Loading...
HomeMy WebLinkAbout1990-01-16 Stormwater Report SPR 10-2-89 - Stormwater Report - 0 Annie Sargent School 10/2/1989 NORTH ANDOVER PUBLIC SCHOOLS . CALZETTA SCE-TOOL NORTH 'ANDOVER, MASSACHUSETTS STORMWATER DETENTION . PREPARED FOR WILLIAM PRESSLEY & ASSOCIATES BY ENVIRONMENTAL DESIGN & PLANNING, INC TECHNICAL MEMORANDUM: STORMWATER DENTANTION CALZETTA SCHOOL NORTH ANDOVER MASSACHUSETTS PREPARED FOR: WILLIAM PRESSLEY ASSOCIATES 432 COLUMBIA STREET CAMBRIDGE, MASS. BY: ENVIRONMENTAL DESIGN & PLANNING, INC. 253 WASHINGTON STREET BELMONT, MA 02178 617-484-8087 PRINCIPAL- IN - CHARGE: WILLIAM C. PISANO, PE 2 OCTOBER, 1989'.. LOAM C - 16ANC3 �'vy•h. .sip OBJECTIVES 1.) QUANTIFY NEED FOR ON—SITE STORMWATER DETENTION STORAGE FOR THE 100 YEAR 24 HOUR STORM AS TO ENSURE THAT POST RUNOFF PEAK ' FLOW CONDITIONS IS NO GREATER THAN PRE PROJECT CONDITIONS 2) AFOREMENTIONED DETENTION STORAGE REQUIREMENTS ARE COMPUTED FOR THE "UPPER" .AREA ( SUBAREA "EE") AND FOR THE "LOWER" SOUTHERLY PROJECT AREA ( SUBAREAS "AA, BB, CC, DD") PROJECT. THE "LOWER " AREA DISCHARGES TO A SERIES OF EXISTING CULVERTS WHICH PASSES UNDER A PRIVATE DRIVEWAY ( WOLF) . THIS OUTLET 'THEN PROCEEDS TO DRAIN IN A NATURAL CHANNEL, PARALLELING THE PRIVATE DRIVE, AND THEN TURNS AND DRAINS DOWN TO ABBOT , TURNS SOUTH AND PROCEEDS IN A WESTERLY DIRECTION ALONG THE OTHER SIDE OF. THE WOLF PROPERTY. 3) . ALTHOUGH STORAGE IS COMPUTED FOR BOTH AREAS THE PROPOSED DETENTION AREA IN THE "LOWER" AREA IS RECOMMENDED TO. ENCOMPASS UPPER AREA REQUIREMENTS CONSIDERING A " BUBBLE- CONCEPT. THE "UPPER " AREA DETENTION REQUIREMENT IS VERY SMALL. 4 ) IT IS INTENDED TO MAINTAIN THE SAME DEGREE OF WETTING IN THE MAIN WETLAND AREA. IT IS FURTHER INTENDED TO DRAIN THE FLOW FROM ONLY THE SCHOOL BUILDING DIRECTLY INTO THE WETLAND ( A PORTION OF THE ACCESS ROAD FROM JOHNSON TO THE FIRST WET LAND CROSSING WILL ALSO BE DRAINED DIRECTLY TO THE WETLAND. INTRODUCTION SINCE THERE IS SUBSTANTIAL DRAINAGE VIA A WETLAND NATURAL CHANNELWAY THROUGH THE SITE, COMPLETE QUANTITATIVE DELINEATION OF ALL HYDROLOGIC INPUTS ( ON—SITE AND OFF—_ SITE) WOULD REQUIRE AN EXTENSIVE ANLYSIS OF OFF—SITE CATCHMENTS, ETC AND ADDITIONAL SURVEY WORK. TO EXPEDITE CALCULATIONS AND RESOLUTION OF REQUIRED ON SITE DETENTION STORAGE THE FOLLOWING METHOD OF CALCULATION WAS USED. * FIRST, THE ANALYSIS CONSIDERS ONLY THOSE ON—SITE LAND MASSES DIRECTLY AFFECTED BY THE PROJECT , IE, AREAS WHERE IMPREVIOUSNESS IS TO CHANGE. AREAS NOT AFFECTED ARE NOT INCLUDED. * SECOND, THE CALCULATION OUTLET POINTS ARE THE DISCHARGE POINT INTO THE SET OF CULVERTS ( "LOWER" AREA) AND THE CULVERT OUTLET ON ABBOT FOR TbE NORTHERLY POINTS. * THIRD, FOR THE "LOWER" AREA IT IS ASSUMED THAT ALL DIRECT ROOF DRAINAGE FROM THE SCHOOL ( SUBAREA DD) ' WILL BE DISCHARGED DIRECTLY INTO THE WETLAND WOODED AREA . THE SAME ASSUMPTION WAS USED FOR THE ACCESS ROAD FROM JOHNSON UP TO THE FIRST WETLAND CROSSING ( SUBAREA AA ) . FOR PURPOSES OF PRESENTATION , THESE TWO SUBAREAS ARE HEREINAFTER CALLED "CATCHMENT A 2 * FOURTH, ALL DRAINAGE FROM THE EASTERLY ROAD SYSTEM AND FROM ALL PARKING LOTS WOULD FLOW IN- A PIPED SYSTEM AND. DISCHARGE INTO A NEW ELLIPTICAL - SHAPED OPEN DETENTION POND JUST BEHIND THE LOWER ORCHARD. THE ACCESS ROAD FROM THE FIRST WETLAND CROSSING AND THE OVERFLOW PARKING AREA IS SUBAREA BB. THE TURN IN AND MAIN PARKING LOT IS SUBAREA CC. THESE TWO SUBAREAS ARE HERINAFTER CALLED "CATCHMENT '"B" * FIFTH, FLOW FROM CATCHMENT B WOULD BE DIRECTED INTO A NEW DETENTION POND SUFFICIENT IN SIZE WITH A RESTRICTIVE OUTLET CONTROLLER TO OFFSET THE UNABATED PEAK ROOF LOAD FROM CATCHMENT A. FULL ADVANTAGE IS TAKEN OF AREA "A" 'S HYDROGRAPH "FLATTENING BY DISCHARGE INTO THE WETLANDS. THE AIM OF THE STORMWATER MANAGEMENT SCHEME IS THAT THE SUM OF ANY OUTFLOW FROM THE DETENTION AREA PLUS THE ATTENUATED ROOF LOAD -DISCHARGE THROUGH THE . WETLAND APPROXIMATELY EQUALS THE PRE PROJECT PEAK FLOW FROM THE TOTAL IMPACTED AREA TRIBUTARY TO THE OUTLET. * SIXTH A VORTEX FLOW THROTLE IS ASSUMED TO CONTROL THE OUTFLOW OF "LOWER" DETENTION AREA SUCH THAT THEDETENTION VOLUME ATTENUATES THE PEAK FLOW FROM AREA "B" , BUT STILL ALLOWS FOR FREE DRAINAGE. THE "DETENTION" POND IS TO BE NO DEEPER THAN 3 ' AND IS TO DRAIN DRY AFTER EACH EVENT. ANALYSIS I. DATA FROM REVIEW OF WPA DRAWINGS, HYDROLGIC PARAMETERS FOR SUBAREAS AA, BB, CC.DD ( PRE AND POST) • .ARE NOTED IN, TABLES 