Total Length= 225 ft Total Tc= 1.7 SUBCATCHMENT 2 FLOWS TO BOUNDARY - NORTH PEAK= 1.28 CFS @ 12.09 HRS, VOLUME= .10 AF SO-FT CN SCS TR-20 METHOD 17300.00 66 WOODS,B,POOR TYPE III 24-HOUR 400.00 98 PAVEMENT RAINFALL= 6.40 IN 2700.00 61 LAWN,B,GOOD SPAN= 10-20 HRS, dt=. 1 HRS 20400.00 66 Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 3.3 Grass: Short n=.15 L=25' P2=3.1 in s=.02 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 5.2 Woodland Kv=5 L=220' s=.02 '/' V=31 fps Total Length= 245 ft Total Tc= 8.5 POST-DEVELOPMENT: 2-Year Storm Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 1 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 18 Jul Ol HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING (J Q (D (D (D Q (D I I I 1 0 5❑ 6❑ -> 1—31 /2A A, OSUBCATCHMENT [-] REACH POND LINK SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1 SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3 SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4 SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5 SUBCATCHMENT 5 = ROOF -> REACH 6 SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7 SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH -> REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2 REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3 -- REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1 REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1 REACH 5 = 12"HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1 REACH 6 = 8"PVC ROOF DRAIN -> POND 2 REACH 7 = SUMMATION AT WETLAND -> POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 2 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1 Data for 1099-RANGER-N_ANDOVER: 2-YEAR POSTDEVELOPMENT Page 3 TYPE III 24-HOUR RAINFALL= 3.10 IN 17 Jul 01 Prepared by MHF Design Consultants, Inc. HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO CB-1 PEAK= .16 CFS @ 11.97 HRS, VOLUME= .01 AF SO-FT CN SCS TR-20 METHOD 2500.00 98 PAVEMENT TYPE III 24-HOUR RAINFALL= 3.10 IN SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=20' s=.01 '/' V=2.03 fps Total Length= 45 ft Total Tc= .7 SUBCATCHMENT 2 FLOWS TO CB-2 PEAK= .22 CFS @ 11.97 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 3360.00 98 PAVEMENT TYPE III 24-HOUR RAINFALL= 3.10 IN SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr. (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 3 FLOWS TO CB-3 PEAK= .33 CFS @ 11.97 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 4800.00 98 PAVEMENT TYPE III 24-HOUR 1000.00 61 LAWN,B,GOOD RAINFALL= 3.10 IN 5800.00 92 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 ' /' 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 4 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 4 FLOWS TO CB-4 PEAK= .31 CFS @ 11.97 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 4650.00 98 PAVEMENT TYPE III 24-HOUR 250.00 61 LAWN,B,GOOD RAINFALL= 3.10 IN 4900.00 96 SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: •2 Paved Kv=20.3282 L=40' s=.03 ' /' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 5 ROOF PEAK= .62 CFS @ 11.98 HRS, VOLUME= .04 AF SO-FT CN SCS TR-20 METHOD 9140.00 98 ROOF TYPE III 24-HOUR RAINFALL= 3.10 IN SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 1.2 Smooth surfaces n=.011 L=50' P2=3.1 in s=.005 SUBCATCHMENT 6 FLOWS TO WETLAND PEAK= .38 CFS @ 11.99 HRS, VOLUME= .03 AF SO-FT CN SCS TR-20 METHOD 6850.00 66 WOODS,B,POOR TYPE III 24-HOUR 4750.00 98 PAVEMENT RAINFALL= 3.10 IN 11600.00 79 SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 3 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=60' s=.03 '/' V=3.52 fps Total Length= 85 ft Total Tc= .6 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 5 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH PEAK= .03 CFS @ 12.08 HRS, VOLUME= 0.00 AF SO-FT CN SCS TR-20 METHOD 3300.00 61 LAWN,B,GOOD TYPE III 24-HOUR 1400.00 66 WOODS,B,POOR RAINFALL= 3.10 IN 4700.00 62 SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=.15 L=25' P2=3.1 in s=.l SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 2.4 Woodland Kv=5 L=100' s=.02 '/' V=31 fps Total Length= 125 ft Total Tc= 4.1 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 6 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 1 12"HDPE CB-1 TO DMH-1 Qin = .16 CFS @ 11.97 HRS, VOLUME= .01 AF Qout= .16 CFS @ 11.98 HRS, VOLUME= .01 AF, ATTEN= 1%, LAG= .4 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .16 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.0 FPS .20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .3 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 2 12"HDPE DMH-1 TO CB-2 Qin = .16 CFS @ 11.98 HRS, VOLUME= .01 AF Qout= .16 CFS @ 11.99 HRS, VOLUME= .01 AF, ATTEN= 3%, LAG= .7 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .16 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.0 FPS .20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .6 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION Qin = .38 CFS @ 11.98 HRS, VOLUME= .03 AF Qout= .37 CFS @ 11.99 HRS, VOLUME= .03 AF, ATTEN= 1%, LAG= .4 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .25 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.5 FPS .20 .11 .24 LENGTH= 40 FT TRAVEL TIME = 3 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 7 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION .Qin = .33 CFS @ 11.97 HRS, VOLUME= .02 AF Qout= .33 CFS @ 11.98 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .19 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.0 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME _ .1 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION Qin = .31 CFS @ 11.97 HRS, VOLUME= .02 AF Qout= .31 CFS @ 11.97 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .19 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.0 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME _ .1 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 6 8"PVC ROOF DRAIN Qin = .62 CFS @ 11.98 HRS, VOLUME= .04 AF Qout= .62 CFS @ 11.98 HRS, VOLUME= .04 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .26 