Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Miscellaneous - 39 HIGH STREET 4/30/2018 (4)
35 .�i � { Job No. 16-242-1220 By MJS/PGS �i i" CARUSO TURLEY CLIENT: SCOTT Panel Claw consulting 1570 Osgood Street structural Suite 2100 engineers DO. North Andover, MA 01845 TURLEY STRUCTUMI. y +. No.34880 PROJECT: Q'STE RICH 39 High Street ONAL 39 High Street North Andover, MA 01854 YOUR VISION IS OUR MISSION PARTNERS Richard D.Turley,PE Paul G.Scott,PE,SE Sandra J.Herd,PE,SE GENERAL INFORMATION: Chris J.Atkinson,PE,SE Thomas R.Morris,PE BUILDING CODE: MA State Building Code, 8th Ed. Richard A.Dahlmann,PE ASCE 7-05, with SEAOC PV1-2012 and PV2-2012 i 1215 W.Rio Salado Pkwy. Suite 200 Tempe,AZ 85281 T:(480)774-1700 F:(480)774-1701 www.ctsaz.com r Date: November 10, 2016 Mr. Peter Bannon Panel Claw 1570 Osgood Street, Ste 2100 North Andover, MA 01845 RE: Evaluation of Panel Claw system CARUSO TURLEY Project Name: RICH 39 High Street SCOTT CTS Job No.: 16-242-1220 consulting Peter Bannon at Panel Claw, CTS was asked to review the structural Per the request of , engineers Panel Claw system with respect to the system's ability to resist uplift and sliding caused by wind and seismic loads. Wind Evaluation: Panel Claw has provided CTS with wind tunnel testing performed by I.F.I (Institute for Industrial Aerodynamics) at the Aachen University of Applied Science. The system tested was the "Polar Bear 10deg Gen III HD" system. This system consists of photovoltaic panels installed at a 10 degree tilt onto support assemblies. The support assemblies consist of a support frame for the PV panels, wind deflectors and areas for additional mass/weight as required for the ballast loads. YOUR VISION IS OUR MISSION PARTNERS The wind tunnel testing was performed per Method 3 in Chapter 6 of ASCE 7-05. The parameters of the testing were a flat roof system in both Exposure B and C Richard D.Turley,PE on a building with and without parapets. The testing has resulted in pressure Paul G.Scott,PE,SE and/or force coefficients that were applied to the velocity pressure qz in order to Sandra J.Herd,PE,SE obtain the wind loads on the PV system. From the wind load results it is then Chris J.Atkinson,PE,SE possible to calculate the ballast loads required to resist the uplift and sliding Thomas R.Morris,PE forces. Richard A.Dahlmann,PE Panel Claw has provided CTS with the excel tool that was developed to obtain the uplift and sliding forces. CTS has reviewed this tool and the wind forces obtained to find that the amounts of ballast and mechanical attachments provided are within the values required. Furthermore, CTS agrees with the methodologies used to develop the uplift and sliding forces for the "Polar Bear 10deg Gen III HD"system per the wind tunnel testing results. Seismic Evaluation: CTS was asked to review the Panel Claw system to determine attachments required to resist seismic loading of the ballasted solar support system on the roof of the existing building. Following IBC Load Combination 16-15 and ASCE Section 12.14.3.1, the Dead Load value has been reduced by subtracting the vertical component of the seismic forces (0.6D - 0.14Sds*D). The contribution of friction has been further reduced by a factor of 0.7 in accordance with 1215 W.Rio Salado Pkwy. recommendations from SEAOC PV1-2012. Suite 200 Tempe,AZ 85281 Utilizing this method, calculations have been provided for the number of T:(480)774-1700 mechanical attachments that are required to resist seismic forces that are applied F:(480)774-1701 www.ctsaz.com 1\ to the system. These calculations have determined that the friction generated from the ballast is sufficient to resist the seismic forces, and that no mechanical attachments are required. Conclusion: Therefore, it has been determined that the system as provided by Panel Claw is sufficient to resist both wind and seismic loads at this project. Please contact CTS with any questions regarding this letter or attachments. CARUSO TURLEY Respectfully, SCOTT consulting structural RICHARD D. engineers 7uRLEY STRUCTURAL y 9 No 94880' .eF STEP�\��`'� NAL Matthew Schmitt, EIT, MSE Richard D. Turley, PE Structural Designer Partner YOUR VISION IS OUR MISSION PARTNERS Richard D.Turley,PE Paul G.Scott,PE,SE Sandra J.Herd,PE,SE Chris J.Atkinson,PE,SE Thomas R.Morris,PE Richard A.Dahlmann,PE 1215 W.Rio Salado Pkwy. Suite 200 Tempe,AZ 85281 7:(480)774-1700 F:(480)774-1701 www.ctsaz.com . 11 9 2016 pane �i� caw" Partner Name: Solect Energy Project Name: RCH 39 High Street Project Location: 39 High Street North Andover, MA, 01845 Racking System: Polar Bear III HD 1_ EEL- Structural Calculations for Roof-Mounted Solar Array Submittal Release: Rev 2 Engineering Seal �TUHLfY 97RUCTURAL. H ,9W 348W 5TVEE Nal PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978) 688.5100 fax-www.paneIclaw.com pane11/9/2016 claw" Table of Contents: Section: Page# 1.0 Project Information 1 1.1 General 1 1.2 Building Information 1 1.3 Structural Design Information 1 2.0 Snow Load 2 2.1 Snow Load Data 2 2.2 Snow Load Per Module 2 3.0 Wind Load 3 3.1 Wind Load Data 3 3.2 Roof/Array Zone Map 3 3.3 Wind Design Equations 3 4.0 Design Loads-Dead 4 4.1 Dead Load of the Arrays 4 4.2 Racking System Dead Load Calculation 5 4.3 Module Assembly Dead Load Calculations Array 1 5 5.0 Design Loads-Wind 6 5.1.1 Global Wind Uplift Summary Table: 6 5.1.2 Global Wind Shear Summary Table: 7 6.0 Design Loads-Downward 8 6.1 Downward Wind Load Calculation 8 6.2 Racking Dimensions for Point Loads 8 6.3 Point Load Summary 9 7.0 Design Loads-Seismic 10 7.1 Seismic Load Data 10 7.2 Seismic Design Equations 10 7.3 Lateral Seismic Force Check 11 7.4 Vertical Seismic Force Check 12 PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.panelclaw.com pane11/9/2016 c aw® Appendix: i A. I.F.I PCM11-5:Wind Loads on the solar ballasted roof mount system'Polar Bear 10 deg Gen IIIHD'of PanelClaw Inc.; February 25,2016 B. B. Building Code and Technical data it PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900-(978) 688.5100 fax-www.panelclaw.com 11/9/2016 pane claw 1.0 Project Information: 1.1 General: Project Name: RCH 39 High Street Project Locaton: 39 High Street North Andover, MA,01845 Racking System: Polar Bear III HD Module: Canadian Solar CS6P-265 Module Tilt: 10.40 degrees Module Width: 38.66 in. Module Length: 64.49 in. Module Area: 17.31 sq.ft. Ballast Block Weight= 34.00 lbs. 1.2 Building Information: Max Roof Height(h): 35 ft. Length(L): 43 ft. Width(B): 315 ft. Roof Pitch: 1 degrees Parapet Height: 0 ft. Roofing Material Attachment: Fully Adhered Roofing Material: EPDM Coefficient of Static Friction(A): 0.54 1.3 Structural Design Information: Building Code: MA ST B.C.8th Ed. Risk Cat.: II Basic Wind Speed(V)= 100 mph Exposure Category: C Iw= 1.00 Ground Snow Load(Pg)= 50 Is= 1 Site Class: D Short Period Spectral Resp.(5%)(Ss): 0.32 is Spectral Response(5%)(S1): 0.075 le= 1 Ip= 1 PanelClaw,Inc., 1570 Osgood Street,Suite 2100, North Andover; MA 01845 (978) 688.4900-(978) 688.5100 fax-www.panelclaw.com 1 11/9/2016 pane claw® 2.0 Snow Load: Snow Calculations per ASCE 7-05, Chapter 7 2.1 Snow Load Data: Ground Snow Load (Pg)= 50.00 psf (ASCE,Figure 7-1) Exposure Factor(Ce)= 1 (ASCE, Table 7-2) Thermal Factor(Ct)= 1.2 (ASCE,Table 7-3) Importance Factor(Is)= 1 (ASCE, Table 7-4) Flat Roof Snow Load (Pf)= 0.7*Pg*Ce*Ct*Is= 42.00 psf Snow Load on Array(SLA)= 42.00 psf SLA Fig.2.1-Uniform Roof Snow Load on Array 2.2 Snow Load Per Module: Snow Load per Module(SLM)= Module Projected Area* SLA Where; Module Projected Area(Amp)= Module Area * Cos(Module Tilt) Where; Module Area= 17.31 sq.ft. Module Tilt= 10.40 degrees Amp= 17.03 sq.ft. SLM =A,,,,, *SLA = 715.24 lb PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.panelclaw.com 2 11/9/2016 pane r'i caw 3.0 Wind Load: Wind Analysis pet ASCE 7-05:Method 3-Wind Tunnel Procedure,Section 6.6 3.1 Wind Load Data: Basic Wind Speed(Vult)= 100 mph (ASCE,nputa bz) Exposure Category: C (ASCF San 65&3) Topographic Factor(Kzt)= 1 (ASCFnp.u4) Directionality Factor(Kd)= 0.65 (Asa.Tebk61) Exposure Coefficient(Kz)= 1.01 JALUXTabkbd) Iw= 1.00 MRI Reduction= 0.93 (r bit M7) Velocity Pressure(gz)=0.00256aKza KztaKd'VA2alwaMRIA2=19.01 PSF (Asa,EVA 6-15) 3.2 Roof/Array Zone Map: IFor west winds with wind directions from 180'to 360. setbacks North edge 1aVth',. nh+ter -.SSG-11ti 'S lmRv taf:ilfl:� 1,tcnor Yrteea Ytterld iraerbr 'apy- YmCrdy nr,v rvw r Li"Mt.}' nter{or 1n.Mt neerix nrerfd uaand batntar i ^y MM..JiA Y»erbr ..^�YMYi v� pfbrbf 1.4-4th 1nGCnLr MMd InteliK kge/bI Li ..