Loading...
HomeMy WebLinkAbout1990-01-16 Stormwater Report SPR 3-30-1990 SUMMARY REPORT PART A: r"THOMSON SCHOOL FINAL DRAINAGE CALCULATIONS STORAGE ROUTING ANALYSIS PART B: OALZETTA FARM SCHOOL CALCULATION OF 10 YEAR AND 100 YEAR , PRE AND POST PROJECT CONDITIONS PREPARED FOR TOWN ON NORTH ANDOVER PLANNING DEPARTMENT THRU: WILLIAM PRESSLEY & ASSOCIATES 423 COLUMBIA RD CAMBRIDGE, MA. BY ENVIRONMENTAL DESIGN & PLANNING, INC. 253 WASHINGTON ST. BELMONT, MA. 02178 WILLIAM C. PISANO, P.E.® PRINCIPAL®IN®CHARGE F P' 3'pu"4 Ct MARCH 30, 1990 fGl��p\c�` sNAt . 1 ' v V H O L K R� O ENVIRONMENTAL DEESIG !ar PLC F_ PLANNING INC. n p C F_ IF I ali µmu H U "I—L _----fir ®R®� CA - A1P� r�ew Ntw Gr45S e - F�evIsft-� Aran LC 1 O to ram i VI4GNMENTAL DESI N t2( & PLANNING INC. Qv SL a SL e7 -)t) ( , pL �D LI'1 r-L oL " Sq•` LL D-O 0>l N 0'8') = TV 4c. T'b 15')S'0 S°) 7-4.' o 71 N bL l ' Q' C� b L c) )v . sib -ljs-�'o d �a�a�d�/ �� ► lio (�u Vi �"ot� U/1 ow �l n n a 6-S,Ih L10.0ZS'0 n 0 h 'o Do' Q o'r-L bL' I / � OZo- 0 Lcz' a h' O loZo• C) O�rL. 7 zL 0 O ®' o 1Ot� fib° a h'0 g l p' Q SL Sh�o _S1°® goo° p OIL sl 4 �1° O ��o' o o'iL �,�.© I-D (;J)°O �1 °Q a'IL. S '�f -A o'7.L 15 '® 3 HL L h ► '� a h pN S 0. 0 6 0 12 0 18 0 24 0 30 0 36 0 42 0 48 0 54 0 60o0 (cf 6650 ------1 -----1 -----1-----1 -----1 -----1 -----1 -----1 -----1-----1 -----1 - 12 . 2 - x x * 12 . 3 - x 12 . 4 - x x * 12 . 5 - x x � Vr e to✓i 100 )F. �¢0, ",\ 12 . 6 - x x 12 . 7 - x x 12 . 8 _ x *x 12 .9 - * x * x 13 . 0 - * x * x 13 . 1 - ** k� G�®s� Cam;{ — (00 ter. S�of" 13 . 2 x - * x * *13 . 3 - * x x 13 . 4 x - * x * 13 . 5 - * x * x * x 13 . 6 - * x * x * x 13 . 8 - * xx � \ 13 . 9 - * x * 11 x 14 . 0 - x lob * * `_ 14 . 1 - x * x O 1SCU\CL Y (- 14 . 2 - * x J rpvY� L4 . 3 - * x * x 14 . 4 - * x 1 * x L4 . 5 - * x TIME (hrs) * Hydrograph file ---> C:WOLF100 .HYD Qmax = 51 . 1 cfs x Hydrograph file ---> C:WL10oPS HYD Qmax = 44 . 9 cfs FOND-2 Version: 3 . 03 SIN: 87020533 01-01-1980 02 :46: 11 Flow (cfs) 0. 0 310 610 910 1210 1510 1810 2110 2410--2710--3010--331 ------ ----- ----- ----- ----- ----- ----- ----- - -- - -- - -- - _2 . 4 - x x _2 . 5 - x _2 . 6 - xx * n n 2 .7 - x xx ��*- o �eCQ VU F C _2 .8 - x * J J * _2 .9 - x x _3 . 0 - x* * x _3 . 1 - * x 3 . 2 - ** x x _3 . 3 - ** x 3 . 4 - * _3 . 5 - x * * x *_3 . 6 - * x x *_3 . 7 - * x x �..- * x .3 . 8 - * x * 3 . 9 x - * 4 . 0 - * x x * x lb n 1 I I 4 . 2 - * x x P (' .4 . 3 - x tM * x �� � r i�t� VYO l_,���P✓�S * x `� 1 4 . 4 - * x * x .4 .5 - * x * x .4 . 6 - * x TIME (hrs) * Hydrograph file ---> C:WOLF10 .HYD Qmax = 23 . 8 cfs x Hydrograph file ---> C:WL10PS .HYD Qmax = 20. 3 cfs 'OND-2 Version: 3 . 03 SIN: 87020533 01-01-1980 02 : 49 : 14 0. 0 6 0 12 0 18 0 24 0 30 0 36 0 42 0 48 0 54 0 6000 (66sb 11. 17- *x *X 11. 33- *x *x 11. 5 - *x * x 11. 67- * x * x 11. 83- * x * x 12 . 0 - * X x* 12 . 17- x 12 . 33- x x 12 . 5 - X �l 12 . 67- x x 12 . 83- x *x 13 . 0 - * ** x X 13 . 17- * x J 13 . 33- * * x x *13 . 5 - * X x * x 13 . 67- * x * x 13 . 