FT .07 .02 .04 n= .012 PEAK VELOCITY= 4.9 FPS .13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN .20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .47 .26 1.55 .53 .30 1.81 .60 .33 1.97 .63 .34 1.99 .65 .35 1.97 .67 .35 1.85 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 8 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 7 SUMMATION AT WETLAND Qin = .80 CFS @ 12.01 HRS, VOLUME= .09 AF Qout= .74 CFS @ 12.10 HRS, VOLUME= 09 AF, ATTEN= 8%, LAG= 5.1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD 0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .01 FT .10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS .20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN .30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .43 44.8 105.57 .60 63.6 185.10 .80 86.4 301.28 1.00 110.0 440.46 Data for 1099-RANGER-N.ANDOVER: 2-YEAR POSTDEVELOPMENT Page 9 TYPE III 24-HOUR RAINFALL= 3.10 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 1 UNDERGROUND DETENTION SYSTEM Qin = 1.01 CFS @ 11.98 HRS, VOLUME= .07 AF Qout= .48 CFS @ 12.15 HRS, VOLUME= .07 AF, ATTEN= 53%, LAG= 10.2 MIN ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 668 CF 0.0 0 PEAK ELEVATION= 1.4 FT 3.0 1414 FLOOD ELEVATION= 3.0 FT START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.1 HRS Tdet= 21.2 MIN ( .07 AF) # ROUTE INVERT OUTLET DEVICES 1 P 0.0' 4" ORIFICE/GRATE Q=.6 PI r^2 SQR(2g) SQR(H-r) (Use H/2 if H<d) 2 P 2.0' 8" ORIFICE/GRATE Q=.6 PI r-2 SQR(2g) SQR(H-r) (Use H/2 if H<d) POND 2 ROOF DRAIN RECHARGE SYSTEM Qin = .62 CFS @ 11.98 HRS, VOLUME= .04 AF Qout= .44 CFS @ 12.05 HRS, VOLUME= .04 AF, ATTEN= 28%, LAG= 4.0 MIN Qpri= 0.00 CFS @ 0.00 HRS, VOLUME= 0.00 AF Qsec= .44 CFS @ 12.05 HRS, VOLUME= .04 AF ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 69 CF 0.0 0 PEAK ELEVATION= .3 FT .5 127 FLOOD ELEVATION= 1.5 FT 1.5 476 START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.l HRS # ROUTE INVERT OUTLET DEVICES 1 P 1.0' 6" CULVERT n=.012 L=15' S=.01'/' Ke=.6 Cc=.9 Cd=.56 2 S 0.0' EXFILTRATION Q= .44 CFS at and above .1' Primary Discharge --1=Culvert Secondary Discharge --2=Exfiltration POST-DEVELOPMENT: 10-Year Storm Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 1 TYPE III 24-HOUR RAINFALL= 4.50 IN 18 Jul 01 Prepared by MHF Design Consultants, Inc. HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING 0 0 0 ago 0 o � o OSUBCATCHMENT R REACH APDND ci LINK SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1 SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3 SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4 SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5 SUBCATCHMENT 5 = ROOF -> REACH 6 SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7 SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH -' REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2 REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3 - REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1 REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1 REACH 5 = 12"HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1 REACH 6 = 8"PVC ROOF DRAIN -> POND 2 REACH 7 = SUMMATION AT WET( AND -' POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 2 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 3 TYPE III 24-HOUR RAINFALL= 4.50 IN 17 Jul 01 Prepared by MHF Design Consultants, Inc. HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO CB-1 PEAK= .24 CFS @ 11.97 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 2500.00 98 PAVEMENT RATYPE III SPAN= 10-20 HRS, dt=.l HRS Method Comment Tr. (min) TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=20' s=.01 '/ ' V=2.03 fps Total Length= 45 ft Total Tc= .7 SUBCATCHMENT 2 FLOWS TO CB-2 PEAK= .32 CFS @ 11.97 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 3360.00 98 PAVEMENT TYPE III 24-HOUR RAINFALL= 4.50 IN SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 3 FLOWS TO CB-3 PEAK= .51 CFS @ 11.97 HRS, VOLUME= .03 AF SO-FT CN SCS TR-20 METHOD 4800.00 98 PAVEMENT TYPE III 24-HOUR 1000.00 61 LAWN,B,GOOD SPAN= N 10-20 HRS, HRS 5800.00 92 Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POST)EVELOPMENT Page 4 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 4 FLOWS TO CB-4 'PEAK= .46 CFS @ 11.97 HRS, VOLUME= .03 AF SO-FT CN SCS TR-20 METHOD 4650.00 98 PAVEMENT TYPE III 24-HOUR 250.00 61 LAWN,B,GOOD RAINFALL= 4.50 IN 4900.00 96 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 5 ROOF PEAK= .91 CFS @ 11.98 HRS, VOLUME= .06 AF SO-FT CN SCS TR-20 METHOD 9140.00 98 ROOF TYPE III 24-HOUR RAINFALL= 4.50 IN SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: 1.2 Smooth surfaces n=.011 L=50' P2=3.1 in s=.005 '/' SUBCATCHMENT 6 FLOWS TO WETLAND PEAK= .72 CFS @ 11.98 HRS, VOLUME= .05 AF SO-FT CN SCS TR-20 METHOD 6850.00 66 WOODS,B,POOR TYPE III 24-HOUR 4750.00 98 PAVEMENT RAINFALL= 4.50 IN 11600.00 79 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 3 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=60' s=.03 '/' V=3.52 fps Total Length= 85 ft Total Tc= .6 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 5 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5.1 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH PEAK= .12 CFS @ 12.03 HRS, VOLUME= .01 AF SO-FT CN SCS TR-20 METHOD 3300.00 61 LAWN,B,GOOD TYPE III 24-HOUR 1400.00 66 WOODS,B,POOR RAINFALL= 4.50 IN 4700.00 62 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tr. (min) TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=.15 L=25' P2=3.1 in s=.1 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 2.4 Woodland Kv=5 L=100' s=.02 ' /' V=31 fps Total Length= 125 ft Total Tc= 4.1 Data for 1099-RANGER-N_ANDOVER: 10-YEAR POSTDEVELOPMENT Page 6- TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants , Inc. 17 Jul 01 HydroCAD 5 11 001710 (c).,,1986-1999 Applied Microcomputer Systems REACH 1 12"HDPE CB-1 TO DMH-1 Qin = .24 CFS @ 11.97 HRS, VOLUME= .02 AF Qout= .24 CFS @ 11.98 HRS, VOLUME= .02 AF, ATTEN= 1%, LAG= .3 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .20 