*rr� Idry KtnaY j . 'f..; nbnG'.. Gdyylaa»y (tNMY yatraY tmyy tf aY (they YerraY tday fl anY'Y yl( (tr+y r nay feew a araer '. 4 q,4'W'+" a.eu+ar 1-�Y r stay ,Mny;r"--" May n array tdey rc,n.r E �. ra laser row Ya..�{ G e tatsn ntenor �,�.L: +�� terns sereno ,at:;t;.a�w�.4 e,waw o-,somr n t nlnr'rov v,ar rtT> Gaf�,y 11W rVN t,M rew fatly rpx / a taLM Manor ;.yi �Asfiur Mvb ( #BnN at'IY r—aY e ibl-.Ga+ b,tarb :7+�wiy. /+tr�1W Merlar Sar+Y Jl naaY ta^�YV entry {�Iy rcnimy e d ro.. row mr(, row m.> ss,er row {bY,er row Wer row d g tee.om ntenor "ga"Gefti;`.. tntenor meaner fw.atn s,tartar ` s,terwrD MOM e w.ar.noa row sa'r. ray row .row m row +Wer row e 1u4at sreeno> ;t;G.Gr.-`" .,toad `na.t>. Sa.un .ntaad saerter rtaY Ss%am Weeny -.:aY;11ni�.., >r.rerw» aa.rwr eaas. ta,eav r,—iv� �. nae.row w row row9WM Wft- MM 4 Far-.sm mtinor jw+f!.' nmror suanQ- r:i:�rn nt� trxenv .nor tow neer rnw -c rw teG-In snen> ,-3a4!titl.' n?eror -nbe.to l.t-fin, nteHv lrrta� sw»tawr arr.o.r, a,., aotnrr tow totem Sar-1u. tt►4tp... nrerrea - tnreaor scram ntert> sum setback a South edge Typical Roof Zone Mapping for West Winds with Directions from 180*to 360' Roof zone Map Dimenions per IFI Wind Tunnel Study Height(k) Ll(ft) l2(ft) L3(ft) W(ft) LS(ft) L6(k) L7(k) L8(ft) Vetocf Pressure( z 3I,0 43.00 0.00 43.00 0.00 49.21 49.21 36.09 180.49 19.01 PSF 3.3 Wind Design Equations: WLapigr/module=gzAmCfz,ayufe WLsiding/module=gzAmcfzrsudi-a Where qz=Velocity Pressure (Ref.Pg.3,Wind Load) Am=Module Area (Ref.Pg.1,Project information) Cfz and Cfxy=Vary and related to wind zone map (Proprietary Wind Tunnel Coefficients) I PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900-(978) 688.5100 fax-www.panelclaw.com 3 ' 11/9/2016 pane AVAFAF claw" 4.0 DeslEn Loads-Dead: There are two categories of dead load used to perform the structural analysis of the PanelClaw racking system;Dead Load of the Array(DLA)and Dead Load of the Components(DLC). DLA is defined as the weight of the entire array including all of the system components and total ballast used on the array. DLC is defined as the weight of the modules and the racking components within an array.The DLC does not include the ballast used to resist loads on this array. 4.1 Dead Load of the Arrays: Max,Allowable Pressure on Roof= 5.00 PSF Array Information Results ua- rray oo, Sub-Array Numbers of DLC Sub-Array Sub-Array Roof Pressure(DLA) No. modules DLC(lbs.) DLA(lbs.) (lbs)/module Area(FtA2) Pressure(DLC)(psf) (psf) Acceptable? 1 109 6,352 13,050 58 2,649 2.40 4.93 Yes 2 116 6,687 13,861 58 2,812 2.38 4.93 Yes 3 83 4,777 9,027 58 2,013 2.37 4.48 Yes 4 152 8,628 18,114 57 3,651 2.36 4.96 Yes 5 1689,552 19,344 57 4,044 2.36 4.78 Yes Totals: 628 35,996 73,396 Table 4.1 Array Dead Loads and Roof Pressures PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900-(978)688.5100 fax-www.panelclaw.com 4 11/9/2016 pane AFAFAF c aw 4.0 Design Load - DeaaiQont.l: Racking System: Polar Bear III HD 4.2 Racking System Dead Load Calculation: The array dead load is made up of three components;the racking assembly,ballast and module weights. Array# 1 Component Weight: Quantity NORTH SUPPORT= 2.02 lbs. 48 SOUTH SUPPORT= 1.8S lbs. 48 STANDARD SUPPORT= 2.32 lbs. 170 LONG BALLAST TRAY= 7.14 lbs. 112 SHORT BALLAST TRAY= 3.99 lbs. 42 CLAWS(2)= 3.88 lbs. 109 MECHANICAL ATTACHMENT= 0.48 lbs. 20 MA Bracket= 2.32 lbs. 20 Canadian Solar - CSGP-265= 39.68 lbs. 109 Ballast Weight: CMU Ballast Block= 34.00 lbs. 197 4.3 Module Assembly Dead Load Calculations Array 1: The following calculation determines the nominal weight of a single module assembly. This value is used to calculate the required ballast for Wind Loads as shown in Section 6.1. Single Module+Racking System Weights: Nominal Assembly Weight Components Array Dead Load(DLC)= 635 s Module Assembly Dead Load(DLC)= Components Array Dead Load(DLC)/#Modules PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.panelclaw.com 5 11/9/2016 pane AFAVAIV C aw 5.0 Design Loads-Wind 5.1.1 Global Wind Uplift Summary Table: The necessity to add mechanical attachments can arise forseveral reasons.Building code requirements,roof load limits and array shape all may come into play when determining their need.The table below provides the mechanical attachment requirements for each sub-array within this project. Assumed Allowable Mechanical Attachment Strength= 350.00lbs. Applied Load Resisting Load Code Check Sub-Array W=Total Wind DL=Total Quantity MA MA Capacity Calculated No. Uplift(lb) Dead Load(lb) Provided (Ib) Factor of Safety* Check 1 10,432 13,050 20 7,000 1.92 OK 2 9,765 13,861 8 2,800 1.71 OK 3 5,031 9,027 0 0 1.79 OK 4 11,816 18,114 5 1,750 1.68 OK 512,218 19,344 0 0 1.58 OK Totals: 49,16211.. 73,346 lbs. 33 11,550161. Table 5.1 Summary of Mechanical Attachment Requirements a:Beck calculated factor of safety provided to determine factor of safety applied to dead load In lieu of 0.61n ASCE 7.05 equation 7,BACK CALCLUATED SAFETY FACTOR=(DEAD LOAD-MECHANICAL ATTACHMENT)/WIND LOAD I PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.panelclaw.com 6 paneffffAr 11/9/2016 caw 5.0 Design Loads-Wind(Cont.l 5.1.2 Global Wind Shear Summary Table: issumed Allowable Mechanical Attachment Strength= 350.00lbs. Applied Load Resisting Loads Code Check Sub-Array Wu=Wind Ws=Wind DL Total MA MA Capacity Calculated Factor No. Uplift(lb) Shear(lb) Dead Load(lb) Provided (lb) of Safety* Check 1 6,015 3,212 13,050 20 7000 1.68 OK 2 5,124 2,930 13,861 8 2800 1.58 OK 3 1,414 954 9,027 0 0 2.84 OK 4 6,234 3,580 18,114 5 1750 1.54 OK 5 6,106 3'L12. 19,344 0 0 1.53 OK 4,1 Totals: 24,893 lbs. 190 I'Ds. 73,3961bs. 33 11550 Table 5.2 Summary of Mechanical Attachment Requirements. Back oIcolated foam of safety provided to determine factor of safety applied to dead load In lieu of 0.6 in ASCE 7-05 equation 7,RACK CALCLUATED SAFETY FACTOR=(DEAD LOADLMECHANICAL ATTACHMENT)/((WIND LOAD/FRICTION).WIND UPLIFT) it I PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.panelclaw.com 7 i 11/9/2016 pane c aw 6.0 Design Loads - Downward: 6.1 Downward Wind Load Calculation: WLin = 9z *Am *Cfz *Cos 0 I Where: qz= 19.01 psf (Ref. Pg.3, Wind Load) Am= 17.31 sq.ft. (Single Module Area) (Ref. Pg. 1, Project Information) 0= 10.40 deg. (Ref. Pg. 1, Project Information) Cf, = 1.13 (Inward) (Proprietary Wind Tunnel Data) WLin = 3661bs./module Contact Pad by Location: A= Northern B= Northern I C= Interior D= Interior E= Southern F= Southern 6.2 Racking Dimensions for Point Loads: F F II Inter-Module Support 45.47 in. Spacing= I 20.02 in. � Inter-Column Support Spacing= I � A Typical Array Plan View Section A-A on Next Page) e E ) PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.paneiclaw.com 8 11/9/2016 . pane C awo 6.0 Desien Loads-Downward(CONT.): 6.2 Racking Dimensions for Point Loads(Cont.): Tray :4 Tray 2:0 Tray 3:4 Tray 4:4 Tray 5:4 19" XS X3 XS X3 X2 17.5" 91, I t t ti A B C D E F G H I Section A-A Distances Between Supports(Unless Noted): X1=32.24 in. X2=14.33 in. X3=20.00 in. 6.3 Point Load Summary: DLsys= 58 Total DL= (Varies an location and ballast quantity) SLm= 715 lbs./module WLin= 366 lbs./module Extreme Point Load Summary Table load combinations(ASD) Location Load DL+SLm DL+Wlin DL+0.75 X SLm+0.75 X Min Northern A 142 lbs. 98 lbs. 1541bs. i NorttSern 9.'w 119 lbs. 76 lbs. 131 lbs. Interiors 239 lbs. 151 lbs. 263 lbs. lntetior, 'K, a A ,.,_' 216 lbs. 129 lbs. 2401bs. Interiors, E '» 239 lbs. 151 lbs. 263 lbs. Interior _ F 216 lbs. 129 lbs. 240 lbs. Sput#iern, G 64 lbs. 35 lbs. 72 lbs. Spdtlsern ,-; µ', 98 lbs. 69 lbs. 106 lbs. Soutt3em 1': % 98 lbs. 69 lbs. 1061bs. fortheckmg _,. ,Es Fir>`° 1432 lbs. 908 lbs. 1576 lbs. Table 6.1-A Extreme Point Load Summary Ballast Block Point Load Summary-(LB/Single Block Applied at Tray Location) Point Loads(Ib/single block)at each Tray Location Location Tray 1 Tray 2 Tray 3 Tray Tray 5 11 lbs. Nortfiern B 6lbs. 17 lbs nterior r C. 111bs. I >.�Jnter)o 6lbs. Irrteriar - F 11 lbs. Interior = F; 61bs. Soutfiern �y G Southern H 9lbs. Southern I. 9lbs. Table 6.1-B Single Block Point Load Summary PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900-(978)688.5100 fax-www.paneiclaw.com 9 1� pbne11/9/2016 c aw 7.0 Design Loads - Seismic Seismic Calculations per ASCE 7-05,Chapter 11-Seismic Design Criteria Chapter 13- Requirements for Nonstructural Components 7.1 Seismic Load Data: Site Class: D (Ref. Pg.1,Project Information) Seismic Design Category: B (ASCE,Tables 11.6-1 and 11.6-2) Short Period Spectral Resp. (5%) (Ss): 0.32 (Ref. Pg. 1, Project Information) is Spectral Response(1%)(Sl): 0.075 (Ref. Pg.1, Project Information) Bldg.Seismic Imp. Factor(le)= 1 (ASCE,Table 1.5-2) Site Coefficient(Fa)= 1.544 (ASCE,Table 11.4-1) Site Coefficient(Fv)= 2.4 (ASCE,Table 11.4-2) Adj. MCE Spec.Resp.