1-A/1-B, RESPECTIVELY. SIMILAR DATA FOR SUBAREA EE ARE GIVEN IN TABLE I- C/1-D. SOILS TYPE WAS ASSUMED TO BE SCS 'TYPE "B" FROM INSPECTION OF SITE SOILS BORINGS AND FROM VISUAL INSPECTION OF AREA. ** SUBAREA KEY ; **� LOWER AREA*** AA-- ACCESS RD @ JOHNSON TO I.ST WETLAND CROSSING BB-- ACCESS RD @ CROSSING / OVERFLOW PARKING LOT TO OUTLET CC-- ABBOT ST TURN-IN & LOWER AREA PARKING LOT DD- FOOTPRINT SCHOOL & MISC SURROUNDING AREA TRIB TO LOWER OUTLET *** UPPER AREA *** EE- IMPREV. AREA TRIBUTARY TO UPPER WETLAND RAINFALL FOR DESIGN STORMS 2,5,14,25 AND 100 YEAR ' 24 HOUR SYNTHETIC STORMS- SEE TABLE 2 ( ALSO SEE APPENDIX A FOR DISCUSSION OF TYPE III SCS RAINFALL EVENT. ) II. COMPUTATION APPROACH : HALSTEAD COMPUTERlSOFTWARE: TR55 & POND PACKAGES. 3 t III. ANALYSIS FIGURE 2: A-B PRESENTS LOWER AREA "POST" HYDROGRAPHS COMBINATION OF CATCHMENTS "A" AND "B" ) FOR ( 10 r 25 AND 100 YEAR STORM EVENTS ) . EACH OF THE SUBAREA HYDROGRAPHS FOR THE POST CONDITION 100 YEAR STORM ( NO CONTROL) ARE GIVEN IN TABLE 3 . NOTE THAT PEAK FLOW FOR ONLY SUBAREAS AA AND DD EQUALS 5•.4 CFS FOR THE 100 YEAR STORM . Please note that all flows and volumes computed .MUST BE DIVIDED BY 10 as the areas were scaled up ' by 10 to minimize numerical. rounding . FIGURE 2; C-D DESIGN STORM HYDROGRAPHS FOR "PRE-EXISTING CONDITIONS" FOR ALL "LOWER" FLOW TRIBUTARY TO "PROJECT OUTLET POINT" ( CATCHMENTS A+B) THE TABLEAU BELOW SUMMARIZES COMBINED (CATCHMENT A + B) PEAK FLOW CONDITIONS FOR THE LOWER AREA. DESIGN STORM PRE PROJECT POST PROJECT (YEAR) (CPS) (CPS) 5 1 . 8 5-.3 10 2.6 T.4 25 4-.0 8. 8 100 5-.5 10. 4 VARYING AMOUNTS OF DETENTION STORAGE VERSUS RELEASE RATE WERE COMPUTED FOR THE POST CONDITION 100 YEAR STORM EVENT FOR SUBAREAS "AA" AND "DD" OVERALL RESULTS ARE BELOW: RELEASE RATE ( CFS) REQUIRED STORAGE ( AC-FT) 0-. 25 0-.58 0 . 33 0.56 0 .40 _ 0-.54 THE CONFIGURATION OF 0-. 54 ACRE-FEET OF, STORAGE WAS CHOSEN TOGETHER WITH A OA CFS CONTROLLER . FIGURE 3 SHOWS THE RELATIONSHIP BETWEEN RELEASE RATE AND REQUIRED STORAGE { COMBINATION SHOWN IS FURTHER INVESTIGATED IN ROUTING ANALYSIS. THIS CHOICE CENTERS AROUND A FLOW CONTROLLER WITH AT LEAST A 4" APERATURE OPENING. FOR THE UPPER AREA ( SUBAREA EE) ONLY A TOTAL OF 0•.0.35 AC-FEET OF STORAGE IS NECESSARY TO MAINTAIN PRE PROJECT CONDITIONS. MINOR EXPANSION - OF THE LOWER AREA SOLUTION IS INSTEAD PROPOSED. CALCULATIONS ARE NOT PRESENTED)•. *** A TOTAL OF 0-.58 AC - FEET OF STORAGE IS - THEREFORE CONSIDERED TO ACCOUNT FOR TOTAL "POST VERSUS PRE" PEAK FLOW DIFFERENCES. 4 TABLE 4 PRESENTS THE POST CONDITION 100 :YEAR ROUTING ANALYSTS OF SUBAREAS BB AND CC INTO- A NEW DETENTION -POND IN LOWER AREA. ASSUMPTIONS ARE AS FOLLOWS: * HALSTEAD METHODS- MODIFIED PULS METHOD * DETENTION POND 0-. 58 AC-FT STARTING EMPTY * ACTIVE POND STORAGE DEPTH IS 3 .33 FT * MAXIMUM WATER DEPTH TO EMERGENCY SPILL IS 3.5 FT * EMERGENCY WEIR IS SIMPLE 2 FOOT ACROSS * POND THROTTLED W / VORTEX VALVE - DESIGN 0 .4 CFS C 3.33 ' * POND VOLUME VS DEPTH GIVEN IN TABLE ( DISCUSSED LATER) * DISCHARGE VS DEPTH GIVEN IN TABLE ANALSIS SHOWS THAT MAXIMUM. WATER DEPTH IS 3-.32 FEET WITH 0-. 4 CFS DISCHAAGE. NO OVERTOPPING -OCCURS. FIGURE 4-SHOWS THE INFLUENT AND EFFLUENT HYDROGRAPHS FOR THE 100 YEAR POST CONDITION. 7 FIGURE 5 SHOWS THE 100 YEAR PRE-PROJECT HYDROGRAPH FOR CATCHMENTS A & B ( PEAK 5-.5 CFS) PLOTTED AGAINST THE POST- PROJECT SUM OF NEW DETENTION POND OUTFLOW AND HYDROGRAPH FOR SUBAREAS AA AND DD ( PEAK FLOW = 5-.7 B CFS) -. THE AGREEMENT IS SUFFICIENTLY CLOSE. THIS SLIGHT POSITIVE DIFFERENCE SHOULD BE MORE THAN OFF-SET BY THE CONSERVATIVE APPROACH OF ASSUMING NO TEMPORARY STORAGE( SLIGHT DEPRESSIONS WITHIN THE EXISTING WETLAND ' AS THE HYDROGRAPHS FROM SUBAREAS AA & DD ARE ATTENUATED SITE RECOMMENDATIONS PRESERVATION OF EXISTING WETLAND WETTING THE RAINWATER ROOF LEADERS FROM THE SCHOOL BUILDING WILL BE CAUGHT, AND DIRECTED TO TWO SEPARATE ROCK FILLED TRENCH SYSTEMS WITH FAIRLY LEVEL INVERTS. AS OUTLINED ON THE PLANS ROOFWATER WILL FLOW FROM A HEADER MANHOLE THROUGH OPEN JOINTED PIPE WITHIN ROCK FILLED TRENCH. FLOW WILL FILL. INFILTRATE AND THEN OVERFLOW AND "SHEET" INTO THE WETLANDS . TRENCHES WILL BE APPROXIMATELY 3 FEET WIDE BY POOR FEET DEEP AND FILLED WITH 1-1.5 " WASHED ROCK ( OR LARGER)-. THE UPPER SIDE OF THE TRENCH WILL BE BERMED TO PROMOTE FLOW IN THE OTHER DIRECTION TO THE WETLANDS. NEW DETENTION STORAGE . A DRY TYPE DETENTION AREA APPROXIMATELY 3.33 FEET. DEEP IN PROPOSED„ THE LOWER AREA DETENTION STORAGE AREA WILL BE ELLIPTICAL IN SHAPE ( 128 FEET. BY B$ FEET AT THE TOP ) WITH A BOTTOM FOOTPRINT ( ASSUMING 1 TO 3 SLOPE) OF ABOUT 110 FEET BY 70 FEET. APPROXIMATELY 25,000 + : CU FT STORAGE WILL BE GENERATED. k � t • THE ACTIVE WATER DEPTH WILL BE 3 .33 FEET DEEP. OUTFLOW DISCHARGE WILL BE THROTTLED BY VORTEX DEVICE ( 0•. 