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.1 FPS .20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .2 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 2 12"HDPE DMH-1 TO CB-2 Qin = .24 CFS @ 11.98 HRS, VOLUME= .02 AF Qout= .23 CFS @ 11.99 HRS, VOLUME= .02 AF, ATTEN= 3%, LAG= .7 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .20 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.1 FPS .20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .6 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION Qin = .55 CFS @ 11.98 HRS, VOLUME= .04 AF Qout= .54 CFS @ 11.98 HRS, VOLUME= .04 AF, ATTEN= 1%, LAG= .3 MIN DEPTH END AREA DISCH (FT) (S-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .30 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.7 FPS .20 .11 .24 LENGTH= 40 FT TRAVEL TIME = .2 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 7 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999-Applied Microcomputer Systems REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION Qin = .51 CFS @ 11.97 HRS, VOLUME= .03 AF Qout= .51 CFS @ 11.97 HRS, VOLUME= .03 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .24 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.4 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=. 1 HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION Qin = .46 CFS @ 11.97 HRS, VOLUME= .03 AF Qout= .46 CFS @ 11.97 HRS, VOLUME= .03 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .23 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.3 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME _ .1 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 6 8"PVC ROOF DRAIN Qin = .91 CFS @ 11.98 HRS, VOLUME= .06 AF Qout= .90 CFS @ 11.98 HRS, VOLUME= .06 AF, ATTEN= 0%, LAG= . 1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .32 FT .07 .02 .04 n= .012 PEAK VELOCITY= 5.4 FPS .13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN .20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .47 .26 1.55 .53 .30 1.81 .60 .33 1.97 .63 .34 1.99 .65 .35 1.97 .67 .35 1.85 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 8 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 7 SUMMATION AT WETLAND Qin = 1.28 CFS @ 12.03 HRS, VOLUME= .15 AF Qout= 1.22 CFS @ 12.11 HRS, VOLUME= .15 AF, ATTEN= 5%, LAG= 4.8 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD 0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .01 FT .10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS .20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN .30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS .43 44.8 105.57 .60 63.6 185.10 .80 86.4 301.28 1.00 110.0 440.46 Data for 1099-RANGER-N.ANDOVER: 10-YEAR POSTDEVELOPMENT Page 9 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 1 UNDERGROUND DETENTION SYSTEM Qin = 1.51 CFS @ 11.98 HRS, VOLUME= .10 AF Qout= .82 CFS @ 12.12 HRS, VOLUME= .10 AF, ATTEN= 46%, LAG= 8.8 MIN ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 1058 CF 0.0 0 PEAK ELEVATION= 2.2 FT 3.0 1414 FLOOD ELEVATION= 3.0 FT START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.1 HRS Tdet= 21.5 MIN ( .1 AF) # ROUTE INVERT OUTLET DEVICES 1 P 0.0' 4" ORIFICE/GRATE Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d) 2 P 2.0' 8" ORIFICE/GRATE Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d) POND 2 ROOF DRAIN RECHARGE SYSTEM Qin = .90 CFS @ 11.98 HRS, VOLUME= .06 AF Qout= .44 CFS @ 11.90 HRS, VOLUME= .06 AF, ATTEN= 51%, LAG= 0.0 MIN Qpri= 0.00 CFS @ 0.00 HRS, VOLUME= 0.00 AF Qsec= .44 CFS @ 11.90 HRS, VOLUME= .06 AF ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 270 CF 0.0 0 PEAK ELEVATION= .9 FT .5 127 FLOOD ELEVATION= 1.5 FT 1.5 476 START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.1 HRS # ROUTE INVERT OUTLET DEVICES 1 P 1.0' 6" CULVERT n=.012 L=15' S=.01'/' Ke=.6 Cc=.9 Cd=.56 2 S 0.0' EXFILTRATION Q= .44 CFS at and above .1' Primary Discharge I 1=Culvert Secondary Discharge -2=Exfi1tration POST-DEVELOPMENT: 25-Year Storm * Rational Method Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 1 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING (D (D G) (D (Do a o a o ono A A , o 0 SUBCATCHMENT [] REACH POND LINK SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1 SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3 SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4 SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5 SUBCATCHMENT 5 = ROOF -> REACH 6 SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7 SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH -> REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2 REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3 REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1 REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1 REACH 5 = 12"HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1 REACH 6 = 8"PVC ROOF DRAIN -> POND 2 REACH 7 = SUMMATION AT WETLAND -> POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7 Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 2 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1 Data for 1099-RANGER-N_ANDOVER: 25-YEAR POST * RATIONAL * Page 3 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO CB-1 PEAK= .28 CFS @ 10.10 HRS, VOLUME= 0.00 AF SO-FT CN RATIONAL METHOD 2500.00 98 PAVEMENT DURATION= 6 MIN INTEN= 5.00 IN/HR SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .2 Paved Kv=20.3282 L=20' s=.01 '/' V=2.03 fps Total Length= 45 ft Total Tc= .7 SUBCATCHMENT 2 FLOWS TO CB-2 PEAK= .38 CFS @ 10.10 HRS, VOLUME= 0.00 AF SO-FT CN RATIONAL METHOD 3360.00 98 PAVEMENT DURATION= 6 MIN INTEN= 5.00 IN/HR SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .2 Paved Kv=20.3282 L=40' s=.03 '/ ' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 3 FLOWS TO CB-3 PEAK= .61 CFS @ 10.10 HRS, VOLUME= .01 AF SO-FT CN RATIONAL METHOD 4800.00 98 PAVEMENT DURATION= 6 MIN -- 1000.00 61 LAWN,B,GOOD INTEN= 5.00 IN/HR 5800.00 92 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .2 Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 4 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 4 FLOWS TO CB-4 PEAK= .54 CFS @ 10.10 HRS, VOLUME= 0.00 AF SO-FT CN RATIONAL METHOD 4650.00 98 PAVEMENT DURATION= 6 MIN 250.00 61 LAWN,B,GOOD INTEN= 5.00 IN/HR 4900.00 96 SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: •2 Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 5 ROOF PEAK= 1.03 CFS @ 10.10 HRS, VOLUME .01 AF SO-FT CN RATIONAL METHOD 9140.00 98 ROOF DURATION= 6 MIN INTEN= 5.00 IN/HR SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 1.2 Smooth surfaces n=.011 L=50' P2=3.1 in s=.005 SUBCATCHMENT 6 FLOWS TO WETLAND PEAK= 1.05 CFS @ 10.10 HRS, VOLUME= .01 AF SO-FT CN RATIONAL METHOD 6850.00 66 WOODS,B,POOR DURATION= 6 MIN 4750.00 98 PAVEMENT INTEN= 5.00 IN/HR 11600.00 79 SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: .3 Paved Kv=20.3282 L=60' s=.03 '/' V=3.52 fps Total Length= 85 ft Total Tc= .6 i. Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 5 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH PEAK= .33 CFS @ 10.10 HRS, VOLUME= 0.00 AF SO-FT CN RATIONAL METHOD 3300.00 61 LAWN,B,GOOD DURATION= 6 MIN 1400.00 66 WOODS,B,POOR INTEN= 5.00 IN/HR 4700.00 62 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=.15 L=25' P2=3.1 in s=.1 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: 2.4 Woodland Kv=S L=100' s=.02 '/' V=31 fps Total Length= 125 ft Total Tc= 4.1 Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 6 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 1 12"HDPE CB-1 TO DMH-1 Qin = .28 CFS @ 10.10 HRS, VOLUME= 0.00 AF Qout= .25 CFS @ 10.10 HRS, VOLUME= 0.00 AF, ATTEN= 11%, LAG= 0.0 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .21 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.2 FPS .20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .2 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=. l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 2 12"HDPE DMH-1 TO CB-2 Qin = .25 CFS @ 10.10 HRS, VOLUME= 0.00 AF Qout= .19 CFS @ 10.10 HRS, VOLUME= 0.00 AF, ATTEN= 24%, LAG= 0.0 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .18 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.1 FPS .20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .6 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION Qin = .57 CFS @ 10.10 HRS, VOLUME= .01 AF Qout= .50 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 11%, LAG= 0.0 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .30 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.7 FPS .20 .11 .24 LENGTH= 40 FT TRAVEL TIME = .2 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 7 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION Qin = .61 CFS @ 10.10 HRS, VOLUME= .01 AF Qout= .60 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 2%, LAG= 0.0 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .26 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.6 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION Qin = .54 CFS @ 10.10 HRS, VOLUME= 0.00 AF Qout= .53 CFS @ 10.10 HRS, VOLUME= 0.00 AF, ATTEN= 2%, LAG= 0.0 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .25 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.5 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 6 8"PVC ROOF DRAIN Qin = 1.03 CFS @ 10.10 HRS, VOLUME= .01 AF Qout= 1.00 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 3%, LAG= 0.0 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .34 FT .07 .02 .04 n= .012 PEAK VELOCITY= 5.5 FPS .13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN .20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.l HRS .47 .26 1.55 .53 .30 1.81 .60 .33 1.97 .63 .34 1.99 .65 .35 1.97 .67 .35 1.85 Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 8 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 7 SUMMATION AT WETLAND Qin = 1.30 CFS @ 10. 10 HRS, VOLUME= .02 AF Qout= .84 CFS @ 10.19 HRS, VOLUME= .02 AF, ATTEN= 35%, LAG= 5.4 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD 0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .01 FT .10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS .20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN .30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=. 1 HRS .43 44.8 105.57 .60 63.6 185.10 .80 86.4 301.28 1.00 110.0 440.46 Data for 1099-RANGER-N.ANDOVER: 25-YEAR POST * RATIONAL * Page 9 DURATION= 6 MIN INTEN= 5.00 IN/HR Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 1 UNDERGROUND DETENTION SYSTEM Qin = 1.63 CFS @ 10.10 HRS, VOLUME= .02 AF Qout= .39 CFS @ 10.22 HRS, VOLUME= .02 AF, ATTEN= 76%, LAG= 7.5 MIN ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 470 CF 0.0 0 PEAK ELEVATION= 1.0 FT 3.0 1414 FLOOD ELEVATION= 3.0 FT START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.1 HRS Tdet= 21.3 MIN ( .02 AF) # ROUTE INVERT OUTLET DEVICES 1 P 0.0' 4" ORIFICE/GRATE Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d) 2 P 2.0' 8" ORIFICE/GRATE Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d) POND 2 ROOF DRAIN RECHARGE SYSTEM Qin = 1.00 CFS @ 10.10 HRS, VOLUME= .01 AF Qout= .44 CFS @ 10.10 HRS, VOLUME= .01 AF, ATTEN= 56%, LAG= 0.0 MIN Qpri= 0.00 CFS @ 0.00 HRS, VOLUME= 0.00 AF Qsec= .44 CFS @ 10.10 HRS, VOLUME= .01 AF ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 130 CF 0.0 0 PEAK ELEVATION= .5 FT .5 127 FLOOD ELEVATION= 1.5 FT 1.5 476 START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.1 HRS Tdet= 4 MIN ( .01 AF) # ROUTE INVERT OUTLET DEVICES 1 P 1.0' 6" CULVERT n=.012 L=15' S=.01'/' Ke=.6 Cc=.9 Cd=.56 2 S 0.0' EXFILTRATION Q= .44 CFS at and above .1' Primary Discharge I-1=Cu 1 vert Secondary Discharge -2=Exfiltration POST-DEVELOPMENT: 100-Year Storm Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 1 TYPE III 24-HOUR RAINFALL= 6.00 IN Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5.11 001710 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING ❑ 4 F E -> 0 A z F71 0 SUBCATCHMENT F-] REACH Q POND LINK SUBCATCHMENT 1 = FLOWS TO CB-1 -> REACH 1 SUBCATCHMENT 2 = FLOWS TO CB-2 -> REACH 3 SUBCATCHMENT 3 = FLOWS TO CB-3 -> REACH 4 SUBCATCHMENT 4 = FLOWS TO CB-4 -> REACH 5 SUBCATCHMENT 