(Short) (Sms)= Fa*Ss= 0.49408 (ASCE, Eqn. 11.4-1) Adj. MCE Spec. Resp. (1 sec.)(Sm1)= Fv*S1= 0.18 (ASCE, Eqn. 11.4-2) Short Period Spectral Response(Sds)= 2/3(Sms)= 0.32 (ASCE, Eqn. 11.4-3) One Second Spectral Response(Shc)= 2/3(Sml)= 0.12 (ASCE, Eqn. 11.4-4) Component Seismic Imp. Factor(Ip)= 1 (ASCE,Sec. 13.1.3) Repsonse Modification Factor(Rp)= 2.5 (ASCE,Table 13.6-1) Amplification Factor(ap) = 1 (ASCE,Table 13.6-1) 7.2 Seismic Design Equations: Lateral Force(Fp) = c.4apS SWp(1+2(-E)) (ASCE, Eqn. 13.3-1) Ip FPLmin = 0.3SDSIpWp (ASCE, Eqn. 13.3-3) FPLm. = 1.6SDSIpWp (ASCE, Eqn. 13.3-2) Vertical Force(Fp„) = ±[0.20SDSWp] (ASCE, Eqn. 12.4-4) Lateral Resisting Force(FRL)* _ [(0.6-(0.14 Sds)) (0.7) (mu)(Wp)] (Factored Load,ASD) Vertical Resisting Force(FRV)= 0.6*Wp (Factored Load,ASD) * Per SEAOC PV1-2012-Frictional resistance due to the components weight may be used to resist lateral forces caused by seismic loads.The coefficient of friction for the roof material must be reduced by 30%. PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900-(978)688.5100 fax-www.panelclaw.com 10 pane ffAffff 11/9/2016 claw" 7.0 Desien Loads-Seismic(cont.l 7.3 Lateral Seismic Force Check: The necesity to add mechanical attachments can arrise for several reasons.Building code requirements,roof load limits and array shape all may come into play when determining their need.The table below provides the mechanical attachment requirements for each sub-array within this project. Assumed Allowable Mechanical Attachment Lateral Strength= 350 Nomenclature: WP=Sub-Array Weight FPL=Lateral Seismic Force FRL=Lateral Seismic Resisting Force Arra formation_Inf rmatl n Lateral Force Verification Results Sub-Array 0.7 FPL-FRL MA's MA's No. Wp(lbs.) FPL(Ibs.) FRL(lbs.) (lbs.) Required Provided Acceptable 1 13,050 2,063 2,732 -1,288 0 20 Yes 2 13,861 2,191 2,902 .1,368 0 8 Yes 3 9,027 1,427 1,890 -891 0 0 Yes 4 18,114 2,864 3,793 -1,788 0 5 Yes 5 1 19,344 3,058 4,050 -1,909 0 0 Yes Totals: 73396Ibs. 11604 lbs. 15367lbs. -7244 lbs. 0 33 Table 7.1-Summary of Mechanical Attachment Requirements MA's Required=0.7 FpFFRVMA strength PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900-(978)688.5100 fax-www.paneiclaw.com 11 11/9/2016 pane c aw 7.0 Design Loads-Seismic(Cont.1 7.4 Vertical Seismic Force Check: Assumed Allowable Mechanical Attachment Vertical Strength= 350 lbs. Nomenclature: WP= Sub-Array Weight FPV= Vertical Seismic Force FRV= Vertical Seismic Resisting Force Array Information Vertical Force Verification Results 0.7 FPv-FRV Required Total MA's Arra No. Wp(lbs. FPv(lbs.) FRv(lbs.) (lbs.) MA's Provided Acceptable 1 13,050 860 7,830 -7,228 0 20 Yes 2 13,861 913 8,317 -7,677 0 8 Yes 3 9,027 595 5,416 -5,000 0 0 Yes 4 18,114 1,193 10,869 -10,033 0 5 Yes 5 19,344 . 1,274 11,606 -10,714 0 0 Yes Totals: 733961bs. 4835 lbs. 440371bs. -406531bs. 0 33 Table7.2-Summary of Mechanical Attachment Requirements MA's Required=0.7 FPV-FRV/MA strength 1 PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900-(978)688.5100 fax-www.panelclaw.com 12 11/9/2016 pane ffffff C awo, Appendix A PanelClaw,Inc. 1570 Osgood Street Suite 2100 North Andover MA 01845 (978)688.4900 • (978) 688.5100 fax 9 www.panelclaw.com Appendix A pa n e meff 11/9/2016 c awo' FaH Hochsal►I�e�+acnen is:3.�wwx F.Er tr<tlsnuHea.:acfi^narrix f.mt+i Ixr w*at..A-zt e'i;rtr,csri�a! 4dC.Cc: I Fax 3rL.;3b°:9 c;:.x:-a2 {TSent. PanelC aw Inc.,North Andover,141A 01845,USA Report Na.: PCM11-5 Date: 62125!2016 I Wind lows on the soler ballasted roof mount system ,Polar Bear 10deg Gen III HD"of PanelClaw Inc. Design wind loads for uplift and sliding according to the ASCE 7-05 Reviewed by: Prepared by: Dr:lncg_Th.Kray Dipl-1ng.(FH).J.Paul fHearf Qf derraira.ntuT IerM dI a&ng) Lila azA L': E' cpfi=...3i5N Pl.s.*,.1rAISZZKX £.?R C: L'.,T;F F3t^CrZn-�.g?rt.�:.t7 N.c ia, Am:sgxErl Ga:R^': .^„�1 S .:sic:.a^sxryt?S:l EO` -•e!.:R.-'f:;2.3^..WA'=" F.+n4&9-� ..;d""f�s'%�G'c=e7 f:Cc-iaxip.':.-r:�3C i;.r'r! eTiri:C�t31" '`f _::F nMZ.4i !s'U's.'+'D--C Ar—y Lu:.. P:7i�F:YRA.PX%'.J�1?o.:SSMfiviaetu€6n•d2i:fk!.C?:Jeinuzkr.C.'dL'sx PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 9 (978)688.5100 fax •www.panelclaw.com Appendix A pane ffffff 11/9/2016 C awo, IMF IRLInstitut furindustrieaerodynarnikGrnbM Wind tunnel tests were con-ducted on the 'Polar Beal 10deg Gen [it HID" solar ballasted roof mount system of PanelCfaw Inc. The tests Were performed at LF.I. Institut ffir Ind'ustfeaerodynarr-A GmbH (Institute for Industrial Aerodynamics), Institute at the Aachen University of AppNed Sclences in accordance vAth the test procedures described in ASCE 7-05, chapter 6,6 and in accordancewith the specificationsof ASCE 49-12. The array assemblies of the solar ballasted roof mount system 'Ptlar Bear 10deg Gen Ill HD-with tilt angles of 1 Odeg are depicted in Figure 1 and Figure 2. The system is available in fully deflected and partially deftected configurations. 'k J� .p 'pC Figure 1: krray asserntiy of the fully d-effecied.solar ballasted-YOC4 rncpunt Bystem,Tsar.&-ar 10degrn I N HD7 vAth a rnadula tit angle of 1 Ddeg Testing was carried out with a surface roughness of the fetch in the:boundary layer wind tunnel eqtiwalent to open country(Exposure C according to ASCEZEI 7-057 and for a total otal of 11 building c=ftgurations with sharp roof edges and with parapets of varying height Figure 3 shows one sharp-edged flat-roofed building model including 10he view of the fetch it the large I.F.I.boundary lay&-vAnd tunnel.In figure 4 a close-up of the Polar Bear I Odeg Gen Ill HID solar ballasted roof mount system is Report MG_:PCM102 Wind loads on the solar ballasted roof mount system„Polar Beer 40deg Gen III Fib"of PanelCtaw Inc. Design Wind toads for uplift and sliding according to the ASCE T-05 PanelClaw,Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 9 (978) 688.5100 fax o www.panelclaw.com Appendix A 11/9/2016 p ane ffffff C awe F. LF1 lnsti3crt Kw Industneaerodynarnik GmbH depicted.Pressure coeffidents were provided for normalized loaded areas of, varying size, seven roof zones and eight array zones. Loaded areas scale with building dimensions and are valid for flat-roofed buildings.with a minimum setback of 1.0m from the roof edges. The. Vessure coefflaents,may be mutl5ptied by the design velooty pressure q,,determined depending on the wind zone,the exposure category and the roof height in accordance v4th the Arnefican standard ASCEYSEJ 7-05 to determine the sand loads on the solar system- " V-1c, 0, .... ...... 5, "Y Figure 2: Aftay assembly of the partial. defecled solar ballasked roof mount sysiem`Polar Bear y tOdeg Gen[H HT With a madde tilt angle d.l!',--g The test results are likely to be appropriate for upwind Exposures B.C and D on flat- roofed buildings, assuming use in compliance with ASCEISEI 7-05, Chapter 6.5.2. F.rom these results it is possible to calculate the design baflast for uplift and sliding safety - sliding of solar e-.ements occurs if the aerodynamic lift has decreased the down force due to deadweight sufficiently so that the drag forces are larger than the frictional forces-on ffat roofs with pitch angles upto T, Report No.:PCM10-2 Wind loads on the solar ballasted roof mount system rPolar Bear 10deg Gen III H[7"of PanelClaw Inc. Design wind toads for uplift and sliding according to the ASCE 7-05 PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 0 (978)688.5100 fax e www.paneiclaw.com Appendix A 11/9/2016 pane ffffff c aver A&V FAHLFA.InstftutftirindustrieaerodynamikGmbH -4- The pressure coefficients were determined for a set-up vrhere wind direction 4' corresponded to wind bloa!ving on the north fagade of the fat-roofedbuilding. How-ever,the results may be applied if the main axis of the array is not skewed more than 15'vith the building edges.. >„g n Figure 3: Wmd lunnel model c`=.he t a:-rocse+d tu'iiring with the solar hallsstcd roof mount system "Polar Mar VDdeg fen ill HD"vAth ammd.ie tit:aro—sof lodcg mounted on.the turntable inducng view sof]he fetch in the tame 1F.t,boundary layer wind tunnel:28X12 array in:the south-east roof portion, The present design loads for grind actions apply without restriction to solar arrays deployed on low-rise buVd;ngsas defined in secUon 6.2 of ASCE 7-05. The wind tunnel testing also applies to buildings higher than 18.3 m (60 ft) which are ------- --considered.rigid_A-bu ldirtg may aiv:ays be-assumed_as_rtg°d_if_it_is�tJeast�sde----- ----_--.