40 - CFS LIMIT) THIS DEVICE WILL BE CONTAINED WITHIN A FLOW CONTROL STRUCTURE THE CONTROL STRUCTURE WILL ALSO HAVE A SMALL 2 ' WIDE SPILLWAY WEIR FOR EMERGENCY TOPPING . THE TWO INPUTS TO THE POND WILL BE ENERGY DISSIPATED VIA .A DROP MANHOLE CONNECTIONS. THE NATURE OF EXISTING TILL WITHIN THE DETENTION AREA .WILL REQUIRE THAT A COMPACTED CLAY LINER SAY I FOOT COMPACTED CLAY BE PLACED ON THE BOTTOM AND SIDE SLOPES OF STORAGE. A POLYETHYLENE MEMEBRANE• MAY ALSO BE NECESSARY. THE STORAGE VOLUME WOULD COMPLETELY DRAIN IN 3/4 DAY A WET POOL COULD BE CREATED BUT IS DISCOURAGED FOR SAFETY-. 6 . ...� - VV C0 A.) q-�) -S ( 7A19,2A� F q A4 :_� LOW E(Z TR-55 TABULAR HYDROGRAPH METHOD Type III Distribution (24 -hr. Duration Storm) Executed: 01-01-1980 00 :34 :38 Watershed rile --> C:CLPRE100.WSD Hydrograph File --> CALZETTI SCHOOL PRE PROJECT CONDITION ( INCREMENTAL ANALYSIS). 100 YEAR 24 HOUR STORM EVENT AREAS MULTIPLIED BY 10 DIVIDE RESULTS BY 10 »» Input Parameters Used to Compute Hydrograph : ------------------------------------------------------------- Subarea AREA CN Td * Tt Precip,. I Description (acres) (hrs) Mrs) ( in) I - - W----~_..w--^SUB AA 3 .37 66-. 0 0-.20 0.50 - 6-.60 I SUB BB 4-.00 66-. 0 0-.40 0-.20 6-.60 I SUB CC 13.10 66•. 0 0-.30 0.50 6.60 I SUB DD 13. 00 66-. 0 0.30 0-. 50 6.60 I ------------------------------------------------------------- * DIVIDE ,ALL RESULTS BY TEN �* S� AA ; l t�S S RoA cD JO IIn( S Dn� -to W i LAN f) C20SSf�G(� S.h r3; A sg Rdc G�t� tar-c ( ro-St 000_A(.J pee 10� CC; :. h�v� - Tau-N�-1,cf how E� t�2 -�1 MK t IJ6 Lo-T a Suva per ; FnaT ' PTZ/p-f SC4oDC OL p6, + W SC. av*"L arms p i � C5 �J ll 1 t Lo TR-55 TABULAR HYDROGRAPH METHOD Type.-1jI Distribution ; (24 hr. Duration Storm) Executed: 01-01-1980 00:32 i 27 Watershed Pile --> C:CLPOS100.WSD Hydro4raph File ---> C:CLPS10 CALZETTI SCHOOL POSTPROJECT CONDITION . ( INCREMENTAL ANALYSIS) 100 YEAR STORM AREAS MULTIPLY BY 10/DIVIDE RESULTS BY 10 »» Input Parameters Used to Compute Eiydrograph «« ---Subarea - .. -___ - _-___CN Te__--- � AREA Tt . -Descript ion (hrs) -_--M- (acres)-__.._-_____(hrs)--- -- SUB AA 3 .30 98. 0 0. 20 0.56 SUB BB 4-.00 98. 0 0 .20 0.00 SUB CC 13 .10 98.0 0-.10 0.10 DD (GRAVEL DIT) 13.00 95-.0 0-.30 0•.75 ** DIVIDE ALL RESULTS BY TEN ** Tabl-e f-A r TR-55 TABULAR HYDROGRAPH METHOD Type III Distribution (24 hr. Duration Storm) Quick TR-55 Version: 3. 41 SIN: 87010546 TR--55 TABULAR HYDROGRAPH METHOD Type IIII Distribution (24 hr.; Duration Storm) Executed: 01-01-1980 00:35 :00 Watershed File --> C:CKPRE10O.WSD Hydroaraph File ---> CALZETTI SCHOOL NORTH ANDOVER POSTPROJECT CONDITION ,( INCREMENTAL- ANALYSIS) 100 YEAR STORM UPPER AREA AREAS MULTIPLY BY 10/DIVIDE RESULTS BY 10 »» Input Parameters Used to Compute Hydroaraph - -•_------ - "'- --- Subarea AREA CN TC * Tt Description (acres) ----------hr s) (hrs) s w _- -_ SUBAREA EE -----~- 1 .70 ---66. 0 0.3o 0.00 f 3 - Qp�jr TR-55 TABULAR HYDROGRAPH METHOD Type III Distribution � 1 (24 hr. Duration Storm) Executed: 01-01-1980 00:43 :22 Watershed File --> C:CKPOS100.WSD Hydrograph File --> CALZETTI SCHOOL AUGUST 19 GROSS ANALYSIS POSTPROJECT CONDITION ( INCREMENTAL ANALYSIS) 100 YEAR STORM UPPER AREA AREAS MULTIPLY BY 10/bIVIDE RESULTS BY--10 >>>> Input Parameters Used to Compute Hydroaraph -------------------------------------------------- Subarea AREA CN Tc * Tt - Description (acres) (hrs) (hrs) - ---- SUBAREA EE - ---1.70----98.0 0.20 0.00 our (SCS rC,e. . v oj 4.1D �-S Sts- loo �•� 1 Appendix ; Synthetic rainfall distributions and rainfall data sources The highest peal: discharges from small watersheds in the United States are usually caused by intense. '.D brief rainfalls that may occur as distinct events or w, part of a longer storm. These irate+::-. rainstorms do not usually extend over a large area :.nd intensities vary gr-eatly. One common practice in rainfall-runuff analysis is to develop a synthetic rainfall distribution to use in lieu of actual storm events. This distribution includes maximum rainfal) intensities for ° the selected design frequency arranged in a sequence '^ that is critical for producing peak runoff. Synthetic rainfall distributions 0.0 The length of the most intense rainfall period contributing to the peak runoff rate is related to the time of concentration M.) fnr the wwershed. In a Figure rainfall disirihutiom.. hYdrograph created .with SCS proced,wes. the duration of rainfall that directly contributes to the peak is about 170 percent of the T. ',or example. the most intense rain)':.:' .