5 = ROOF -> REACH 6 SUBCATCHMENT 6 = FLOWS TO WETLAND -> REACH 7 SUBCATCHMENT 7 = FLOWS TO BOUNDARY - NORTH -> REACH 1 = 12"HDPE CB-1 TO DMH-1 -> REACH 2 REACH 2 = 12"HDPE DMH-1 TO CB-2 -> REACH 3 REACH 3 = 12"HDPE CB-2 TO UNDERGROUND DETENTION -> POND 1 REACH 4 = 12"HDPE CB-3 TO UNDERGROUND DETENTION -> POND 1 REACH 5 = 12°HDPE CB-4 TO UNDERGROUND DETENTION -> POND 1 REACH 6 = 8"PVC ROOF DRAIN -> POND 2 REACH 7 = SUMMATION AT WETLAND -> POND 1 = UNDERGROUND DETENTION SYSTEM -> REACH 7 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 2 TYPE III 24-HOUR RAINFALL= 6.00 IN Prepared by MHF Design Consultants, Inc. 18 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 2 = ROOF DRAIN RECHARGE SYSTEM -> POND 1 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 3 TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01 Prepared by MHF Design Consultants, Inc. HvdroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 FLOWS TO CB-1 PEAK= .32 CFS @ 11.97 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 2500.00 98 PAVEMENT TYPE III 24-HOUR RAINFALL= 6.00 IN SPAN= 10-20 HRS, dt=.l HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 ' /' 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=20' s=.01 ' /' V=2.03 fps Total Length= 45 ft Total Tc= .7 SUBCATCHMENT 2 FLOWS TO CB-2 PEAK= .43 CFS @ 11.97 HRS, VOLUME= .03 AF SO-FT CN SCS TR-20 METHOD 3360.00 98 PAVEMENT TYPE III 24-HOUR RAINFALL= 6.00 IN SPAN= 10-20 HRS, dt=.l HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 3 FLOWS TO CB-3 PEAK= .70 CFS @ 11.97 HRS, VOLUME= .05 AF SO-FT CN SCS TR-20 METHOD 4800.00 98 PAVEMENT TYPE III 24-HOUR 1000.00 61 LAWN,B,GOOD RAINFALL= 6.00 IN 5800.00 92 SPAN= 10-20 HRS, dt=.l HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 4 TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01 Prepared by MHF Design Consultants, Inc. HydroCAD 5 11 001710 (c).. 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 4 FLOWS TO CB-4 PEAK= .62 CFS @ 11.97 HRS, VOLUME= .04 AF SO-FT CN SCS TR-20 METHOD 4650.00 98 PAVEMENT TYPE III 24-HOUR 250.00 61 LAWN,B,GOOD R INFALL= 6 00 INdt =. 1 HRS 4900.00 96 Method Comment Tr- (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 2 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=40' s=.03 '/' V=3.52 fps Total Length= 65 ft Total Tc= .5 SUBCATCHMENT 5 ROOF PEAK= 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF SO-FT CN SCS TR-20 METHOD 9140.00 98 ROOF TYPE III 24-HOUR RAINFALL= 6.00 IN SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tc (min) TR-55 SHEET FLOW Segment ID: 1.2 Smooth surfaces n=.011 L=50' P2=3.1 in s=.005 SUBCATCHMENT 6 FLOWS TO WETLAND PEAK= 1.11 CFS @ 11.98 MRS, VOLUME= .07 AF SO-FT CN SCS TR-20 METHOD 6850.00 66 WOODS,B,POOR TYPE III 24-HOUR 4750.00 98 PAVEMENT RAINFALL= 6 00 INdt =.1 HRS 11600.00 79 _ Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=25' P2=3.1 in s=.03 3 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Paved Kv=20.3282 L=60' s=.03 ' /' V=3.52 fps Total Length= 85 ft Total Tc= .6 1. Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 5 TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01 Prepared by MHF Design Consultants, Inc. HvdroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 7 FLOWS TO BOUNDARY - NORTH PEAK= .25 CFS @ 12.02 HRS, VOLUME= .02 AF SO-FT CN SCS TR-20 METHOD 3300.00 61 LAWN,B,GOOD TYPE III 24-HOUR 1400.00 66 WOODS,B,POOR RAINFALL= 6.00 IN 4700.00 62 SPAN= 10-20 HRS, dt=.1 HRS Method Comment Tr (min) TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=.15 L=25' P2=3.1 in s=.l 2.4 SHALLOW CONCENTRATED/UPLAND FLOW Segment ID: Woodland Kv=5 L=100' s=.02 '/' V=31 fps Total Length= 125 ft Total Tc= 4.1 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 6 TYPE III 24-HOUR RAINFALL= 6.00 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 1 12"HDPE CB-1 TO DMH-1 Qin = .32 CFS @ 11.97 HRS, VOLUME= .02 AF Qout= .32 CFS @ 11.98 HRS, VOLUME= .02 AF, ATTEN= 0%, LAG= .3 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .23 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.4 FPS .20 .11 .24 LENGTH= 30 FT TRAVEL TIME = .2 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=. l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 2 12"HDPE DMH-1 TO CB-2 Qin = .32 CFS @ 11.98 HRS, VOLUME= .02 AF Qout= .31 CFS @ 11.99 HRS, VOLUME= 02 AF, ATTEN= 2%, LAG= .7 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .23 FT .10 .04 .06 n= .012 PEAK VELOCITY= 2.4 FPS .20 .11 .24 LENGTH= 72 FT TRAVEL TIME = .5 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=. l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 REACH 3 12"HDPE CB-2 TO UNDERGROUND DETENTION Qin = .74 CFS @ 11.98 HRS, VOLUME= .05 AF Qout= .73 CFS @ 11.98 HRS, VOLUME= .05 AF, ATTEN= 1%, LAG= .3 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .35 FT .10 .04 .06 n= .012 PEAK VELOCITY= 3.0 FPS .20 .11 .24 LENGTH= 40 FT TRAVEL TIME = .2 MIN .30 .20 .53 SLOPE= .005 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 2.29 .80 .67 2.67 .90 .74 2.91 .94 .77 2.94 .97 .78 2.91 1.00 .79 2.73 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 7 TYPE III 24-HOUR RAINFALL= 6.00 IN 17 Jul 01 Prepared by MHF Design Consultants, Inc. HydroCAD 5.11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 4 12"HDPE CB-3 TO UNDERGROUND DETENTION Qin = .70 CFS @ 11.97 HRS, VOLUME= .05 AF Qout= .70 CFS @ 11.97 HRS, VOLUME= .05 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .28 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.7 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .70 .59 3.23 .80 .67 3.77 .90 .