-.- -- ----- as it is h¢gh. The pressure coefficients determined from the wind tunnel tests show that the system in question needs very little ballast In the array interior.The stilling and uplift loads exerted by the wind on the modules are small due to the arrangement in rows_ Higher loads were only observed in array comers and along exposed edges of the array.and these have to be taken into account_On the basis of the measurements canoed ouL this may be done directly by increasing the ballast locally on the array Report No.;PCM10-2 Wind loads on:the solar ballasted roof mount system Polar'Boar 10deg Gen III HfY'of PaneiCtaw Inc.. Design wind loads for uplift and sliding according to the ASCE 7-05 PanelClaw, Inc.,1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 a (978)688.5100 fax 9 www.panelclaw.com Appendix A 11/9/2016 pane ffffff clawo Appendix B PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax•www.panelclaw.com Appendix B p ane ffffff 11/9/2016 ciaw'B t Chapter 1:3 SEISMIC DESIGN REQUIREMENTS FOR NONSTRUCTURAL_ COMPONENTS JIM GENERAL n1.4Eumptions The f:tlliicL-u-.rwr;&1rL,,W.:A Lo ttparca:t=_sre I:;,1.1 Sripr eurnpr fmmi the srtiti;:rrt t6 i,f'this sc:t:wm aikaimvrm 4i "1 rtlC;sd Trni<.:utTuclL i sx.ra a::.iLaci chat. a.��..i=i snr L. E a.-rttarL rz-:r,pE cahLrt' as aura„.'in :it c , rx s ru:urs and to i u zcrpen anti. t IC1 i1 at s tenk 3t ur tit.u - Ft +[ r rLsi4L tn:ral 3 n v,anti r r rN'v.ht e.;a£�rLr r n-por'- rs zzalc.ittall cr ecia: 3 s 5 m.r -n of. a rrc�tLF! r u, r 4 t.u scr ti B kir i.a sn ll d.1?. t 1 t..:.spct5 upp rf -3 hn 16 ei laze Li-t: t- f=4-LE ,L t,�£ we parr_ c1:, a F:t rtv ti, add �ttial"Ictc: tine f in sc i t f die C'mpriznt sr tr t< £r nc c r rt v st t ttr r ! v J it,Y?t. z i i;. aar IaL?diC t s.LL L.d t tth p 3 :.: snL ti tt�cr n t J ;Mz"ru tl.n.ckctri._tLctnpWtcr&4ras..ra 1Y 4irF l r 6 t 'd '.urt al n£.:i trt_J a7[Tmpa?r rf.tr.5 5.:i>< IM-1}Stisntic IkAgn Ca"-ry Its nL J r a p t diz i th.0 tt ' t•,^zi ne:•. Finfrit 13~nt s v,J lits sr pw .Yi t- 77srJ r9t t r 1'.1"£ :r F i Oyu:tot t c tmp z- halt h. hr r£r x£ nu tx .it'alti..al2rid elcancidi mlynrct,,itS e ras•: 41-mm>Jccl r4 sa l itt th-V u> ilacIA. It 1 t ,c'S D-.c,or uh�r A,xt;ce td Yfxt`F:i1:2 13A.3Compincnt ImportameTatfor 2 Th'. v r v xe' F *arce iiSiP i,,is c, Y h A I xr; r n :1 f Yr i s ru S a n v.;iet:l i Thr trt,.r ns i;r £i ta• iia he J t,,thr t^T a :Hifi >C in i}L 1A r Th 'L"s*.itL L. { e m,pun. 4 Brei tru ce f uu ! ,it L h 4 r'i s I.• y C.Ficc at a,-t d I C :C.xi clic t3<i:tY rtf L"it.fiiYLsxaicz ;f tq; arA - _.J..f.twwolt piping and Y Tha .:,.� .crt» .'ijuired vi fiiaintoa i£,r[ cCd t ri z,rrcr Wu L :tc par"xss 41ertn ti rrcha;feg f. Tli c n-,ter t m Zhs 401111 a $0 Xiirr h pvewr:6,10f..i..in r wims and cvvis, f and has r nr t-3 vaz �I x :Cc it tri tt� o 21-m,--or t .4 W£tr a1 rill at 3 i.rr I ' 11-ri� o1=£crw:'e k-,&'or j cmi .:3 t(ti£ hgrbl}icva 'r r plus e uh- R.Ttc c to u. ha rt th fit N"or --- !1 n•e_s ct tl.q i nin?s the i rt lex r in tt c2sc(,to a thnz&�'Id if.7:u£Lim V.tt:.Li:rt-d n3.41it,.n.h.s;t}' 7. l-n:i-,r'.ees. f :in ;mio-1 k ukm and is silfiicrcr.t ti 1m;c a threat 4 is.� parla tmicatt' ti.,; C1tM�AptdicaflimofNvrustrurturclC'tmponxnl I Tl .,crt i...is,r tt.:i.a._k,a I33ck Cat- :Rctlulwmeah trr Nonhaddi'nn 6trudur-0, 44 I't LZ JJZ.aad [£ aCedC i£+ c-nw:re.f - r r_t;na oilhr t;:t£iL vt it.Caiiv..c..lr3 a,,:p,;r sErh fvl rrn cs£nil rel tr r- r 's4 �.,; an titrw} Sit ;a _.'„j rt..d- the U- naR: hit -1nL i cras.uo t thera t zl- Tl_ etar itn.tt a.ir.rx:asr hal�;3 i a uLl= #.i. r t.hc i -1°.u ik tit sittiC'{151 tr >fr -iYsitca rr .,t£ tt£r uv.:,u,...,il+vr r:_.ai ..tS:...i.:sf.3a,:a -.. xa.urc or oni f t!f T.6 n i<.Iti v,L h ctL i r f Lnd t^ n L rr f tl ,i d rh` Y.,£S L'"z NP' 4p ndr{nTl,.l 5..t or tt r i,t L (1-i.P h 1 rA,. a'a7u:d to tf-r s.a;=..ii.c:,R . ;�. i Lard in S r n i .T;i.xa3o•�>.`.r, st.L:be t-icr- t.Iv.ucIc;'Am-' r,L,.h. bc,i•}i_r_zia.o fs;:.. t r-i,:iL 'i7 ..L,.du.,. +,i:.h 'Ltitca -f Tabic l=. -I < rquzi fij 1.0i. Jt I i s PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 9 (978) 688.5100 fax 9 www.panelclaw.com Appendix B pane11/9/2016 Clawe 4-1 a.'.x_!ll rl c .;i s;rbcrcntt;ua-- :xJ::^.p : :.i Iv J c.:.:,1 a.an t....plam.c nc lr,ni to e!r:garc :t 0,smw1af s:lni alv Ova iflod tt i.,a 7`k; i.rer=_cLpOy r.l:mr; ,r-I';aad Le id--.kmonrarali[ ...nrnpiiimc bc-'a uspf,t aad wtt,:u...a:a,aat.ar e q'jJ.'i AQn +h'iJll tEi.s try-u,[°:Hove s llf 1k suh_vn_al for fn exper._...A!xa ras J w•r;st a:to a Ilr =t.taizcd aprmk r u_tftc wul.lu ::sav:.._r n „�ro.jtt-r Ja.xcdur w fi�v aufi,r t; I,a uY t r=:.tlie- rc°y t^u" ^YJ x_c�•pi„-r by rt__:t rsl s..,_n t-A*.:a aL•al h-.b:..,ur•f. ,sfr Iiia&n.•r:;nJ ccWii.a- p ,;=.a;;J. suhsumdaW I lr_;nperc_ta csarh hara. Lx sva' t.,[...s::id snslnic ca.a<a,, c;aat Yr exceed th.sc ar._ as<:_rw,.t L.rr,pa.a.n [r�rlK�'Iuncc fa.^rt.I,,.ur J S -dtn.l;ds dmwi-[ir,.d r - -c!uu:'c auk Sci tk-ns in t:'•r:;v d'-m e a r:r Scci<:=a 13.i bc,:crt.dud 1.i=.I.aral t 3.3.'_. by the manafscrurcrr-irr::im.-t.c:>n7s:rtrtcrl. . lx it:x h :cirr .,: hq.c a ground mo;x'3 by appn t u,hkc- rl t :ac_in t317 L'nrufrna Ese n[Itxrtmemis fir ztb�crirncr lt�hcrc Jt;r_'v of st t l-r,.c at I r n Jxap.;ilE or ' hata a+.a.....r4:mm cv tk, --�3is,[: ..2 n, lad;sapN and:fit h;ncxm ir,n air d ht�T:blo t; 7,vG'a dr<r-i s`-'l iv..h:.ur �ti.IYi:tir tra li 4wm ante A'yllt t'f5 tf_t7"s G[r1[: :4,x1.1 uhma;lesJ s r ;T..,4.. ,4 avn-ccs frcr :il h _<�.st_"rc I d..s r on.,f, J 1 5 tr ,.l.s 1'r J in_ v-. i tiaa Tu"xc aid :cpWcc is J f„ xn by aa.c act x dlr r s has-.!s rc.;i*t[.S ci..a"rt,aaa,rs>[u,u_!. W ;dklt c a -_i..ht i'a,il rrl mF Al-111 all todr a q-,Jhr}axsv r ptaa of 13.2-4 L trasegnenllaF Dnma2t require-'b+,Appendix I t.A. Tb: rmit ru[':;)nd mtpud i.-i ^relz!ism.:p IF Lkir�upraris.Yn;1;heir c kcl cn each treu-r shall be cum i cu'd sis 9Jvat ilte Lll:irc of al .1i3.3 SFISA11C i3E;1:N.NDS ON et'amAfn-ax;,csicntj:a.,.h.t.."turd..an..l.a,.::c'al.ur tit'1\4fRE'L'1.'l;.R,11..CC) IPt?\1C�,'TS .-lwricai c,npa,mt Smdi R4;causz•"ai.L CkJl an:of Lm ssalllaJ r6atrctura9 r.c l-vicar-Fry Occira:J :13.31 Sebmic Dnitln Force c xuy.,neat. The h<'i3 ILLI x; ;;saic nitn fu--c!r, 'Jell be a,^.pi izd t:•:;.,r cen:,aa,.v:,=a,- PicT e€=roily and 13.2411 jhilltJ• 44is ih-a*d ci.zm tft lir c ml'p r ma f raki.discr:hc• Te de's anal c .[_iian c7 Ow if 3-+gin ml 411 it daunt,n_J in jz.;w&na v iut 1;°om.L .tt ir-e-uAmcm ,.{,c7,midxthclr JN:;_)'34-. t3 to ilii s s l us l v tea<_It ;r 13:: TuAlw Alternative For SeKanic 2 C'apac-lh"Determinutlrsn. `f I ma:n,:.�im dl- =Awtt imw:reme na. thwif;b r ci .c..'tir, i di t,c deny~d._; F;Ya'.Tot yuf:zl to i a.4. as r,at r r t n an,xec'zpt blr rnc'urxl to rlcicrtvit[+”ttc acseass 1',=i.zS;.,l,t7,:. ;13 •2s atta.�ctcr. -Sit_.�:rc,aa,,.n3r�rr b ic5t a"�hasexl ur r a c un tl .rcc Csir tr_xrf Jr nr- i ;.:f,ilS, L• -?i fill"-E;S AC L".attcpuhl,t;tuc whsrap aulh:,utt t:nvirs_.irrxvJi tiS.>.r =.ss i be.Jcrt=t:':J!r i-b-d' y.aruwnis rumiled rhal.;I,-;:ch�t.ca .t;;s":;.-rf...us:,._'.:?;r, Sr,:_ ;sc.,.,r i.._vlcn.a...r,,sm,n perbA, =."&-urraiac3 equal sr c :_,iU the:,Lr--'X dcmX.i-J lamiud iu fr•. S.:on t[A-4 .. .rccnrdarcc xE'Ilia Srcrnwav 15__)_:ru.I-J2. .:,�:= caa>.��.>rca€an[p.:arscaic�n fastar 0-Av.rancs[a>n .i.+aitu?Klra,tzc:. pp[*.r.-.wYe alar.7i„ai f?.:.6 E%Wa'lrm:Data Allt+matbm for Seis'[nic 'd'abls t:; :.. Capacity rkaerminatknf,tr ii x��::cs Yrr-m At an AmALc Fc,Fi z;r tSxti tl fNmirt-iuuts cf 111W,tx 40 'v Sccur,n l U371 21; PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900 • (978) 688.5100 fax e www.panelclaw.com Appendix B p a n e ffffff 11/9/2016 C awo le Cd�i Wpfkai, '111c;thx Elcivicd site L "C-Aerz: A Ul� �KIMS 1� c use)by m loa,as4pm Li c.. It T C,'4 c.11 1141.3 Pal-rhardled Am-hors in Ciawrm 114 NONSTRUCTUKU, and1fasomy CONIVONENTANk.-HOILWE ar-hors is i:f-w-rzlc huil appLAom,is azfcrdxac-. Ll --iin 5. Ncq-,*.lruavr,ti---omp,-momz,,xid their clqpmm Atli' f,", M.1:1 5.1 ol A"IhLr zrv,=Vcd quid (w 10,t-FIC rACUCIUTC in LLL,,14s11 C prmcilelc .P-n5t4ms1.0"wd. in nlascm-Ly it iq*nr,m-,=S af-.hus >ct~oi.aoi dic>ALtch- fors-A.m.ic 6, Z PX ut in:izcpr,t maver.-A zR wi fo-th d.4cwhcm in&. tamLrd- comrclww N;boti!d..wefdcdL 114-1 In.staltatim.Conditimn (sT iklwuF w..Adva:isn ,f forcc.q in wiachmVittz LA,-c m � rL zmazx produccd t,- (Ix JY cgs.vif i-not the vxpxlzil cor.itivt-- f instAlti,:i itw.A umt -%iwum Pu Patti of suffijckmf=trcrlAh kI,:1wJfja=cci czt4-Aaral.pr-imz a suffm"s I-Eic amp next Lhe w.ppr'n- biz=uaum shal Im pTmidtd-Lo.