�,)-iod would The intensity of rainfall varies ewn-iderably during <1 contribute to thte peak discharge f.; a water=hed storm as well as over geograpme regions. To with a T,. of a mince.: the most imensc �.a•hour represent Various region, of the L sited state . :Cs period would contribute to the peal; for a .watershed developed four synthetic 24-hour rainfall (listributions with a 5-hour Tr. (1, IA. 11. and III) from available National Weather Service (NXVS) duration-frequency data iHei•slifield Different rainfall di:tribu€ion: can be developed for 1961: Frederick et al.. 19 ) or local storm data. each of these watersheris to emphasize the critical Type IA is the least intense and type 11 the most rainfall duration for the peak discharges. However. intense short-duration rainfall. The four distribution to avoid the ust- of it different set of rainfall are shown in figure B•1, and figure B-2 shu.vs their' irnensities fur eacl; rh•ainage area size. a set of approximate geographic boundaries. sN-nthetic rainfall distributions having '"nested" rainfall intensities was developed. The set Types I and Ia represent the Pacific maritime ..ma\1mizes.. the rainfall intensities w-v incorporating climate with %vet winters and dry summer:. Type III selected short duration intensities w:.hin thuse represents Gull' of Mexico and atlantic coastal areas needed for longer durations at the same probability where tropical storms bring large _'-)-hour rainfall level. amounts. Type 11 represents the rest of the county}. For more precise distribution boundaries in a state For the size of the drainage areas which SCS hating more than one ty�lw. contact the SC,S S,atv usually provide= assistance, a --tor,. ;,eriod of 24 Conservation Engineer. hours was chosen fur• the ;`ynthetic rahifall distribution:. Th(• 24-hour Storm, while longer than that needed to determine peaks for these druiniage areas. is appropriate for determining runoff volumes. Therefore. a sin vle storm duration and associated ;vnthetic• rainfall di;tributiur, can be used to . represent not nrd.v the peak discharges but also the runoff volumes for a range of drainage area sizr Rainfall Distribution TyPj I Type IA •� Type I I ' ® Type III . as � d - Digs+ry IS-2.—,Ipps•4t-imaEr gi-Itgraphis• Ix,ulAll-iv. C,u.SCS di.,I6111164al.. � i j Quick TR-55 Version: 3. 41 SIN: 87010546 Flow (cls) 0 15 30 45 60 75 90 105 120 135 150 165 11. 5 -- I x x* X* X* 11.7 x* X* 11. 8 x X* 11. 9 _ I x* X 12.0 x � x 12:1 - I x 1 x 12. 2 - I x x 12 .3 — I x x 12-.4 -- 1 x X 12.5 x X 12.6 - I x x 12.7 �- I �.r-� 1 12 .8 — Par,- xx 12•.9 - I x X 13 . 0 " j x X 13 .1 - I x x it 13 . 2 - i Xx * G1 13 .3 - I x * J x 13 . 4 X 13 .5 - I x x * y1�c7 LO cN � 4f ea � * t 13 .6 - x * .100 c v- �J -ea v- 13 .7 1 x * l�r►�'1 �. 1"os �r f TIME (hrs) * Hydroaraph file ---> C:CLPS100 HYD Qmax = 104.0 ctG x Hydrograph file ---> C:CALPS25t-. HYD Qmax 8 .0 c£s . rti F Quick TR-55 Version: 3. 41 SIN: 87010546 flow (cfs) 45 60 75 90 105 120 135 150 165 -e 15 30 I 11. 5 x* I x 11 .6 - I x I x 11.7 - { x I x 11. 8 -- I x I x 11. 9 - � x x 12. 0 -- I x I :X 12.1 '" I x * I x Po�;T 12.2 � I x x to 12.3 - 1 xx I 12 .4 - I x I " * - 12. 5 CD 12 .6 -- ; Q y2'G r xx * i * 12 .7 - I Xx I 12 . 8 -- i X x 12 . 9 - 1 " I X - 13 .0 - 1 x * t- I 13 .1 - I xx G} I 13 .3 I xx ** Ty,,JO X 13 .4 t00 r 1.0 4-r 13 . 5 I x I x * S��` 'r 'P454 13 .G - I x 1 x 13 .7 -i x TIME - (hrs) * E�ydrograph file ----> C:CLPS104 . HYD Qmax 1.OA'.4 cfs x Hydrograph file ---> C:CALPSIO ; . HXD Qmax 74.0 cfs Flow {cf s; 0. 0 6 . 0 12.0 18. 0 24•.0_ 30.0 36. 0 42:. 0. 48. 0 54-. 0 . 60. 0 66. ( 12•. 2 - I x 12-.3 - ! x I x 12.4 -- I x i X, 12 5 - ! x x 12•.6 X * �o fl -esr Pre - I � * * , I X 12.7 - ! x 12.. e - I a C&Ir �r� x � ** ! � x 12-.9 - ( x ! x * 13. 0 - f x x f * 13.1 - I xX I 13. 