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 5 12"HDPE CB-4 TO UNDERGROUND DETENTION Qin = .62 CFS @ 11.97 HRS, VOLUME= .04 AF Qout= .62 CFS @ 11.97 HRS, VOLUME= .04 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .26 FT .10 .04 .08 n= .012 PEAK VELOCITY= 3.6 FPS .20 .11 .34 LENGTH= 10 FT TRAVEL TIME = 0.0 MIN .30 .20 .76 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.l HRS .70 .59 3.23 .80 .67 3.77 .90 . .74 4.11 .94 .77 4.15 .97 .78 4.11 1.00 .79 3.86 REACH 6 8"PVC ROOF DRAIN Qin = 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF _ Qout= 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF, ATTEN= 0%, LAG= .1 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 8" PIPE PEAK DEPTH=RANS METHOD (FT) 0.00 0.00 0.00 .07 .02 .04 n= .012 PEAK VELOCITY= 5.7 FPS .13 .05 .16 LENGTH= 20 FT TRAVEL TIME _ .1 MIN .20 .09 .36 SLOPE= .02 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .47 .26 1.55 .53 .30 1.81 .60 .33 1.97 .63 .34 1.99 .65 .35 1.97 .67 .35 1.85 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 8 TYPE III 24-HOUR RAINFALL= 6.00 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems REACH 7 SUMMATION AT WETLAND . Qin = 2.47 CFS @ 12.03 HRS, VOLUME= .22 AF Qout= 2.28 CFS @ 12.11 HRS, VOLUME= .22 AF, ATTEN= 8%, LAG= 4.8 MIN DEPTH END AREA DISCH (FT) (SO-FT) (CFS) 100' x 1' CHANNEL STOR-IND+TRANS METHOD 0.00 0.0 0.00 SIDE SLOPE= .1 '/' PEAK DEPTH= .03 FT .10 10.1 9.18 n= .035 PEAK VELOCITY= .9 FPS .20 20.4 29.24 LENGTH= 100 FT TRAVEL TIME = 1.8 MIN .30 30.9 57.67 SLOPE= .01 FT/FT SPAN= 10-20 HRS, dt=.1 HRS .43 44.8 105.57 .60 63.6 185.10 .80 86.4 301.28 1.00 110.0 440.46 Data for 1099-RANGER-N.ANDOVER: 100-YEAR POSTDEVELOPMENT Page 9 TYPE III 24-HOUR RAINFALL= 6.00 IN Prepared by MHF Design Consultants, Inc. 17 Jul 01 HydroCAD 5 11 001710 (c) 1986-1999 Applied Microcomputer Systems POND 1 UNDERGROUND DETENTION SYSTEM Qin = 2.06 CFS @ 11.99 HRS, VOLUME= .15 AF Qout= 1.65 CFS @ 12.09 HRS, VOLUME= .15 AF, ATTEN= 20%, LAG= 6.5 MIN ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 1262 CF 0.0 0 PEAK ELEVATION= 2.7 FT 3.0 1414 FLOOD ELEVATION= 3.0 FT START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=. l HRS Tdet= 19 MIN ( .15 AF) # ROUTE INVERT OUTLET DEVICES 1 P 0.0' 4" ORIFICE/GRATE Q=.6 PI r'2 SQR(2g) SQR(H-r) (Use H/2 if H<d) 2 P 2.0' 8" ORIFICE/GRATE Q=.6 PI r"2 SQR(2g) SQR(H-r) (Use H/2 if H<d) POND 2 ROOF DRAIN RECHARGE SYSTEM Qin = 1.21 CFS @ 11.98 HRS, VOLUME= .08 AF Qout= .76 CFS @ 12.11 HRS, VOLUME= .08 AF, ATTEN= 37%, LAG= 7.7 MIN Qpri= .32 CFS @ 12.11 HRS, VOLUME 0.00 AF Qsec= .44 CFS @ 11.80 HRS, VOLUME= .08 AF ELEVATION CUM.STOR STOR-IND METHOD (FT) (CF) PEAK STORAGE = 443 CF 0.0 0 PEAK ELEVATION= 1.4 FT .5 127 FLOOD ELEVATION= 1.5 FT 1.5 476 START ELEVATION= 0.0 FT SPAN= 10-20 HRS, dt=.l HRS Tdet= 4.3 MIN ( .08 AF) # ROUTE INVERT OUTLET DEVICES - 1 P 1.0' 6" CULVERT n=.012 L=15' S=.01' /' Ke=.6 Cc=.9 Cd=.56 2 S 0.0' EXFILTRATION Q= .44 CFS at and above .1' Primary Discharge I I=Culvert Secondary Discharge -2=Exfiltration s� GREAT POND RD. o � � O z v w �uZ Sl '�C9cs MARION ORO� cHE� tip cHESTNT sj. HILLSIDE ST Rp, •� / 9y0 ANDOVE BY-PASS C / � 114 H 125 R AOR�IyG ��i� �• g s�qN �' �Qg�•,�.�Q� �R SITE 133 Wq��RI LOCATION MAP Rq (NOT TO SCALE) • �..:. • ,f �I; `+.i r :::a�f .F\ s �< n.r , � \S, 1 +. ���\ v \\ti,` f s-/Cr`�rl�f'^' ~SJ` ll+ VA ' {r�n1(�i`i1 ('"t � <- 7�tts > '\ \ �} r ��i CiS:, �. � �/^ a Zf {+ryj r 1: � !✓ i'1. >.. r)( k 't `� i >',� y'�i�'v ,5�� `�� L s _\17TH S` { ,\ :£ �<, ��k�� ' Y r j.- � �. �y✓ ` ti'6 r ti,�F� '}""• ,e?..j r j )i d S 'p> € y' , > ;%''' \ '. 'x331-. t : y ► :> r t S' t l �k3�rk, r � C ...� � ! � � � ��s .. � � � / t t J Jf.,L � {`f�. r � '! 1 •�r.� 1��0� "iti1-w �t C tis J (�� � �t � ♦ ��-.. J i .} ':'e r k• d tr t e j�;y ^^'-. l�r ,ti A � ,� . i * - 134 ` • 3:;Vj"rs \\.s. + �, �t` y Al {i .•ri I f 1 1 t f S.- Ys"s �) t.. _f ♦ a �\ '!? '1i, a' :�: ?4 #; }�♦i i11� •t\t + °�?, j��,s j43,�f�� /. � � blr c� Qp}: -r'--�1•r';� 7v��� i'�-- �`-� ry .ti•--- '� f�M {' 3 { 1r7 tr; ,.� 3, t �Y i T� ,> � rf� 4f'4 f .�'� '�^'-,���Qfj � 4. V: • �'�t It1 f :��f� rl1S 54#�f� �t �t t� t. •� f t,. r`}E 1r �,� � 4 r-: :- :.•`/"Cod.,9e > t 1 t ., f\� `, r �'f 2r 3 ` i-'°5` t ,r�sjifs£•s..rr \a, M9 _ r � n t F7f , � \t � %! f s\, �t .:,., '�✓ f*" � t 3 �,� 3 3 -�r- '� o;sy � r "� "S :\ l \ 1; _ � t .� � (�� ✓r�/ n, \T tF 7 r l f ` r wt�,.✓'t, f 1 < 1 7" Af '�:\ 3. , ' � �,(Sp�rf• 33? �\�`J�'rf t, S £.< r) t',s f �>k,! �� .3 �' ��r-. Z��iIFi"Y fr ..., (.� �:r r '?' a�,r.,,� t s� ;� �, �'./n t }�>€'k { r)E t f ;:;r �-w:a..��7.:,✓'�\`.�. .�"^'�"r �\`_t t , r fr - yn )/{// ,b t i S 3 _ ' _ ♦ 4 r HA 1 i1 �4RKkit i }' s. S j^ 1, K' ... .,,•r. -rt> x f r,l . :4 c ;'�% il,�Q.!'r'�' q+ :.r:•, �y } 1 ) i \ i .,j z r i h, ,\ :r `_ f 4't ' J.P` /• th t� •Tl S' � L''.�: ) � {t\ ..:' � r�' � f,<�,C ` 3 i�, < YT r� S ::�k) f �r- ?;5 rs`'. f :. �>~ !: ' �3 r:f� ! '°`r--.•,_?\._. 5 i, riS 1. P 5 r r r � r ,r,;/\..-r^^F�.. }1f n�r.t Jl '}Cr�'f T ♦� , ) `:r �•1 /:� ;." r N ♦ r �.;, ,j : f �.1 1 fresh 'T rV. � � -�� � �. )� �; f ♦ ~ 1�k,� I , r-�(,' �-�-'. r '^.'.rte", u it .,,f''I I i; ��; j k{�•f iJ1 s+� 'i�, f i � .`.s\\ t f}+ S�\� "v� r � i f {4_t 'r '/ .ems �. ° •�t� ",t�� j� t f�',', ds 'SS' {� �, {mot _ / t#.� )'s,. <,x\ ♦�tl, a\i 3 �.'>\ ft k }- s r ..1� } t ✓ } ,f ��, ) n i e 1 C".�C t{{l t + `:l+ ✓!" ) , 1.`t \ S' : .a. k } ,``t #.;`i + ,^"`✓ GI��iy 7�`! e . \ ''*�• � � s ✓ t { S4 .a ' t r r2���, r S �...: i♦ ``�r t �s�,� 2 �1 �• Ct ., �� � S� � �'� I•�t`,rfi'}.; . i ��: � � z 9M t , t r h `� >: �''�'- 3 ),F,� i�\r t hS�\ F: v ' �} ' ...«IEEE... � : �.',t j l- \.r# , , er ,iu�,r,, \\ 1 S .-�-.. Y, t : \ -,3 • f � rk �M \ � ) '� \1� i•:. / -'� � `z'�• 3.�i�i � < < 't�Y l\, r:.. ft#.. s '(, 'k��F�� q" ter+, \�` � � � �}s� f � .�}�\a t 9lik � • \�: r ,' , 7::s �,.....,�� r�-,----'• rt- J ; ``' �i� ``# �'� I � +,'. r l'�'•�\ �t 77;� . ', ��' fx lj "t ""�`Y� � it •� A- �S,' a j f �\'/"'�' � wt.v� \\ .. {,T _ � �1 \ t, tf � t i f:. . \� �. '� .:::f,� 4 ,. .;.: �.l3.✓..-,.,rly' f t �i�\�i<l./ r rt '... `t �l� •��\:., - } � ) s.. 2 i ,�� > .+>tr j ✓�\f L.., ,,,. J t r ,�'r .-.r r } j a r rC_{ _.._i...✓,-«-;,3 - >/_.r f" r 3 t ..�.: ^.•a: ?{ �1 ,rd '".r j "',v r �"?'J 3�� � °1 J 1`..-.✓�� C�..-. � .�.a< �::j��>sC}}�:r`�{ ?t.k,^,� r ,.,.f�,�ff �/ �•�) \ \ ����"'- � ✓ ,�-�`��1 r 3 � l_ t, r am t ( ��I .k, t(`'. .:a;,3',I r t :r X33 ` St\ q—✓F r. �`• \'� =tf r r `f r Ft -;� S �'�."_ F' ,1 s #� :: <` �\,:�4".�i•--"- t ^ ?�.. k, 'f: �* t'' •` t.y --t i BJyQt. .y i :.t .( J � Y 5 u:.:.G' 'tip^h��l�l :-r-'<'..