-A dl::mots of I-MA MWtIpleAllithmEnis y)e<411.1cWrc 4lAud'M1-' b,ib Inc~:signed Dvrmnzflcm of fore-_&m3ribuibm of rault.Lpll- indsns`*.rucitd fia the wni;wacm,fimc,,s-A hm auxhrilenu-L >rc Likc Into 1,:c mm uhr. 1 the do=tett<1 ifzo dcr cni.;,at Otc.,j, m,zbcli,IV of l wri'mme—L i:ksmpp-m:rl TI)z tea mrt fltm:e>its ll b-,ffig.ic ,-zmvwr err.!the JlOitl.ks o�jar..JiIJCJ ill S.ICUPM 13.7;.J,eUC-,f thAt MIAifi"- atdiMi5buiz louls w kah,r.iiixft=jm�atth-mttmp and R.due to;anahonizc:�L:)difi-lm,,nt-zd Dviipiy,of a,:homg iM a.rzroc-in Accordamcc with 4--1 diwumimu��,h;Al Appzad-17%D A ACI�B,.hd,'he io&ali4y sm am"'Wer-ca ik imcN-Je�tffica xfrmaioa:-ziatim:to t&-vut^h- lh-s rcqc�rmmiml. 1�N swkim q A.�Pou or Actu aled Fasli-men* P(mm;,-wmzd rlwam-lf,.anclell:,,r steel tali 144.1 Dmign Fc rev.In the Atuwkmam a.,i br cd kr suj%,Lned tensam l:ids ar ky,]brzz 'nfi�rix in In.-xudmem Alf Ix J"tarni&:d apph'Alium M sei5miv Rziall Ciij,;urxs 10.Elm+ unk- ,Approved for.1,i_.rmx WAr a Nw;zr atualcd �,m tite pr,- d Rvn:v�and&�plazemcm?,�f�- t J-;t"fraI'A m smikms 13.3.1 attat tvnt.r.;z,m;---.'wlry=n<'l pi-rm. iWd ufikss 11.3.2.Cuept thAK no bc l-Aen I*Lxar .ipprovv,A EXCEMON.Ptrvvcf ilau:ded fitctim in ;="-pac wwd f;x awp�,ft of acomiti.cal lite& ay-un 114J.Anchors in ConereAr eir Masonry, ptnfl iUsper,1M ceit.'ng. aw Akjnsuled whm 1ha S-.-icc h1ad-P.W",v imlivid'i'd Conaele.- Amblirs in um, ,"Ac AmIl h,&Mgrim m1�javzd f-,,Iz n=s im-tevy a Fr,-the sm"-4 lo,-a ml tLir --,.-Ah A7qTrak D(?FACI'30i. =v"nd.k idual acr r.,,3!cxcccd 25t r it, U2 N L&4a2 Anvhory in Masanty Ani:4-(lz-ia 7mLsi.?n-ymullfill',&Lz�pcd ill 13.4,6 FrilJon Clips 6ticc 5,.�m PJS-l1.)::;AC150,--'ASI-E AT, :ter, td lkic"kna kJips a)S"rXiaic Dzs.,,ni C-11cparik,1).F- qmtd v ay-ru be -d b- tae; v�-c!:-Aza.r �,T F Z.k 1.,_g he ll�cdicer�ul-4,--ning^�u.0rjA,-,l load esa1z u �1:m;Tth of-dwdc.MIMI elammi. in i�,dd;I-.Jano hr: n LVCETMON�-Anchrs A,1ft fn p.restated?:I.k bf 11', LU; MZ Lkin1l'i,;ik_Pd1-M.U`J ie>l hil"V15 s)the dw th*lf tfiv amhis -.-d thLy err Cquirivd-w Lh 11 slix: mrd"K cone astip;,w the S'Inciluc d-omic widiaz ;qv; ra n.d re 5r.e6fioi iu NT-PA I 5,;bva al:t lkr,14 mnl:rzomdl-q a xfdvir a-";I Lol&L"i'Fl,oquivahl:�;'Al.J1 ht provL�ld!K! PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover,MA 01845 (978)688.4900 e (978)688.5100 fax o www.paneiclaw.com Appendix B p a n e ffffff 11/9/2016 Clawe P •€y is r, ,. ,f ii sSS ij tzC[ t na S r 3'�P61 7.r;<rii 't.a:lar,.�ar �t ra Part€i'a r l,z;�.3€:-?:, ..0 , - ,r u%ju a .ric rr t 3 r €F .2m* u 9.;ac r., G'x ccmaA For .:L'Yllzr :cc nurisS r=e,3 n .-rvJ:,.,ar' t' Sa Par ir:a,.un..ieciJtz xsaii f,--rIf ill L}:€ .a..3".ri:(err othzl ;44Cri' _G ) r= , erz LXC°FFMOX P:.irii,r ta:tani Ar,1 1,1C 1 h I. Thcdhic,nai_La rc .`r LIIC v i li h of wc r 4tn._u!t. L Par:I s r€mi '�.-3t.a __-x" i- of iiac-p:.., ii .-{<<�4 rot C.,:e3�� r " E.li x a Lie pr ilJ.:c 1t :'.,.= a.—\j l;wis vrs hi r =!1; ac..,_.:zei,tt.._te;ur es a.:.a .4n3 .'it or�t "rr L,- Pant iin. f I Tk P._ ium F,a"r:L s t>., t k a:�d'' xr �ya,crA tt r t_yir r r i ka=ra_cs >as t're,r.rtaz !afiy n{ i€£€; f ,. .3:;,zr etS T Co ,'rWN MAX Glary S,M snd M "-'zlcd n.,n rc i!=-;e I.3 it C.tsx 3t,rt r r r li! sft,l ik sic _rrJ_rill .>liyrca J ruri-sr m d Pat 2-'Pl.: 3n.t the €t .z; 3a€s:virh, tun ..... rc G lye n'. `t Ar,rtcJ4:.d r fi it sn md .ra i l a>;iz lg;,--r}Glas4 in Glarkd Curtain Walt;(`rinrt'd €y is ,. .a ilh rl 'i>cr rut ;t+tar, Storefronts,and(hued f"anif am -t .rr,mro 11€-L is d n t€fiy aA to a W ",Acm i s Pr LICL,an,1 l csa..cdri E is Jit 733 9 7 C,tneruf to t? ra ,a t a Wei-L'. `>yam! C.x. n. 1 ,air.u c.,r_t,1 htrermlr—', cr az••3..+€xr Sit' hs ti tt r itrwL-r-rad-'3 t5 m _.ain <t.orr'-L -t-ici xt"tr i'F -:i d-E: d rajoifyin Shall y- ,.t..c a€. :dis„Ix:x•- a1 Ptx.xr-s.r, ta...sa.aria t,•.i: €,4.DMFIN nk..'S' .mcn 4..€it':-r�r.•nt w Eq.s:.-?-i; r^ €tg!i,t rart_ xa.,tiEl.carr€ :.-ne'strr u lir.:': t<�..i.4 Si-hin r Drifi f imfh fsir Glass C'..,mjNmrrrds t3,.i: .rtP::a._.i; :.ir ld,in i a c€`„m 3-�;.kuc'trmtt.,T r.i."t..t:z+3°.s;:,!A b.:i`t: t- !ich 4 i s r: rra;n,kc E=.nt.n.a.-L- .aa.a t ai7:i u,.!t.5._V:1L'%!1)1.r or er [:wfwm aal.'Ln Pxtin,t: eS.aii9 � ' d ti' s i e k s;:t LWP i;i r lfzm ti? tj .nt�t r:t ti: i i_md r-a I;.a tIECYI;INfi`Al..:t\i] mc €as�:s i W r i�t.v.�rt:-tiPisrs<r}eta:.ir ELECTRIC tf CON] t1'�!EN dxwr:rn ti '.:,,,r- 'l al Lad r 1 a i a r rs1s t ,r.c€w..a t.h 4"C tion I 5.1 _,.Va€.A"et v,,,i-_1ala S..-�.L:+a;:i`il..of t_i-_z,.i,'m. f f'E:P7[Citir !' -bl ,:uk of au'llani A.m.l i ,.3 a1.:r'_i----= R L J.7L.i Jr;!t:.rt ,f--_ti'PJt 1 r1I^ 1 2tr 1,3 rJ sx I ,E tFt r3','1C€ Era&Lt t Rant, Ptia,ra.t_...:a.t::-~Z taarwro cr..1'w J.ri.::.nd r iu, €? emmomK 1 L f rosy.Y i i•? s,c,iWd yFit .:5, n._rltot Flt F7T3Ka� 7 €fr€z� ttt; 11, t 3n,_,, t. .tu-r' -,3u..t;::.'_r,.ro,^.quiI...E f......a.<r4 the :kri+e_ PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 • (978)688.5100 fax•www.panelclaw.com Appendix B 11/9/2016 pane ffffff awe CR. III M 0 Sl";7JU17 DI-516N REW"I R I AlENIS FY*NWNS�Tlll V'TIA4-',L?.N iNlpi�MFNMS Tahle 13A-I SOmic CDOhdimis for Nle(Uinkal and Elvddril Comp-ments .............................-.........- .................... ............ ............. ......................... ....................I.................. .................... ................- Z3 wll, !—A iz==" 5'.Oki—'r4 P"'n a,WN11 W4C 2,5 t-i f.3 23 I:Ii: 0 -Ai-ff.I! ............. ........ ur vibrnx mcm mb';Ln s. ............ ............. ................---.................. ..................-.......... .................................................................................................... ................. -aht .SXI E B t L.ir.lu Am, c' b ,.n,:. t,,, Pipu',P Im :;b"SNUE B.-1. b,iir ..mq.vm 1A,bihe-..5mlvd h�o —Tilm p. rnlred - gh TO!- m-L- ilh 4m-'J, Pip-:'l n«wl X—AJK._'7'fll A.MEA-1,nczulva i.�I"'. m 25 4-i i'f eexrlaia s. 'od ldimno of lv�a-&i"fmol,,Idma-J"'1-E h w 5b, ;w.i'."Cauk 5A NA-kMmaNxv rmi-WLK. i Ih wjk, -:Jmc nt*'--%-' 1,4— L6, _a,.Nmx!'j'A h;'I! bl'.!,v jm-'m. V.-L'F'w m.-*Wuxi M.. 'A -h s..Vim PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978) 688.4900* (978)688.5100 fax e www.panelclaw.com Appendix B pane Arffff C awo' STRUCTURAL ENGINEERS OF,CALIFORNIA STRUCTURAL SEISMIC REQUIREMENTS AND COMMENTARY FOR ROOFTOP SOLAR PHOTOVOLTAIC ARRAYS l � a 3 By SEA0C Solar Photovoltaic Systems Committee Report SEACC PVI-2012 August 2012 i PanelClaw,Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 • (978) 688.5100 fax•www.panelclaw.com Appendix B i pane ffffff C aw@ STRUCTURAL ENGINEERS ON OF CALIFORNIAs Requirements and Commentary 1. Stnmturai performance objectives downward forces.These systemic may Include additional CCrrisisteM votF3 the Intent of the QC 2009a9(Section'101.3), Weights(ballast)as well. P`4 arrays'.and their structural supowt systems sha;l be • Fully-framed arrays(stanchion are structural designed to provide life-safety performance in the Design Tran~s that are attached to the roof structure such that Basis Earthquake ground motion and the design wind event the load path is the.same for both upward and downward ufe-safey perfamernce oceans that PV arrays are expected forces. not to urate a hazard to life,for example as a result of Commentary-Sections 1, 2. and 3 0€this document are breaking freta from the roof, sliding oft the rWa edge, exceeding the downward ioad-carrying capacity of the roof, releraat to all rooftop arrays.Section d addresses attached or damaging skylights,electrical systems,or other rooftop ampys.Sections 5,6.7,and 3 address unattached arrays. features or equipment in a way tint threatens kfa-safety.For. Section 8 apples to attached or uartta hed roof-beaaring. life-safety performance. damage, structural yielding, and atnys.. movement are acceptable,as long as they do not pose a threat to human fife. Attached arrays can inchide those with 3leaable tethers as well as more isid attrchments.Both apes of attachment. Commentary:The:Desim Basis Earthquake a and motion are.to be designed per Secton 4- in ASCE 7 has a return period of a iproximat; S00 years, The documents AC 428 (ICC-ES 2011b) acid,k£ 365 and desip m2nd loads(considering load factors)equate to a {ICC-ES 2011s)prm-ide criteria for othu- t}yes of PV rettmm period of approsimafeIy 306",T-Ts for P.isi Category Isp temc,whwh are not covered m the specific psocicions structures-700 tears Fisk"Category II,and 1700 years.P.isl h re g. AC 4?8 addresses "st:tents flush-mounted meed an Category I'>,r.