2 i x - ) x 13 .3 - I x I x 13.4 - I x 1 x 13. 5 - I x [ x 13 6 - 1 x f x 13-.7 i x 13. 8 I X * ` f X * ._G 13. 9 - I X * t V x ! x 14 .1 - Xre 14 . 2 - i x * y n 1 i x L.4 Lu Q-V-- 14 .3 - ! x [ TIME Mrs) .* Hydrograph file ---> C:CLPR100 -. HYD Qmax = 55•.0 cfs= X . Hydrograph file ---> C:CALPR25 •. HYD Qmax = 40-.0 cfs: k'.Low kcrs) 0 . 0 6- 0 12. 0 1B.0 24-.0 30.0 36. 042. 048-.0--54•. 0 r-60 .0 66. 0 12-. 2 - Ix I x 12•.3 - I x l x 12.4 ^i x !0 0 �� r 12.5 { x 12-.6 - I x x 12.7 ! x 12. B - { x _ Ct� x 12.9 I x I - x * 13 .0 I x { x * 13 .1 - 1 x x I * x - 1 x * 13 .3 - { x I x 13 . 4 - I X. 1 x 13 . 5 { x 13 .6 - { x I * V re x 13 .7 --� x * (' 13 . 8 - I x * �� `eoy � ' 10 5e(Lr I x 13 .9 - I I X * Vve. r 14L.0 - { x * J I x ! Lo R W- 14 .1 - { x l x 14 . 2 - { x I x 14 .3 I x { TIME (hrs) * Hydrograph file ---> C:CLPR100 HYD 4max = 26.0 cfs .0 cfs x Hydrograph file ----> C-CALPR10 :HYD 4max = i 1� i 'JR-b5 TABULAR HXDRM;RAPH Mk'1'HUD / Type III Distribution (24 hr. Duration Storm) Executed: 01-01-1980 00: 32: 27 Watershed File --> C:CLPOS100 .WSD Hydrograph File --> C:CLPS100 . HYD CALZETTI SCHOOL L- ' � POSTPROJECT CONDITION { INCREMENTAL ANALYSIS) 100 YEAR STORM AREAS. MULTIPLY BY 10/DIVIDE RESULTS BY 10 Composite Hydrograph Summary (cfs) ------------------------------------------------------------------------------- Subarea ll,. 0 11.3 11.6 11. 9 12,. 0 12•,1 12.2 12.3 12. 4 Description hr .- hr hr hr hr hr hr hr hr ______ ____________________________ ---------------------------- ___----------- SUB AA l 1 1 1 2 2 3 4 SUB BB 1 1 2 5 7 10 18 = 22 19 SUB CC 3 4 - 6 13 19 27 46 73 70 DD (GRAVEL DIT) 2 2 3 4 4 5 5 6 8 ------------------------------------------------------------------------------- Total (cfs) 7 a 12 23 31 44 71 , 104 101 t, FIFi-iAK Subarea 12-.5 ' 12.6 12.7 12-. 8 13 .0 13. 2 13. 4 13.6 13. 8 Description hr hr hr hr hr hr hr hr hr ---- SUB AA --__-- - 6 9 12 13 12.4— 8 5 3 3 SUB BB 14 11 8 5 4 3 3 2 2 SUB CC 53 41 30 21 13 10 9 a 7 DD (GRAVEL DIT) 11 16 23 31 42�— 40 32 22 15 ---------------------- --------------------------------------------------------- Total (cfs) 84 77 73 70 71 61 49 35 27 __-Subarea 14 . 0 14 .3 14 .6 15-.0 15•.5 16.0 16.5 17-.0 17•. 5 Description hr hr hr hr hr hr hr hr hr --__SUB AA 2 2 2 1 1 1 1 1 1 SUB BB 2 2 2 2 1 ' 1 1 1 1 SUB CC 7 6 6 5 4 4 3 3 2 DD (GRAVEL DIT) 11 8 7 6 5 4 4 3 3 ------------------------------------------------------------------------------- Total (cfs) 22 . 18 17 14 11 10 9 8 7 ------------------------------------------------------------------------------- Subarea 16-.0 19,.0 20-.0 22-.0 26-.0 Description hr hr hr hr hr ------------------------------------------------------------------------------- SUB AA 1 0 0 0 0 SUB BB 1 1 1 0 0 SUB CC 2 2 2 1 0 DD (GRAVEL DIT) 3 2 2 1 0 Total (cfs) '------J____-_52 -------------- »»> OUTFLOW HYDROGRAPH ESTIMATOR ««< 01-01-1980 00:54 :48 Inflow Hydrograph: C:CLPN100 . HYD Qpeak = - 95-A cfs Estimated Outflow: C:ESTIMATE. EST • .Qpeak = 4-.0 cfs Approximate Storage Volume (computed from t= 11-.10 to 17-.20 hrs) '5-.4 acre-ft Flow (cfs) 0-. 0 10-.0 20-. 0 30-.0 40-. 0 50.0 60•.0 70-.0 80. 0 90•. 0 100:.0 110.0 I x VIA - ! x 7 - I x 1 x * - I.. 8 - I ! x ' .9 - ! x * F I x -.0 - I x I x .1 - ! x I x 2 -- I x I x .3 -- I x \ X * .4 - 1 x I x .5 -- I I x * , .6 -- I x 1 x .7 - ! x I x * Vk �u de . 8 - I x 1 x . 9 - 1 x .1 - I X * var s o s I X I War x * 1� - l`.3 �W I x ra -� . 4 i �J CIOc� stir/ cc�I . 5 ( x I X �* .6 - f x TIME (hrs) * Inflow Hydrograph ----> C:CLPN100 . HYD` Qmax 95•.' 0 cfs x Estimated Discharge Hydrograph Qmax =�� 4-.0 cfs POND-2 Version: 3. 03 SIN: - 87020533 * * CALZETTI SCHOOL NORTH ANDOVER SEPT 30, 1989 * ELLIPTICAL - SHAPED POND ( DRY DETENTION TYPE) * TOTAL VOLUME 0•.58 AC. PT 2 FT SPILL WEIR AT 3 . 5 FEET DEEP * VORTEX CONTROLLER 0-.4 CFS *DIVIDE ALL RESULTS BY 10 EXCEPT STAGE * * EXECUTED 01-01--1980 04 :22 :52 Disk Files: C:CALZET .-.PND ; C:CLPN100 . HYD INITIAL °CONDITIONS Elevation = 0..00 ft. Outflow - 0.0 cfs _-------GIVEN-POND-DATA------- -------COMPUTATIONS------- (ELEVATION ( OUTFLOW I STORAGE 1 I 2S/t 1 2S/t + 0 I 1 ,(ft) /►/� ]I (cfs) 1 (ac-ft) I I (cfs) 1 (cfs) 1 I - 0 w 0 0-1 -- --0 f---------- I I--------0�-- 1 ------------ 1 I 1.00 I 3.7 I 1-.50 1 1 363.0 I 366.7- I I 2-. 00 I 3. 8 1 3-.20 1 I 774-.4 1 778. 2 1 I 3 .00 ( 3-. 8 I 5-. 20 I I 1258-r4 1 1262-. 