•<Y v S�'" \ 'v >: f^' 1 #i#£ t! r.� t w � { i t.^+\ i �tv,..".+` ''1 { �-� A t �`%�?: # ll f >�"" � � # Z}♦ E s4. f BM�4+�`i � tit �.�•.�Y kph � `l` 13 1� ,rf` v-'�r! r �✓ # F r '� r t,=:.�� �- tt t �.j \4� �\���. t 93 3'„�� � ;r.-sx- r s• 1.�� F '�f' V' j f������> �'`r/ ! � \ i C1F� S. ,: \ t '.1�~s /t it'Y.i qr 1 t� rf '•` r",�\ If '�j .. ^i .....,. \� � � �. r.f r k .! moo/ /r'.r,• .+''yf' ` ... s F � �^'°"�<��r Y\;t C xCs..% ',i ,_-�t. �*�'.�r !. v:;„ � f r •.-�� ) � �t ::tf5'r) r r �:- r ' :� ...,..�, .. 4 + \ ,ot0 C� � <.. � E y �h� �'Yjt /1 EI €t�f t' -� � � a”�� Qf :, (� � 'ii,`✓r :if �1 _, �. '.''?. � 4'rsI \. � }� \�•,�r `.11t.��i4( >�`\"•� � 4. try 'r" �y. "•.. '?`�t tl' l A /`< # ,' t •'���a.. )t #� as 1 ;� \f 3 .. l t'� , .>'' ` „r,J • \""-h�.� ,y 3 ; '-----,.,r•-�-�- { r"-. �a.J`!�:� + .``�tr��.. .. ( (r r s`'1 v3��? t�+""�Z' \'{f_ j S r�J- ?` ! t 3 r: ��i`"t.� :✓ 3 r �( „Jt « � t j !s: ,�.., \��+:,,-'i 3 tf�tf44 t (� � �`' ;�� �( i r r :�• •, it T:i i,,. t j� `•t� L:U {I',>\\ m�': \ 4t {1f>j 1 \s k•". 'k� t' � 1 � ^' Y ;v :F � -�."� Yj C' k:.�. s � ns tti tip� t 1.i.�� r •..•: : `L \^'\ Y .+J f � i r\ i r .rd.s:• , 'Ir ♦ i �' � S%l '-t \ � 7 � ,q c�•+...`^\; ":y�'�� t � )I � S'%: �� x �j f� r �> >\� fi}4 .' �`s �� r���D�D E',A��i#?:•� � �.��`j t ,:<� r ,i \ t •t �� ft f }� yr / •d t �`` i• tj; �3(s t t� h1 4!< Ai } CI3"'t3t�,�s)4 `t�� N t *�� ✓ l/' '` ( (�t y sf3 � ti x F r `,i+—^-�- �T .t�t3 r ) k fi- i,rn.��, DT �'i;� +'k+• '�� A�s_Cr rs` _� _;4 Y t�7 1� 43- �yTwJl:. Y71, r �.�� r...,y.�J :1i � +,,. jr ����-,1 f,.e�tli \.;' 'r7ki, s}o '' e � , � r ��1 \ � 3�{� �r 4> \�,�:.�• s •c (`\ Sc � y`�` i z t' { t +✓ , r�F ''Z�'� t ` .< sTS�i"C _.a- , �• t t 2 �f,%xt! t t 3 - n v. �t'�{ f �r t SjI�•_. \`'- S> �__.. "''"' `�' ` s) ,�,'. Y" »u ;`T f f` - c r �•�� r r �Y si f i s.,r �v�'_'"`�; � 1/ r' T�,A' �.� . '��.. �t`)1#>���.. ;. �1•<.�� f t �t 4 r 3�: ,\...!.:1 'ter. ... r.t i-, r `� r ! (.,< Copyright(C)1997,Maptech,Inc. {� fgfte ` t r ....�� ► ',., 1y�;3 1.� (C �I C�.�' t .. -.JS§ r d y r p `nitt t' �1 - 5'F s '$i7 � - � s.R :✓.� *YL o e�w.wtar .� J l � \�,,�.• ,� fr�s, r.Y! � {_� -•`. , �� i t7''�+•�j T%rlr '. ��' Z � �b � r �'°"°i�,l r' ,� �y l ,�`"'' r �x`rJr f��3'� �w�,�rb -, ��tir r.�• +-� �1. f,rll � �... tYeU�vi nd },� '. � I:�Y} �;,,. 11 S � r��ys�• -�F� t a � d 1 �> ��4 -.r ��: � r �.r,1` s .._ Qs};_''(r�.,�,ry�y��tt /,-� •r` ti ,/Jr f 1� .�~. '\� t � � �r'�'� '+� y�z.?� :/j �yP � \{• .�Fr'ry�y tnrdi k.€ . I� r .p+� ��} ``..V qq}//}f_ .r r.�},.,y, '• ' l�+ad.-• �y i a �r I. �� -mara s3.-.s � \ Stl � t / � ��� r ` �F •�, 4r1; r„�`� r f.f�- -• ti--"-.�pa i 5 � y�t. -. _�T P � �� } 'Sh p '/�N:f 1�4 f f T 1 �' � � ',�fA - t{ r� .�•r r �4�� -Y y�� J� �. e �r'r .`N-�'z`+,�r .-.,1 t c et pp 1 § ' S �” {� r fi Hl -,�� � fc�l � �5.� �'•ay`'•�-• J .{ - �. 111 7f w / ,^. u 3 s{(p"n%•,4 r r 4 t i ws���xA•-„ ' ° `� ` ,a`�' R _� � °w. r '+r and`-- �'�/ �`,. 1 F-�" ,r v�; .,r"`� �� :°t �i�� o � t'�` 1.• � ti��1�I r1...b r r��r���4 p e° - r J x .j �1ti tN MllpHr, .\ .IV s. `'� z S [I r�S e \,f -($1tf.� ill'� '� r 111\f- 1 dll /r r✓ led t ".�t .r.,�„ s •' �. o "•��l,�.a it < sr 5 , r 19�� -r- �� •. .��-' ".� t ,, i� In •1., �Sirr r.�. 1 '(.f �� : �/ 1r � t.tl� 4 � t ,{ `{'p�' '-� `i.� 1 ":, ImEa'�ir` Ij1 f5'.i �� , s A 4.. -� ` t�� �1�• rr'.tf7 ,J �,Jf}37�5 y: � 't}t t�,�. ss y .tr'� ' { �I -,i' � N I-, , `• t .'S ` � it y ` "+«� } r.2 � � �..'V• C .J ! '����! L\."' 1, y -� ,� i tI , � `fit II,lr l/ ✓ �� �- � �'� � r G � M4 r�, r `- r a f?,s •� ,' ,r re, ;}r 1 y 1 � zt ,( �:.: �r r ,1 ✓' }'"1 `% $ a' J r � ¢ , Jrs O I.' '� I, (r � � �� r * �t 11� �lad�... k a w.f`� I � .1•'� r k ..'fbdnl `"X r, � `Zi l' � r •P�-\ f Lrz t r i >` � 7r t.. .y, ll � T s+.- � l - -f 1 �� z' -�- '%-�� �,t \ ? .� � '��i c r i r `�� ��a�p� 4 C `} ,3 ,'' � ,� jai `� i i %•,•:' �-:.-r1;7• t� �1 �� f I .; a x i �-�J,� _ ��i 7.v� r .��} C /�. •�'r � •,,` � � �''. L i �� +y�( �;.. '\\t} .'•I '�:,., �' �5�+ rte'- ''f� � }i lyt1�C- +a.v�i$�.. �r i t ^>1 r ry. �J i r#,%� �y } L)_ `1� 4 ..• � •e �j .c l M1.c� � � � t !? a r �r t-��p%!�� to'�7�°i. i riy RFv� Q SITE ''^,'' rltt�'a r� �-, f 1!1, ��t r ��1 i� �r �, �:-4�1��1�� ?�- �` �5 /t� f u r.i ` ,y.,� o..Q• } J r Prt �� t� `' 'ar i'. c4'L ''r 1'/;fit."fr. tr i�. � I � � `� k ii•"f� � k t� • y •. eM 1. ..t r` R -. ko 4 ► 1 �� v� �O�� ri{� r y\ ,. r �1` - ),�...•.. 1�'+' K „+, ' '��rY4 C a',..w y �4�.7�k +�.�t '_t �l,` y t` n ro- mac--J'�' ..,�: r l { :�� °� �' 1`',1,*' 4 � ''w,? Q r�i'`r� r -.-•---r a� 3 r r �" —�~ '� .� I r r t) ,h �� f y;t�/ \i' :. "ti. L�n���� � ai�i• P'�kr_- e4 ���yy .,!e tt '�. 5' 7 .f !. � r L r c r ie r 4 ro■e r I $"' �I 1'•. tt sy{ Ir -^� 5 , 4 � r�Aa����. (fir .:"i �r I •l a f ��� v� M•�i % l vial I r .. � `cY rE Y 'ti $.. ...Nl��� _s. It �:� 13 f• +�l�h £�" .� ' 5 r 'l V .I.:.f .. 'S• �Y ''r I' 1 r` : r , �• y�Nr-�{' _ 1.�-r(,�9 .��1 r 'y��% s x ':i, �ti fp 0,5 0 0.5 1 Miles See County Index Maps to SOUTH GROVEU locate adjacent quadrangles •,: ti f.;� rf'^'*�,t.� Y.:,.� t \ 1 ,, j -kf(ir' S - —�.,sf!�.. ''�«....,�—t ' 1 \\ —+; ! }4�.-„.�/Y)'�,"8 r c^ry, "�-•-j,- .$ -:C JIr'..r< It(.:_t ,. \ s "Y i t�''�”, r` .'g.}ry 1} 1 -'c7a'L Ltam'. r,��1"(j"' ••y� 4 y�� .�'s.�" �fr I '1� � 11 - ✓'.�'!' �U Jt �rr ?�� � _ s G 3 i., � �\ ;t�5�1�, t It\r ?�i.4 r-.���1•PFD `r! rS I✓ 1 r"'t -� Tt ±� �� t t r• ,I r Vy \ 1 r r\ 'I try I 5 -,. : r1 k E T O , r Al I 1 c '_�.tr -ir i1 _ + I + � r�,�I\y, -. n• �� dt ..a'Jq 7l i� ��r `I r S <{I �� � <.�7' ' � .� ,r �1��'(j',`� 1. � '`F' nt •.' �, ,: Qt.��:1 �`O�"� ` '�� �� O ,:« ,?;F .a;�t�° ts�.. °`��n.ut'_ 1 ,-d � �w... ',� � `t� � '}.•� wv. s ,�F r• I t I } t� 1 r r Z ,a '#- }�..�7 7NN.� L,T- % K �"a4,-� } iP i \1 �• ��'! � j t^ �� �'j rc,t.- +,•� � jr w ,rS - , f .� - t � w tJl�lr(}$yr N i1! r L ''• q r`w,'.` °'� 1 tFi t� '� y��i>��'t�e I) :r'�'k. r1 �" � I � I ', "" ��°��,,.. ':. � v✓� l '3 �`t � � t. \ r t tl t�_),'vy� � � y� ;I JI r °.t f° 1 � -� a n � o I �_.J ��-�-'-'S` �--•-±f '"'b4 r /��r F��' f_ d ✓'drce�'t+ I '•�- 0 '+_• � 1< � � a i -�xh :.'�.!(' )[ �\,�1: 1 (dti'*s..