(In ASCE 7-10,the importance factor is built building roofs or walls,and free-standing(round mounted) into the:returm period fcr wmdi.For more frequent esents s)stems.AC 365 addresses buildirte-integ ated systems such (e.g-, events with a 50-year return period}, it may be I as roofpaaeis,sbingles,or adhered modhdes. desirable to design the PV-ane.to remain operational;these requirements do not c=u but do not preclude using more 3. Building seisnrie fusee resisting system stringent design critena. For PV arrays added to an existing burllina,the slier to-. These regmremeams are applicable to all"Occupancy torce-resisUng system d the building shall be checked per Categories. Hoa^ever if the.PV array or any rooftop the mquiremerrts of Chapter 34 of 1130 2009. component adjacent to the array hate I..:: 1.0_ post- earthquake operability of the campoaem must be established Commentary:Per Sections 3303:4 and 3404.4 of IBC 2009, cansistemwith Section 13.13 of:4SCE 7-10. if the added mass of the PV array does:not increase the seismic mass tribWary to any lateral-force-resistme 2.. types of arrays structure element by more than UN, the seismic-fose- resistim sir tem of the building is permitted to remail For Re purposes of these structural requirements;rooftop PV unaliened.Sectioes 3403-3 and 3404.3 also require that the panel support systems shalt be classified as fo0mxs: Gravity structural system of the building be ec-ahtated if the • Unattached(ballast-only)arrays are not attached to the -t3acitF"€oa3-ta-am•-e_a^ung"-element"is-incrrxsed-bp-morc- roof structure-Resistance to wtrrf and se sml c forces rs thou 5'"a provided by weight and friction. • Attached roof-bearing arrays are attached to the roof structure at one ormore:attachment points-but they also bear on the roof at support points that may or rmy not occur at the same locations as attachment points.The load path for upward forcesis crMerent hum that for Structural Seismic Requirements for Rooftop Solar Photovoltaic Arrays August 2052 Report SEAM PVT-2012 Page t PanelClaw,Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 9 (978) 688.5100 fax 9 www.panelclaw.com Appendix B pane ffffff c awe STRUCTURAL ENGINEERS;ASSOCIATION OF CAUFOR NIA 4. Attached arrays The contribution of friction shall not exceed PV support systems.that are attached to the roof structure ill-9 D.2S c3:07rr VY.where tb is he component weight shall be designed to resist the lateralseismic force F proradmg normal force at the roof bearing batons,and jr is specified in ASCE 7-10 Chapter 13. bie coefficient of fn corn at,hp-beading interface- In the computation of Fp for attached PV arrays, an The coeffdent k shag be deter,iined by friction testing per evaluation of the fiertix'Lty and ductility capacity of the PV the requirements in Section 8,except that for Seismic Desian supportstructure is permitted to be used to establish values Catgades A,B,or C,it is per a'tfed to be taken equal to 0-4- of a.and R,.' If the lateral strength to resist Fp relies on tt the roof surface consists of adnerat-surfaced cap sheet, attachments with low deformation capacity,R,shall not be single-ply membrane,or.sprayed foam membrane,and is not taken greater.than I.S. gravel,wood,or metal- For bw-profile arrays for wNch no part of the array extends more than 4 feet above the W surface,the value of a, Commentan: When fictional resistance is nsed.to resist permitted to be taken equal to 1.0, the value of P. is lateral seismic forces, the applicable seismic load permitted to be taken equal to 1.5,and the ratio a IRp need combination of ASCE 7 mulls in a normal force of(0.9- not be taken greaer than 0.67. 0.2,SczW,r-This normal force is multiplied by the facum coefficient,which is redhrced br a 0-11 factor_based on the Commentarr. In the com7atation of P far atnched lora- consensus judgment of the committee to provide profile solar arrays.a,-is commonly taken as 1.0 and 4 is coasem'atism for frictional resistance. The factor of 0.;does commonly taken as I S,which are the values prescribed for not need to be applied to the frictional properties used in "other mechanical or electrical components"in Table 13.5-1 evaluating unattached systems-per Section 9.. of ASCE 7-10. An.evalzration of the flemlAlity and ductility capacity of the PV support structure can be made according If Me design lateral strength of attachments It Ian then 25% to the definitions in 3SCE-7 for rigid and flemble of F,,the array shat meet the requirements of Section 6 nfth. components,and for high-,limited-,and late-deformability AW,taken equal to 6 inches. elements and attachments. The provisions of this section focus oa lou-profile roof- commentary: The requirement above is iateEded to bearing u3stems. Either types of systems are to be designed prevent a designer from adding relati sly feu attachments to by other code requirements that are applicable. Solar carport an otherwise unattached.array for the purpose of not pro- type structures on the roof of a building are to be deigned riding the minimum seismic design displacement. per the applicable requirements of Sections 13.1.5 and 15.3 of ASCE 7-I0. 5, Unattached arrays Unattached(bal€ant-only)arrays are permitted vhen at of the For attached root-hearing systems,friction is permitted to foltming conditions are suet: contribute in combination with the design lateral strength of • The maximwly root&tope at the location of the.amn attachments to resist the lateral force F,when all of the Y Is fallovAng aoricklions are met; - less than or equal to,7 degrees(12.3 percent). • The nlalumxlm root slope at the location of the array in • The height above the roof mirfacce to the center of mass Tem than or ecrr$to 7 ueprees(12:3 percent); of the solar.array is less than the smaller at 3e ihohes and halt the:leant plan dimension of the suppasfing base of • The height above fila roof surface to the center of mars the array. of the solar:array is test than the smaller of 38 inch n and li;Tt tAa teaca pian dimensuris at-the nupponing"time-ar-A-'Tire-array-it-0,sig ned-to accomunodme-the-atinmic- the array.andt-pfacei5enl determined by one of the following pro- cedwez: • P t+hall not exceed 1.5 untess It Is shrm-n drat the lateral displacement behavior of attachments is compatible 44th a Prescnptiva des gn seitmic dlsplacememt per the simultaneous developmental frictional rtwitante. Sections 6,7,and 8; The rew•stance of slack tether attachments snail not be cam6. - o ,8,and reDpams*hisv?y artily&s per Sections 68,and 9;.or Wind With bictional resistance, a Shake table testing per Seaton-6,8.a,W 9. Structural Seismic Requirements for Rooftop Solar Photovot.-mc Arrays Aug..t 2012 Report SF-40C PVI-2013 Page 2 PanelClaw,Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 • (978)688.5100 fax •www.paneiclaw.com Appendix B pane effff C aw" STRUCTURAL ENGINEERS ON OF CALIFORNIA i i all Can asentar- The prmasiont;of Section 13-4 of.ASCE; assumed to partly reduce the probability of an array sliding require that 'C'omponents and their supports shall be off the roof just f ng the use of 4..,rather thanattached (or anchored) to the Mructure_..- and that Calculation of the parapet's Lateral Length to resist the array Component attachment shall be bolted welded.,or other- movement is not reTured by this doc anent wise posid ely fastrned wifoat consideration of.ftictional resi-<tanceproliced by the effects of gravity."' Each separate array shalt be interconnected as an integral This document recommends condreons far which exception unit such that for any vertical section through the.array,the members4 and connections shall have design strength to can.be taken to the above requirement; Appen&% A resist a total.horizontal force across the section. in both indicates.recommended changes to ASCE 7-10_ until such a tension and compresstior%equal to the larger of 0.133Scsf f s change is made inASCE"t,the pro-visions of this document and 0.1 W, can be considered an alternative method per IBC 2009 where Section 104.11. W,= she weight of the portion of the army,including baflast C. Design of unattached attays to on the side of the section that has smaile weight- aeeotrrrnedate seismic displacement The horizontal force shall be applied to,the army at the levet of the root surface, and shall be distributed in plan In For unattached fbatastonly) arrays, accornnaadation of prnpertion to the weight that retakes up W,_The comprtkation seismic displacenaertt shall be affordedby providing the of strengthacross the section shall account for any fotowfng minimum separations to allow sliding: eccentricity of forces. Ccndffion Minimum£.eoaaralion Elements of the array that are not interconnected as Between separate sotararray�of t7.5(!t)diya specfed shag be considered structurally separate and shall similar 6orepar tOn be provided with the required minimum separation. Between a solar array and a fixed {lyld3rfi C-ommentaty The interconnection force of fl 133Shrii',ar object on.the roof or solar array of 01M,accounts for the potential that frictional resistance to different construction sliding will be different tender some portions of the array as a Between a solar array and a roof (P�} rt result of caning normal force and actual instantaneous edge vith a qual"dydng parapet values of,r for a g.aL en roof surface material- Between a solar army and a roof edgewithomrf a qual'fying parapet The root structure of the building -shat be capable of ofrpporting the factored gravity load of the Per array displaced Where d p istheAeckgn seismic displacement of the army from its o tginal location up to —r in any horizontal relative to fhe.rooi,as oonputed per the requirements herein, direction. 