2 i 3-.33 I 4-. 0 I 51.80 I ( 1403.6 1 1407 .6 I 1 3-. 5 0 I 4-.3 I 5-.85 I I 1415-.7 1 1419-. 9 1 I---- ---- I----28.0-------5-8 6- 1 I-------------------------- Time141 G 9 I I increment (t) 0-.100 hrs. rJ Ll -4 rf r: 00 1 ew K 'Sub cm ec:;, cl ro, ry 11 s (?Ou f-el- 7-�tnv Lr POND-2 Version: 3-.03 SIN.- 870120533 Page 2 of 6 Pond File: C:CALZET -. PND EXECUTED: 01-01-1980 inflow Hydroaraph: C:CLPN100 •. HYD 04 :22:52 Outflow Hydrograph: C:CALZETPD. HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS 1-- -- I- - 1 I _- I - -- 1- TIME INFLOW I1+12 2S/t - 0 2S/t + 0 1 OUTFLOW 1ELEVATIONI i (hrs) I (cfs) I I (cfe) I (cfs) I (cfs) I (cf6) I (ft) 1 .._�-_--- ! -__------- I I----- -__-- I ------------ I ----------- !---------- I---------- [ [ 11.0 00 I 4,. 01 1 ----- { 0-.0 0-. 01 0-. 0 1 0•. 0 0 1 1 11.100 1 4-.'0 1 1 8-.0 1 7-. 8 1 8-.01 0-.1 1 0-. 0 2 1 I 11•. z o o I 5-. 0 1 1 9-.0 1 16-. 5 1 16-. 81 0-.2 1 0•. 0 5 1 11•.300 1 5-. 01 1 10•.0 f.... 26•.0 1 26-. 51 0-.3 1 0-. 07 1 ! 11-.400 I 6•. 01 1 11-.0 I 36-.2 1 . 37-. 01 0•.4 1 0•.10 1, 1 11-. 50 0 1 T. 01 1 13-.0 1 48.2 1 4 9•.21 0-. 5 1 0-.13 I 1 11•.6 0 0 I 8-. 0 1 1 15.0 I 61.9 1 63.21 0-.6 1 0-.17 1. 1 11.700 I l l-. 0 1 1. 19-.0 1 . 7 9-.3 1 80-.9 1 0-.B 1 0-. 2 2 1 1 11. 800 [ 15'. 01 1 26-.0 1 103 . 2 I 105-.31 1-.1 1 0-. 29 1 1 11-.90 0 l 18. 01 1 33•.0 1 133. 4 I 136•. 21 l•.4 1 0-.37 1 I 12-. 000 ( 26 . 0 1 1 44-.0 1 173 . 9 1 177-. 4 1 1•. B 1 0-. 48 1 12-.10 0 1 37-. 0 1 1 6 3-.0 1 23 2-.1 I 23 6-. 9 1 2-.4 1 0•.6 5 1 1 12-.200 1 64-. 01 1 1011.0 1 326-.4 ( 333-.11 3.4 1 0•. 91 I 12•.300 1 95•.01 1 159•. 0 I 477-. 9 [ 485•.41 3-.7 1 1-. 29 1 12•.400 I 89-.0 1 1 184•. 0 I 654-.5 1 661-. 91 3.7 1 1.72 1 12-.5 0 0 . I 6 7-.0 1 1 15 6-. 0 1 802. 9 I 810-. 51 3. 8 1 2-. 07 1 1 12-.6 0 0 I 5 2-•0 1 1 119-.0 1 914-.4 I 921.91 3•. 8 1 2-.3 0 I 1 12-.700 I 3B. 01 1 90•. 0 1 996 . 8 1 1004•.4 1 3-. 8 1 2.47 1 12-. 800 1 26 . 0 1 1 64. 0 1 1053-.2 I 1060-. 81 3•. 8 1 2.58 1: 1 12-.9 0 0 I 2 2-. 0 1 1 4 8-.0 1 10 9 3-. 5 1 1101-.2 1 3. 8 1 2.67 I 13-.0 00 l 17-. 0 1 1 3 9•.0 1 1124-.9 1 1132•.5 1 3 . 8 1 2-.7 3 1 1 13-.100 1 15-. 0 1 1 32-.0 I 114 9-.2. I 1156. 91 3•. 8 1 2-.7 8 1 I 13-. 200 I 13-. 0 1 1 28•. 0 1 116 9-.6 I 1177•. 21 3. 8 1 2. 82 1 [ 13-.300 I 13-.01 1 26 . 0 1 1187,.9 1 1195-.61 3. 8 1 2. 86 1 I 13-. 400 I 12-. 01 1 25-.0 [ 1205-.2 I 1212.91 . 3•. 8 1 2,. 90 1 13 .5 0 0 1 11.01 1 23•. 0 1 12 2 0-.5 1 12 28-. 2 1 3-. 8 1 2-. 93 1 13-.600 1 10-. 01 1 21.0 I 1233 . 8 I 1241-.51 3-. 8 1 2-.96 1 1 13 .700 1 10-. 0 1 1 20.0 I 1246-.1 I 1253 . 81 3-. 8 1 2. 98 1 13-. 80 0 1 9-.0 1 1 19•. 0 1 1257-. 4 1 126 5•.1 1 3-. 9 1 3.01 1 1 13 . 900 I 9.01 1 18. 0 I 126 7-.7 I 127 5•.4 1 3..9 1 3. 03 1 1 14-.000 I 9. 01 1 18. 0 1 127 8.0 I 1285-.7 1 3-. 9 1 3-. 05 1 I 14•.10 0 I 9-.0 1 I 18-. 0 1 12 8 8-. 2 I 129 6-.01 3-. 9 1 3-. 0 8 1 1 14-. 200 1 0-. 01 1 17•. 0 [ 1297.4 ! 1305-.21 3-. 9 1 3.10 I 1 14-.300 I 8-. 01 [ 16•.0 I 1305-.6 1 1313.41 3-.9 1 3-.12 1 1 14-.400 I 8-. 01 I 16-00 1 1313-. 8 1 1321-.61 3•. 9 1 3.14 I 1 14-.500 ( 8•. 01 I 16. 0 1 1321-.9 I 1329•.81 3-.9 1 3.15 1 I 14,.6 0 0. 1 8-. 01 1 16. 0 I 13 3 0•.1 I 13 3 7-. 91 3-.9 1 3-.17 1 I 14 .7an 1 8-. 01 116•. 0 1 1338.2 I 1346-.11 , 3-.9 1 3-.19 1 1 14•.800 .[ 8. 01 1 16•. 0 1 1346.3 1 1354•.21 3-.9 1 3-.21 1 14•.900 1 7-. 01 1 15'. 0 1 1353-. 4 1 1361-.31 4-.0 1 3-.23 1 1 15-.0 00 1 7-. 0 1 1 14•.0 I 135 9-.5 I 1367-. 4 1 4-.0 1 3-.24 I 1 15-.100 1 7-.01 1 14•.0 I 1365•.6 1 1373•. 51 4-.0 1 3•. 25 1 ' 1 15•. 200 1 6-. 0 1 1 13-.0 1 1370•.6 [ 1378.6 1 4•.0 1 3. 27 I 1 15-.3 0 0 I 6. 01 1 12•.0 I 13 7 4•.7 I 13 82-.6 1 4-.0 1 3-.2 8 I 15-.40 0 I 5-.01 1 ll-.0 1 1377-.7 I 13 85-.7 1 4-.0 I 3. 28 I ----------------- ---------------- --------------------------,--------- POND-2 Version: 3.03 SIN.- 87020533 '� Pane 3 of 6 Pond File: C:CALZET .. PND EXECUTED: 01-01-1980 Inflow Hydrograph : C:CLPN100 . HYD 04 :22:52 Outflow Hydrograph: C:CALZETPD. HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS I - -- -- - - - - - TIME I INFLOW 1 ( '11+12 1. 2S/t - 0 ( 25/t + 0 ( OUTFLOWIELEVATIONI I (hrs) f (cfs) f 1 (cfs) I (cfs) : I (cfs) ( ;(cfs) I - (ft) I ---- ------ I---- ---- f I--------- I--_--_--- I---------- --------- I---_----- f 1 15-.500 I 5•.01 1 101.0 1 1379-.8 I 1387.71 4-. 0 f 3. 29 1 I 15-.600 J 5. 01 '1 10-.0 1 1381. 8 ( 1389-. 8 1 4-. 0 1 3. 