�\ � �.f,�-1'Cv ?° � td'7�-.c 8 4 � s \i .. f I ' �• w '4 - 11 t;,��4�k"y�'.. .i ' } "r �) 1 � i;r,Y�{,r�� K �j I ,1�F t J 4 :: G ,'tl �! rl .f. /. 'N l�I a j � ( 7 4� ,�.c d r l rjy 1{,;+,.�•,.t.:.YYtS I t,� '-°:'": ��E�l r ,. r� • f v . J �� a '' E' Y ," � { �� 1�1 •t ;' a'r '� 5 jt k t q 7�1 �,f � D•I I C ``../,`" !(. ;i \5�.1 �� �.�I.. ft f � f r '�, �{a I r ;. `• � '�� r,�j,.!''Lafe.;t� -'J'1 ,rT�`�t tr' !. t�1y t, r et �' Q�''� r 1 7� \� :•.j ' ,�`, .` N �' rs " � L r s i'! - •=1,�-'.-:IiF�`r t � `� j. '.!. , I: ° _ ♦ 1,1' _._� �i-k °�, 9t- - %r �,.�\'•htu �-:�,,,,� �14--'•1—'. � �'4r _ I � . .. s r.�t -, '?�. f. rte-- •�.tee. r t.t�`S;it �„3kl``G tx 1. �=z� -, " 1'. 1 I ern P 1J 't ' SITE ekgorAiK'~ e: Fn,�es� ,.14 �• 3 f `;\, r y f�P JCJ�i ' B ,N `jam t i �.� �> "��� .1` � � ' ,,. T T 1 3 1 7 i r r:.' 7i e4z i' ( tJ Y ..i � 1...' � ��f"�FI -�t :. Ir �/� it � r f(�.. tt t 'K-k ��: �' cy.�L �A4X9p D��9•�A7 �PA I�SJ���F Xr.- a,. j!�lt,"�' , !o-p�� ( F r I \ro�f y' sr 7•r.J t -0 !F !1'�0� { .rr��r ' 1�. s .� .'1� "`, _JY ���, •� x� �'�' �L rt•_ t, '`I 1 yoeq� !_ '+-`t� n��`�r I��('�t7U�.. �V2' %4. r .o". �� 7, t j � l `k. [fir'• t tul ,1 !.� :!L t � t� r t 1•= '},,,s. E f�' �' 7 - _..�'i �° . t ,S.-y -*s 5.,"-.�'- r �u9 r -'e'r.` t I - .tj o j f. ) .a:� } _... � t t `�`•.p �y r j1.'f �, _-:�r t t � t"�,C.` -'.r�- - 1 1 �AtdT t_ 4 P`•1!'L i �r' i f I,, t a' �,I�_ll' i. :4 '.. l! � -"'t. r + r r - ° 1 ta�n4ty � � rO rl�i� r•y ��F �:� ,�� `+may - t _" ''� •t �}, Ic.fr�- �`"" ��`ry�� ' "' t� 4nr��ti ���-tl•� .(!/� � ._. }! I�J} +}1 ti� � _ a �, _ t >pv} 7 r�L'� I -.-4� St'_'_`�•.. ,�. I'., a "`�:'.15i SyL 7F'�, $ F I r tit.0 ., f u a :�,- _ ' "' - .-s .- r7 �.,,J 4,:!�I!. 1 0.5 0 0,5 1 Miles See County Index Maps to i locate adjacent quadrangles SOUTH GROVELANI rA MAP 98D LOT 18 N/F MORTON INTERNATIONAL, INC._ e. 100 NORTH RIVERSIDE PLAZA �—GRASS --� CHICAGO, IL 60606-1598 " BOOK 4864 PAGE 221 l N56'05'59"E 230.00' N� I r^� !�o C�"r'.cs'.r.�X�._�:CS �� l _:rJ.�^CXXXX"�'X�IX.�`X7 cY, n• J I o � z7777777 ,m�Y �y Y Y � SITE 1p G,Q, ' EDGE OF WETLAND AS AL aor• N 0 DELINEATED BY EPSILON ASSOCIATES LOCATION MAP IN APRIL, 2001r� <) �5 � ao% .,e``? 1 Z l � (ewr To SCALE) S9. a' Y' 1 AL ,F T . �; ' 1�xti` ° NOTES: bti i /Y �F s�Y 1) MON MUM INDUSTRIAL SIZE-ZE:1 80.000 S Ft. ��'p ' / ti' / ti' MAP 1 071 �! �° MINIMUM LOT FRONTAGE: 150 ft. 9 x; „',°'' (D, ;yn SETBACKS p x�° �, a y LOT 76 Front 50 ft. ay `� Side 50 ft. 120,718 S Ft. q' I e" Rear 50 ft. s. \y q• yl'/ Ta' _ Jy1. / 2,771 AC.f / XL' 6 REFER TO THE TOWN OF NORTH ANDOVER ZONING ORDINANCE FOR MAP 107C LOT 74 VERIFICATION, ADDITIONAL RESTRICTIONS AND PERMITTED USES yh° ' ' / a / •, i ~ n° N/F WJG NOMINEE TRUST 2)LOCATION OF UNDERGROUND UTILITIES IS APPROXIMATE ONLY. i 321 IPSWICH ROAD ADDITIONAL UNDERGROUND UTILITIES OTHER THAN THOSE SHOWN d ^ ' x yam` �l�✓ 6 - 4 x xna4 R ^ BOXFORD, MA 01920 MAY BE ENCOUNTERED. :-O-N =�— J`^� ,y „ R BOOK 4513 PAGE 99 3) ELEVATIONS SHOWN HEREON ARE BASED ON NGVD DATUM. F y'� % \ / ,��• " 3 ,ye ae`'' x�aXtia' �l 0 50'± HIGH. SHOWN ARE AT THE TOE OF CURB, CURBS ARE PLAN RFEFERENCES: I �u I / , - 1)NORTH ESSEX REGISTRY OF DEEDS PLAN $8352. ONE STORY ` �. y` a J c0r:c —1100D PLATFORIA 0 $1t' 2)NORTH ESSEX REGISTRY OF DEEDS PLAN,y9650. C01',ICRETE 0 e°tiE BLOCK i >o " BUILDING l t ry � }B i 1 0, \ x 1 xti> 4 6' xry �\�r r — LEGEND �,. vp ny� - e y 00 cn, UTILITY POLE ti ?R r I 1" 5 " 4- TUMINOUS \ ry ry�o9 ? e a' ,1h' tip- // CONCRETE \\ z' .�,y' � x ❑ CATCH BASIN r`�j ' AI �l .�.�'y y I ° \/ xyc, f f \' �> e ® SEWER MANHOLE FIRE HYDRANT 9 2., tdV.=246.413 y' WATER VALVE GAS VALVE GAS LINE yF 'Lyy6�. �\h \�1ry`IFJ'.� 6' -W / r / WATER LINE xrya�� / Y a }i, .° I h^':.� }ti. A/ a'�•' \I 1e^�. , �y r. ` , N_ CHAINUNK FENCE DITCH Cr! t W STONEWALL ONE STORY in COP',ICRETE BLOCK / OF SPACES ON R.O.W. o M SPOT ELEVATION 1 S , ' x , 23,800 SFf y"y CONIFEROUS TREE FF-Z4E.08 y n, EDGE OF WETLAND AS C / °I I a zti4 ail I �k1 BY EPSILON ASSOC. IN PREDEVELOPMENT DRAINAGE MAP fO7C LOT 76 m + LOh ARE 2°E!,e`. a I. ja tt �1 N, yy �° 65 FLAGSHIP DRIVE x V OWNER OF RECORD NORTH ANDOVER. MASSACHUSETTS 01845 GLOBAL REALTY TRUST PREPARED FOR:DRIVE/ a, ° ¢ry x=^� y' �'� x NORTH FLAGS R )!A 01846 RANGER DEVELOPMENT BOOK 2400 PACE 164 65 FLAGSHIP DRIVE NORTH ANDOVER, MASSACHUSETTS 01845 pp� J 103 Stops Road, One Solpm,Naw Hamphlr0 phlro 03030 79 (603)893-0720 GRAPHIC SCALE — _ = ENGINEERS-PLANNERS•SURVEYORS MHF Design Consultants. Inc. SCALE: 1'=40' DATE: JANUARY 29, 2001 IO �P,lYN2 N0. DESCRIPTION BY DATE DRAWN BY: CHECKED 8Y: PROJECT N0. I SHEET NO. ( IN Fjwr REVISIONS DMC MSG 109900 2 1 Inch- 40 ft G�Rrw Pow RM -- GPP.SS — G� ' �\. C ,u 0 ° / f 7. 41 6244 C3 SITE) o n, 1 �(ck LOCATION MAP (NOT TO SCALE) LA CiO O , -72 FOl? ' N 1jA7 N } GRAPHIC SCALE U, Q IN FM I Inch 30 ft. M o \ .�. /" — �,� t N N M LEGEND V '-g S • (ill N m' \\\\ / \ / n O O —•— GAS LINE Dx \ 11y, ..`\ W `m unLrry POLE —e— WATER LINE ° O J O CATCH BASIN .o--o—o- CFWNUNK FENCE U)u-'T � / O • —0I✓00- STONEWALL `L 11 T c. B SEWER MANHOLE mvz I �\ �� 0, IT C0ti O Q � �•�� 'l� OD _pr ® I OF SPACES ON R.O.W. `1 f G FIRE HYDRANT M �`/` \ EDGE w \ 4r wATER VALVE SPOT QEVATION Z = I r II�`2 ) pO GAS VALVE CONIFEROUS TREE N G ` / Mtn O D I \' �' M 1 .=244.6_ Oz m c) vo m j 2 Q r� - \, WOOD PLATFORM \ s `cO"-P' '- N �(n C7 —1 -u ( �) EDGc 00 0 �! ♦ \ N 'TI z �� 00 m D c) / Zee r II c) D s (n Q I / / i / l B \\\ .,�I,IV 244.48,aa`w- NO.1 DESCRIPTION I BY DATE REVISIONS POSTDEVELOPMENT DRAINAGE AIAP 107C LOT 76 m X �_ B ^ , I `\ F3 \ 65 FLAGSHIP DRIVE sl MM ) I, \ Ct NORTH ANDOVER, MASSACHUSETTS 01845 3 PREPARED FOR: / �\ \ DITCH RANGER DEVELOPMENT 65 FLAGSHIP DRIVE tl;,.. , ; / I NORTH ANDOVER, MASSACHUSETTS 01845 G-' r i s B / w 3 MT m�--1 of 103 Stiles Road,S.R.Ona -4 �` m a) 'D 7{,� — Salem,New Hompshim 03079 M .i..7 W (603)893-0720 / // / Z_t x Z ENGINEERS•PLANNERS•SURVEYORS �{ -' , / n\D n MHF Design Consultants, Inc. DRO. I - - SCALE: 1'=30' DATE:JULY 16,2001 N �099SP.AWING DWO DRAWN 8Y: CHECKED BY: PROJECT NO. SHEET NO. DMC MSG 109900