4 is the,importance factor for the build-6g, and P➢ is,the Roof drainage shall not be obhtructed by movement of the component importance factor for the soar array or the component importance factor for other rooftop components All array and ballast up SwF.•in any horizontsl direction. adjacent to the solar array,whichever is greatest. For the Electrical systems aid other items attached to amass shall be purposes of this requirement,a parapet is'�quatifying"if,the flexible and designed to accommodate the required minimunh top of the parapet is not feel than 6 inches above the center separation in a manner that meets code l'rfeaafety per- of mass of the solar array,and also not Less than 24 inches fomtancerequirement& Details of providing slackness or abmne he adjacent roof sur • face. movement-capability-to-elect;Bead-wirmgshat-be-included-on the permit drawingsfor the solar installation Commentairv. The factor of 0j, based on judgment; accounts far-the i1ehhood that nimement o£adjacent arrays Commentary i'his document pm-ides only structural will tend to be s;ncbroncus and that colliriors between requirements- The deign must also meet applicable arms do not necessarily represent'a life-sa:tF hazard The requirements of*-e go.-erning electrical codes. factor of 15 is added,by judgment at the committee.to provide extra protection against the life safety hazard o:an The minimum clearance around solar arrays shat be the attag sliding off the edge of a root A qutilifcing partpet larger of the seism c separation defined herein and minimum (and the roof slope change that may be adjacent to it)is separation clearances required for brefightIng access- Structural Seismic Requirements for Rooftop Solar Phatovortaic Arrays August 2012 Report SEACC PV1-2012 page 3 PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 • (978)688.5100 fax 9 www.panelclaw.com Appendix B • pane ffffff c awe ASSOCIATIONSTRUCTURAL ENGINEERS .. s Commentan: Section 605 of the Irl ernntional Fire Code S. Friction testing OCC 2012)'prmides requirements for firefighting.access Tie coefficient of friction used to these re-quimments shalt be pathmtays on rooftops 'with solar arrays. based on the determined by experimental testing of the interface between recarnmendaaons m CAL FIR£-0SFN1 (ZOOS)_ For the P%J support system and Cie roofing surface it bears,on. commensal and laree residential flat roofs(}which are the .Friction tests shall becarried out for the general type of roof roof type cc which unattached arrays are feasible) bearing surface used for the project under the expected requirements include 4 feet to 6 feet clearance around the worst-case conditions. such as wet conditions versus dry perimeter of the roof,mem .man' arra'dimenstests,ions of 154 conditions. The tshall conform to.applicab':e require. feet beraeen access pathtra4s. and 111reinn na clearances meats of ASTId 6115,including the report format of section around sk-ilights..roof hatches,and standpipes. 11.An independent testing agency shall perform or validate Note dhat the cleerac a around solar a Bl%is the larger of fbe faction tests and provide a report with the results. the two requirements for seismic and drefighting access. The frictim ter_ shall be conducted using a sled that Tbeseparatiza distances do not need to be added togetheL realistica9y represents,at full scale,the PrJ panel support 'system including m=aterials of the friction imerface and the flexibility of the support system under lateral sliding,The normal force on the friction surface shalt be representative of 7. Prescriptive design seismic displacement for tloat in typical installations.Lateral force shall be applied to unattached arrays the sled at the approximate location of the array mass,using displacement controlled Icad•,rtg that adequately captures is permitted to be de•.entir fsf the priNesip'vve pro- increases and decreases in resistive force.The loading cedure beloav if alt of the follaaing ccndtions are met velocity shat be between 0.1 and 10 inches per second_if • a per ASCE 7-10 Chapter 13 is equal to 1.0 for the solar ..stick-stip,behavior is observed,the velocity shall be adjusted array and for all rooftop components adjacent to time solar to minimize this behavior. Continuous electronic recording any_ shall be used to measure the lateral reeisiance_A minimum of three tests shall be conducted,with each test rnorng the • The rEtaxirraum roof slope 3<tits}option of the array is sled a minimum of three inches under continuous rnovernent fess ratan or equal to 3 degrees(524 percent). The force used to calculate the friction coefficient shall be the • The mamfteturer provides friction testresults.per the average force measured while Lie riled is under continuous. requirements in Section&,which establish a coeffimart of movement.The friction tests shall be carrier)out.for the friction between.the PV support system and the roof .general type of roofing used for the project surface of cwt les than 0.4. For Seismic Design Categories A,B,or C,friction test results need not be provided if the roof surface-consists of nminerai-surfaced Commeatari-Because friction coefficient i§not necessarily cap street, single-ply membrane, or sptayed foam membrane,and is not gravel,wood,or metal. constant with normal force or-velocity,the nonoral force is to be representative of typical installations and the velocity is shall be taken as.Wows. to be less than or equal to that expected for earthquake Seismic Design Air v movement.A higher ielocit>f of loading could aver-predict Category frictional resistance. Lateral force is to be applied under A.B,C. 6 inches displacemenf control to be able to measine the effective dyaanric friction under mo ement Fora-controlled loading, D;E.F l:S�,-0.417*60 inches,but not less including inclined plane tests, onhr rspGmres the static than o"inches friction eoefficient and does not qualify. `Fncboa tests are to lie applicable t©the reneral`tcpe of Commentan The prescriptive design seismic displacement roofag used for the project.such as a mineral-surfaced cap values oom.,ercativ-ely bound nonlinear analysis results for sheeef ora type of single-pit-membrane material such as solar arrays on common roofing m=aterials_The fannula is EPBIvf,TPO,or PVC_It is not visioned that different tests based on empirically bounding applicable analysis results: avoald be required for different brands of roofing.or for not a theoretical development. The PLT Conmidee arra l d fferences in roofing type or condition.. concluded that limits an S;,,;or budding height are not needed as a preregonsire to wing the prescriptive desrlm For solar arrays on bui;dngs assigned to Seismic Design seismic displacement Catetssoy tD,E,or F where rooftops are erect to sign?tcant potential for frost or ice that is likely to reduce triction structural Seismic RequIrements for Rooftop Solar Pboxovolialc Arrays -August_'012 Report SEAOC PV1-2012 Page 4 PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 9 (978)688.5100 fax 9 www.panelclaw.com Appendix B �"X . . ane ffffff c awe STRUCTURAL ENGINEERS ASSOCIATION ! i' SA between the solar army and the roof.,the building of8dal at initial building period,T to a minimum of 2.0 seccads or 1.5T their discretion may require incressed minimum:separation, whichever is