2.9 1 1 15-.700 I 5•.0 1 1 10•.0 1 1383.8 1 1391.8'1 4-.0 I 3.30 1 1 15-.8 0 0 I. 5-.01 1 10-.0 I ..... : 13 85-.9 1 . 13 93 81 4-.0 1 3-.3 0 1 1 15-.9 0 0 1 5-.01 1 10-.0 .1 13 87-.9 1 13 9 5-.9`.I 4-.0 1 3.31 1 I 16-. 000 i 5-.01 1 10+.0 1 1389•.9 1 139T. 91 4.0 1 3.31 '1 1 16-. 100 1 5-.01 1 10-.0 1 1391-.9 ( 1399-.91 4-. 0 I 3•.32 1 1 16-. 200 1 5-. 01 1 10-.0 1 1393-.9 1 1401-.91 4-. 0 1 3. 32 1 1 16-.300 ( 4-. 01 1 9.0 1 1394".9 I 1402-.91 4.0 I 3.32 1 16•. 400 1 4-.01 1 8-.0 1 1395.0 ( 1402-.91 4.0 1 3.32 1 I 16. 500 I 4-. 01 1 8-. 0 1 1395-.0 1 1403. 01 4-.0 1 3.32 1 I 16-.600 f 4•.01 1- 8-.0 1 1395.0 I 1403-.01 4-.0 1 3.32 1 I 16+.700 1 4-. 01 1 8-.0 1 1395-.0 1 1403-. 0 1 4-.0 1 3-.32 I 1 16. 800 ! 4-. 01 1 8-. 0 1 1395-.0 1 1403.0'1• 4-.0 f 3.32 1 1 16-. 900 I 4-. 0 1 1 8-. 0 1 1395-.0 1 1403.01 4-.0 1 3.32 1 1 17-. 000 1 4-.01 1 8-. 0 1 1395-.0 f 1403. 01 4.0 ( 3•.32 I 1 17-. 10 0 1 4-.01 1 8-. 0 1 1395-.0 1 1401.01 4-.0 1 3-.3 2 1 I 17-. 200 1 4+. 0 1 1 8.0 1 1395-.0 I 1403.01 4-.0 I .3.3 2 1 I 17-.3 0 0 1 3-. 0 l 1 7•. 0 1 13 9 4-.0 1 140 2.01: 4-.0 1 3-.3 2 1 1 17-. 40 0 1 1. 01 1 6-.0 I 13 92•.1 1 1400-.01 4-.0 I 3-.3 2 I IT. 500 f 3-. 01 1 6-.0 I 1390-.1 1 1398.I1 4-.0 I 3-.31 1 I 17.600 f 3-. 01 1 6-.0 I 1388.1 1 1396-.11 4.0 I 3.31 I 117-.7 0 0 f 3-.01 1 6-. 0 1 13 86-.1 1 13 94-. 1 1 4-.0 1 3•.3 0 1 17 800 1 3. 01 1 61. 0 1 1384-.2 1 1392•.11 4-.0 1 3-.3 0 1 1 17-. 90 0 1 3-.0 1 1 6. 0 1 13 82-.2 1 13 90-. 21 4-. 0 C' 3.29 1 1 18. 000 I 3-. 01 1 6-.0 1 13 80•.2 1 13 88. 2 1 4-.0 1 3-. 29 1 1 18.100 ] 3-. 01 1 6-. 0 V 137 R.3 1 1386.21 . 4-.0 1 3-. 28 1 I 18. 200 1 3-. 0 I 1 6-.0 1 1376-.3 1 13 84-.3 I. 4-.0 3-.28 1 1 1.8. 300 I 3-.01 f 6-.0 1 1374-.4 1 1382-.31 4-.0 1 3. 28 I 1 18. 400 I 3•. 0 1 1 6-.0 1 13 7 2-.4 1 13 80-.41 4-. 0 1 3-.27 ( 18. 500 1 3-. 0 1 1 6-.0 1 1370-.5 1 137 8-.4 1 4.0 I 3-. 27 1 1 18,.6 0 0 1 3•. 0 1 1 6-.0 1 13 6 8-.6 1 137 6-. 51 4-.0 1 3-. 26 1 I 18-.700 ( 3-. 01 1 6-.0 I 1366-.6 I 1374.E 1 4-.01 1 3-. 26 1 1 18. 800 1 1. 01 1 6-.0 1 13 64-.7 1 137 2-.6 1 4-.0 1 3. 25 I 1 18. 900 I 3-. 01 1 6-.0 1 13 62•. 8 1 137 0-.7 1 4-.0 1 3. 25 1 19-. 000 1 3-. 01 1 6-.0 1 1360-.9 1 136.8. 8 1 4.0 . 1 3.24 I 19�.100 1 3-. 01 ' 1 6.0 1 1358-.9 I 1.366-. 91 4-.0 1 3-. 24 1 I 19-.200 f 1.01 1 6-.0 1 1357-.0 I 1364-.91 4.0 : I 3-. 24 f I 19-.300 1 3.01 1 6•.0 1 1355-.-1 1 1363-.01 4.0 = I 3. 23 [ 1 19-. 400 1 3-.01 1 . 6-. 0 1 1353-. 2 1 1361.11 4-.0 ; 1 3. 23 1 I 19-. 500 I 3-. 01 1 6-. 0 1 1351-.3 I 135 9-. 21 4-.0 : 1 3.22 1 1 19.600 I 1.01 1 6. 0 1 1349.4 1 1357-.3 1 3-.9 ` I 3. 22 1 19.700 1 3 .0 I . 1 6-.0 1 1347-.5 1 1355-.41 •3-. 9 ' 1 3.21 I 19-. 800 1 1. 01 f 6-. 0 1 1345-.6 1 1353-.51 3-. 9 1 3. 21 1 19-.900 1 3-. 0 1 1 6-.0 1 13 43-. 8 1 1351•.6 1 3-. 9 . 1 3-. 2 0 I 1 20-.000 I 3-. 01 1 6-. 0 1 1341.9 # 1349-081 3-. 9 1 3. 20 ----------------- --------------------------------------------t�- ------- POND-2 Version: 3•.03 SIN: 87020533 6--hDqpp Page 4 of 6 Pond File: C:CALZET •. PND EXECUTED: 01-01-1980 Inflow Hydrograph: C:CLPN100 •..HYD 04 :22:52 Outflow Hydrograph: C:CALZETPD. HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS I TIME I INFLOW I 1. 11+12 1 2S/t - 0 ! 2S/t + 0 I OUTFLOW ICLEVATIONI I (hrs) I (cfs) 1 1 (cfs) 1 (cfs) 1 (cfs) 1 (cfs) I (ft) I {--------- I----------- I----------- i-------- I--------- 1 I 20•.10 0 1 3. 01 1 6-.0 1 1340-.0 1 1347•. 91 3-. 9 1 3-. 20 f 20. 200 1 3-. 01 1 6•. 0 1 1338.1 1 1346-.01 3-. 9 1 . 3.19 f. 1 20•.300 1 3-.01 1 6-.0 1 •1336•.3 1 1344-.11 3-.9 1 1.19 1 1 -20-.400 1 3-.01 1- 6•. 0 1 1334-.4 1 1342•.31 3•.9 1 3-.18 1 1 20-.500 1 3-. 01 I 6-.0 1 1332-.5 1 1340-.4 1 3-. 9 1 3•.18 1 1 20-.600 1 2-. 01 1 5-. 0 1 1329-.7 1 1337-.51 3-. 9 1 1.17 1 20-.700 1 2-. 01 1 4-. 0 1 1325-. 8 1 1333•.71 3-.9 1 3.16 1 1 20-. 800 1 2-. 01 f 4-. 0 1 1322-.0. 1 1329-. 81 3-. 9 1 3-.15 1 f 20-.90 0 1 2-. 01 1 4-.0 1 131&. 2 1 13 26-.0 1 3-.9 1 3-.15 1 21-.0 0 0 1 2-.01 1 4-.0 1 1314-.3 1 13 2 2-.21 3-.9 1 3-.14 1 1 21-.10 0 1 2-.01 1 4-. 0 1 1310-.5 1 1318-.3 1 3-.9 1 3-.13 1 ! 21•. 200 I 2. 01 1 4-. 0 1 1306•.7 1 1314-.-51 3•.9 1 3.12 1 f 21•.300 I %2-. 01 1 4-.0 1 1302-.9 1 1310-.71 3•.9 1 3.11 1 f 21-.400 I 2-.01 1 4•.0 1 ' 1299-.1 1 1306-.91 3•. 9 1 3-.10 1 f 21.500. 1 2-. 01 1 4-.0 1 1295-.3 1 1303-.1 1 3•.9 1 3•. 09 1 f 21-.600 1 1•.0 1 1 3-. 0 1 1290-.6 1 1298-.31 3-. 9 1 3-.08 1 1 21.700 1 1.01 1 2-.0 1 1284. 8• 1 1292•.61 3-.9 1 3-.07 1 1 21-.8 0 0 I 1.-. 