greater_The building is pemted to be modeled. further anatyss,or attach=ruent to the rocf. as linear elastic.The viscous damping used in the response history analysis shall not exceed 5 percent. Gomunenlan:A number of factors affect the potential that frost on a roof surare trill be Iresent at the same time that a Each roof or ground moron shah have a total duration of at occurs..mid vhethez such frost increases the least 33 seconds and shall inn€ain at least 20 seconds of rare ear sliding displacement of an arra,;_These fictors include: strcny shaking per AC 186 Section 6.5.? -91e �enCal.for frost?o occur on a roof based on the For analysis,a three-dintensionat analis shaft be used,and po` the roof motions shall include two hori_ontal components and climate at the I site.whether.ilia building h hear--&and how one vertical component applied concurrently. well the roof is insulated Coaaneutar�:Ivonstruc-!real components an elevated floors -the.number da of hours per y and days per yen that frost is or roofs of buildings experience earthquake shaking that is present differenr from the corresponding around-Imel shalitig- -nether solar modules occur Aare.and shield from frost Roof-le^el slinking,is filtered threuzh the.bm7ding co it tends se die roof surface around the%report bas of the Pt'arrow to cause greater horizontal spectral acceleration at the natural.period(,) of vibration of the building and smaller accelerations at other periods. S. Nonfinear:response history analysis or shake For input method (al. AC 156 is:referencedbecause it table testing for unattached arrays protides regaarements for aa-put motions to nonstrucaual For unattached solar arrays not complying wrttt the elements consistent ititli ASCE 7 Chapter 13 desiri forces, requirements of Section 7,the design seismic displacement The requirement added n this document to include the corresponding to the Design Basis Earthquake shall be portion of the spectuu n ssirh P r 0.77 seconds is necessary determined by nonlinear response historyanalysisor shake to make the motions appropriate for predicting sliding table testing using input motions consmstere with ASCE 7-90 displacement nhich can be a>F2cted by longer period Chapter 13 design forces for non-structural components on a motions. roof_ TIhe tares spectra defined in AC 156 are broadband spectra. The analysis model or experimental test sttall account for rnsim mg that they envelope potential peaks in spectral friction between the array and the roof surface,and the slope acceleration over a broad range of periods of vibration, of the roof.The faction coefficient used is analysis shall be rep esenting a rause of diffeteat bun ger where rani based on testing per the requirent�uts in Section). structural components could be located. Comparative For response history analysis or derivation of shake tabte test analytical snrdies(Rfaffei er art 2012)have shown that the motions,either of the.following input types are acceptable: use of bmadband+pectra provides a consen-athm estimate of (a) spectrally matched rooftop motions, or (b) rooftop the sliding displacement of solar arrays compared to response to appropriately scaled design bags earthquake unmodified roof motions, ground motions applied to the!lase of a dyramically.nepre- sentat:ve erode.of the building supporting the P`t array being For input method ,rb). appropriately scaled Design Basis considered Earthquake ground motions are applied to the base of a (a) Spectrally Matched Rooftop Motions: This method builder analysis model tont includes the model of the solar requires a suite of not less than three appropriate roof array on the roof. In such a.case,the properties of the reiotle .spattrattymatched.to_brnadioarrd_des r�n.spectra per. bi)tldiag anal}tis model sh�itid be aP3soprateltbracketz3 to .AC 155(ACC-ES 2010) Figure 1 and Section 6.5.1.The corer a range of possible building d}nandc properties spectram shall include the portion for T', 0.77 seconds (Waiters 20101 Walters 2012). (frequency<1.3 Hz)for which the spectrum is permitted to be proportional to 11T Because friction resistance depends en normal force.vertical (ti)Appropriately$caWd Design Hasis Earthquake Ground earthgtiake acceleration can also affect the horizontal Motions Applied to Building fufodel:This method requires a niecical co of unattached req components, so im3ns 4n of a suite of not less than three apptcgriate groLnd motions,. -.stir component i required stated in conformance with the requirements of Chapter 16 For shake table testing,it s permitted m conduct a three- of ASCI 7-10 over at least the range of periods from the dimensional test using two horizzontal components and one Structural Seisrdc Requirements icor Rooftop Sotar Photovoltaic Arrays August 2D12 Report SEAOC PV-1-202 Page 5 PanelClaw, Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 • (978)688.5100 fax•www.paneiclaw.com Appendix B I i I � - pane ffffff c aw STRUCTURAL ENGINEERS A ON OF CALIFORNIA: s vertical oongpment, or a tvmcimesr^icmm Lest wilh,one Commentary.The factor of 1.1 used in defining the design horizontal component and one vertical cwgYorert In all seismicdisplacement is to account for the random cases the components of moton shall be applied con- ancertamry of response for a single given roof motion.This currently. tncertaiuhr is assumed to be larzer for sticking slidir:.? Shake table tests shall apply the minimum of hip-pass resp.nse lan it is for other hpes of iron-linear resperae rdtenng to the inpul motions necessary for testir;g facility considered in stucturall engineering.The factor is chosen bt- equipment capacities. Fi ering shall be such that the judgment resuftfng PV array displaceme..rts are.comparable to those analytically computed for unfiltered input motions_ if the input Analyfical and ++ental studies of the seismic response motions are high-pas filtered or if hvo-dimensional tests are of i>aattached solar circ are reported Srhellenberg¢tuI_ conducted, the tests.shalt be supplemented with analytics ��'' ' skvfes of the tests to calibrate the inguerdial variables and _(20121)_ .three dinwisional analyses to corTpute.the seismic .. displacement for unfiltered input notions. Notal"rOn Commentary: For some input motions and shake table facilities,input records fray need to be high-pass filtered as = amptibcatiort factor(per ASCE 7) (remoting same of the loco-frequency content of the record) Fib. _ comport t horizontal seismic design force(per so that the shake-tablemovernent does not eueed the table's ASCE T) displacement capacity. If fiiltei of motions is needed,it 4 = seismic importance factor for the buildirr(per should be done in such a-way as to have as little effect as ASCE T) possible on the resulting sliding di plaearent. Comparative analyses should be conducted to determine the effect of 4 _ .omVonentimportance±actor(pLrASCE7) filteffig on sliding displacement after which unfiltered Rc = component response modification factor(per motions should be used in the analysis to detenxhme the ASCE 7) design seismic displacement Sats = design 81"arrped spectral acceleiratm parameter if the shake table tests am two-dimensional the tests should at short periods(per ASCE 7) be used to calibrate comparable tao�sienaI analyses, T = fundamental period after which duce dameasonat analyses shoiAd be used to determine the desist seismicdisplacement- Wr = total weight of the array,including blast on the side of the section(being checked for If at least seven roof motions are used,the design seismic i:rterconnection strength)that has smaller weight ,.disoacenuent is pe-mired to be taken as 1.1 times the gym = component weight pmviding no rm.V force at the roof average of the peak displacement values fin any direction) bearing locations from the analyses or,tests_If fewer than seven roof motions are used,the design seismic displacement shall be taken as qe v= design,se�rmic displacement of ttie array relative to 1.1 tines the maximum;of the peak displaceruertf values from the roof the analyses or tests. A& = coefficient of friction at the bearing interface Resulting values for.-v shat)not be less than 50%of the between the roof surface and the solar array valuer specified in Section 5, unless tower values are validated by independent neer Review- Structural Seismic Requirements for Rooftop Solar Photovoltaic Arrays August D12 Report SEACC PVI-2012 Page 6 PanelClaw,Inc., 1570 Osgood Street,Suite 2100, North Andover, MA 01845 (978)688.4900 9 (978) 688.5100 fax 9 www.panelclaw.com Appendix B