0 1 1 2.0 1 127 9-.0 1 1286. 81 3-. 9 1 3.06 1 I 21-.90 0 1 1•. 0 1 1 2-. 0 1 127 3.3 1 1281-.0 1 3-.9 1 3-. 04 1 1 22-.000 1 1.01 1 2-. 0 1 1267•.6 1 . 1275•.3 1 3•.9 1 3-.03 1 1 2 2-.10 0 I 1-.01 1 2-.0 1 1261. 9 1 126 9-.6 1 3-. 9 1 3•.0 2 1 1 22. 200 1 1-.01 1 2-.0 1 1256-.2 1 126 3-.9 1 3-. 9 1 3. 00 1 1 22-.3 00 1 1. 01 1 2.0 1 1250-.5 1 1258-.21 3-. 8 1 2. 99 1 1 22-.400 1 1-. 01 1 2-.0 1 1244-.8 1 1252•.51 3-. 8 1 1.98 1 1 22-.500 I 1. 01 1 2-.0 1 123 9.1 1 1246-.81 3. 8 1 2.97 1 I 22-.600 1 1-.01 1 2-.0 1 1233-.4 1 1241-.1 1 3-. 8 1 2-. 96 1 I 22-.7 0 0 I 1-. 01 1 2-.0 1 1227-.7 1 123 5-.4 1 3,. 8 1 Z.94 1 2 2-.800 1 1-. 01 1 2-. 0 1 12 2 2-.0 1 12 29-.7 1 3-. 8 1 2. 93 1 12 2-.9 0 0 I 1-.01 1 2-.0 1 1216•.3 1 12 24.0 1 3-. 8 1 2.92 1 23•. 0 0 0 f 1-. 01 1 2-.0 1 1210-.6 1 1218-.3 1 3-. 8 1 2-.91 1 23-.100 1 1.01 1 2-.0 1 1205-.0 1 1212.6 1 3-. 8 1 2-.90 1 I 23-. 200 1 1-.01 1 2-.0 1 1199-.3 1 1207-.01 3. 8 1 2.89 1 1 23•.3 0 0 1 1-. 01 1 2-.0 1 1193.6 1 12 01-.3 1 3-.8 1 2-.87 1 . I 23-.40 0 1 1.01 f 2-.0 1 1187-.9 1 1195-.6 1 3. 8 1 2-.86 1 I 23•. 5 0 0 1 1-.01 1 2-.0 1 1182-.3 1 1189.91 3-. 8 1 2-.85 1 1 23-.600 1 1.01 1 2-.0 1 1176-.6- 1 1184-.3 1 3-.8 1 2-. 84 1 1 23-.7 0 0 1 1.01 1 2-.0 1 117 0-.9 1 117 8-.6 1 3-.8 1 2. 83 I . - 1 23-. 800 ( 1.01 1 2-.0 1 1165.3 117 2-.9 1 3-. 8 1 2-.82 1 1 23-.900 1 1-.01. 1 2-.0 1' 1159-.6 1 1167-.31 3•. 8 1 2-. 80 1 1 24-.0 0 0 1 1.01 1 2-.0 1 115 4-.0 1 1161-.6 1 3-.8 1 2-.7 9 1 1 24.100 1 O.OI 1 1.0 1 1147.3 I 1155.01 3. 8 I 2.78 0.0 .E .3 ( . 8 1 2.7E I1 24 . 200 1 I 24 .300 1 0.01 I 0-.0 I 1132-.0 I 1139-.6 1 3-. 8 1 2.75 1 1 24-.400 1 0-.01 1 0.0 ! 1124 .4 1 1132 .01 3-. 8 1 2-.73 1 1 24-.500 1 0-.01 1 0•.0 1 1116.7 1 1124 .41 3. 8 I 2.72 1 1 24 .600 1 01.01 1 0.0 i 1109.1 1 1116,71 3. 8 1 2.70 1 POND-2 Version: 3•. 03 SIN: 87020533 Page 5 of 6 Pond File: C:CALZ ET•. -. PND EXECUTED: 01-01-19 80 Inflow Hydrograph: C:CLPN100 -. HYD 04 :22:52 Outflow Hydrograph: C :CALZETPD. HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS 1-. TIME 1 INFLOW I I 11+I2 i 2S/t -- 0! I 2S/t + 0 1 OUTFLOW 1 ELEVATION I !. (hrs) ! (cfs) l I (cfs) i (cfs) 1 , (cfs) I (cfs) i (ft) 1 1: 2 4-.7 0 0 1 0-. 01 1 0-.0 1 1101'.4 1 1109-.11 3-. 8 1 2.68 1 1 24-.800 ! 0-.01 1 01.0 1 1093. 8 1 1101.41 3. 8 1 2.67 I 1 24-. 900 1 0•.0 1 1 0•. 0 1 1086-. 2 1 1093. 81 1. 8 1 2.65 1 1 2 5•.0 0 0 1 0-.01 1 0-.0 1 107 8-.5 1 1086.21 3-. 8 1 2-.6 4 1 1 25-.100 1 0-.01 1 0.0 1 1070.9 1 107 8-.5 1 3-. 8 1 2.62 1 1 25. 200 1 0-.01 1 0_.0 I 1061.3 1 107 0•.9 1 3. 8 1 2.60 1 1 25-.300 1 0-.01 1 0.0 1 1055•.7 1 1063-.3 1 1. 8. 1 2.59 1 1 25•.40 0 1 0-. 0 1 1 0-.0 1 104 8-.1 1 1055-.7 1 3-. 8 1 2.57 1 1• 25-. 500 1 0-. 01 1 0-.0 1 1040-.5 1 1048-.11 3-. 8 1 2•. 56 1 1 ' 25•.600 1 0-.01 1 0•.0 1 1032-. 8 1 1040-.51 3-. 8 1 2. 54 1 1 25-.7 00 1 0-.0 1 1 0•.0 1 1025-.2 1 1032-.8 1 3-. 8 1 2. 53 1 1. 25-. 800 1 0-. 01 1 0-.0 1 1017-.6 1 -1025-.21 3-. 8 1 2-.51 1 1 25-.900 1 0-. 01 1 0,.0 1 1010 A l 1017-.6 1 3-.8. 1 2-.49 1 Peak Inflow - 95•.0 cfs Peak Outflow - 4•.0 cfs Peak Elevation =- 3-.32 ft Plow (cfs) 0. 0 10-.0 20-.0 30•.0 40.0 50 0 60-.0 70-. 0 80_.0 90•. 0 100.0 110-.0 11•.5 - Ix Ix 11-.6 - 1x Ix 11-.7 - 1x I x 11. 0 - 1 x I x 11. 9 - I x 1 x 1z. 0 - 1 x Ix x I x * 12-. 2 - I x I x 12-.3 I x I x 12-.4 - 1 x { x 12-. 5 - I x x 12-.6 - 1 x 1 x 12•.7 - I x x 12-. 8 - I x I x 12-.9 - 1 x I x 13-.0 - I x I x 13 .1 - I x I x x J r 13 .3 - I x * n t t� 0%) �to I x l 13 .4 - 1 x I x * ct-eo c� I'C! Yl S 11.5 5 - 1 x. .* �o W�,� '�./�'�L lgl'► �`;t'r�t. I x13.6 * 10 n C x * 0 POC7 �>Ofot 13 .7 x * = TIME (hrs) * Inflow hydrograph --->. C:CLPN100 . HYD x Outflow hydrograph ---> C:CALZETPD. HYD Flow. (cfs) 0-. 0 ' 6-. 0 12-.0 18. 0 24-.0 30-.0 36-.0 42-.0 48-.0 54-.0 60-.0 66. 0 1 11 . 83- 1 x x 12-.0 -- I x* I x 12-.17-1 x* x 12-.33-1 x* x 12-.5 - I * x * x 12-.67-1 * x � - * x hh n 12-. 83- 1 �i'1U�EC.� *x 13 . Q - I x o �4Gt � x t I mot"recL 13-.33- 1 x I x 13-. 5 - I x I d 13 .67- 1 x 13-. 83- 1 x 1 x * UPO 14 . 0 - I x 1 x * �2 ��� o� 4o ,,, 14 .17- 1 x * c I x 14-.33- 1 x 1 x 14-. 5 - i x 1 x 14 .67-1 x I x 14-. 83- 1 x * f 15 . 0 - i X * CO k/T a.rt S �� x * 15-.�17-- 1 x * s Pro' ,e C-i JrO I x h* 5 J � P 15-.3 3- 1 x, I x TIME (hrs) * Hydrograph file ---> C:CALFINAL. HYD Qmax = 57•. 8 cfs x Hydrograph fide ---> C:CLPR100 HYD Qmax = 55-.0 cfs POND-2 Version: 3.03 SIN: 87020533 0.1-01-1980 04 :43 :19