83- * X 14 . 0 - * x 14 . 17- * * xX ��. 1 * x _ 14 . 33- * x �C)C) �e� r �OSI f0) 14 . 67- ** XXx �d� Sl) Vy1 �mLl,k * x 1j� _. TIME (hrs) * Hydrograph file ---> C.TOTAL100.HYD Qmax = 57 . 7 cfs x Hydrograph file ---> C:TPOS100 .HYD Qmax = 50. 4 cfs POND-2 Version: 3 . 03 SIN: 87020533 01-01-1980 02 : 52 : 33 cf 0. 0 3 0 6 0 9 0 12 0 15 0 18 0 21 0 24 0 27 0 3000 (33sb ------I -----I -----I -----I -----I -----I -----I -----I -----I -----I -----I - 11. 5 - * x * x L1. 67- * x * x L1. 83- * x * x L2 . 0 - * x * x L2 . 17- * x * L2 . 33- x x * I 1n�� ►� x 12 . 67- x x 12 .83- x x ** 13 . 0 - X* * x Y�Oe C, 13 . 33- * x J *L3 . 5 - * x x *13 . 67- * x x * x L 3 .8 3- * x * x L4 . 0 - * x * x L4 . 17- * x * x L4 . 33- * - * Q L4 . 5 - * xx \ [� *x L4 . 67- * x n *x �� e(D I"D l> t�C�r o L4 .83- *x 15. 0 - x x TI E 1 (hrs) * Hydro raph file ---> C:TOTALIO HYD Qmax = 27 . 4 cfs \. x Hydro3raph file ---> C:TOT10 HYD Qmax = 24 . 2 cfs ?OND-2 Version: 3 . 03 SIN: 87020533 01-01-1980 02 : 54 : 15 Si w� Vn cr r �re Cn S PEAK F�G�Cv35� �cPD �nS `.sb� �J L 4t , P F. P� p E Pcs vao�� On�ec�a� S 0 '-I L4 . � ® Lower Aze1� Llq,2 4l,-1 1,,1�.�I c7i►..d cx®ss VT� LA PLO UJ A.5& T- vP� 2 s �� S •� yps DES lu�i�RN-D ?,v►u D ® L.o wEZ 5ro�d 27, ��,� YE s Y£S r aktp Is, Q ENVIRONMENTAL CiESIG ,(o PLANNING INC. vv% vn a r Ire -PbS 7-0 41 P (f;4 0,3 �� 1 CV1V�S �f WttIcr^A cx®Ss vr,� Ito — Ro lv 1 r- . scNo ► R ?o►u D ' �ro cq5 1s � 5,� VE S YF-S tiv y V-s ENVIRONMENTAL t,FSiGN & PLAN PlCIN'u 1,MC. it C4L) cc k C h)ct Al 5 4 s s ed D d� oI sckci,rje 1, 33 ENVIRONMENTAL DESIGN & PLANNiNG INC. 1� L-Tia� le- -Ti PC) , 80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY JOB TR-20 TITLE 001 1990 PRE NO CONTROL CAL/.E;TTA SUMMARY NO PLOTS TITLE SCHOOL 100 YEAR 5 RAINFL 7 0.1 8 0.000 0.001 8 0.005 0,002 0.003 0.004 8 0.006 0.007 0.008 0.009 0.010 0.011 0.012 8 0.015 0.016 0.017 0.0 0.018 0.019 8 0.020 0.021 0.022 23 0.024 8 0.026 0.027 0.028 0.0 0.0 8 0.031 0.032 0.034 0.0 0.0290.00.036 8 0.037 0.038 041 42 8 0.043 0.045 .040 0.0 0.0 0.0 8 0.03 0.050 0.051 5 0.054 0.049 8 0.057 0058 0,054 0.055 8 . 0.06 4 0.06 6 0.06 0 0.061 0.063 7 2 0.07 4 0.06 7 0.069 0.07 0 8 0.0 0.075 0.077 0.079 8 0.0 0.0 j 8 0.089 0.091 0,093 0.085 0.087 8 0.100 0.103 0.095 0.097 8 0.115 0.118 0.121 0.124 0.127 8 0.130 0.134 0.120 0.127 8 0.137 0.140 0,194 '0.1 0.151 0.155 0.159 8 0.167 67 7 0.171 0.176. .17 6 0.163 85 � r ' 8 0.189 0.194 O.1B0 0.1 N 8 0.216 0.222 0.199 0.205 0.210 8 0.250 0.228 0.235 0.242 8 0.258 0.266 0.276 t 0.298 0.312 0.328 0.363 0.416 8 0.500 0.584 0.638 8 0.702 0.714 0.673 0.689 `�v 8 0.751 0.758 0.725 0.734 0.743 8 0.785 0.790 0.766 0.772 0.779 8 0.811 0.816 0.796 0.801 0.806 8 0.834 0.821 0.825 0.829 0 8 0.836 0.842 0.845 0.849 .8 0.8 70 0.874 0.860 0.864 0.867 8 0.886 0. 89 0.877 0.880 0.883 8 0.900 0.903 0.892 0.895 0,898 8 0.9 8 0. 11 0.91 0.906 0.908 0.910 8 0.920 22 0.915 0.917 0.919 8 0.929 0,930 0.9 0.924 0.925 0.927 8 0.936 0.938 0.930.932 0.933 0.935 8 0.944 0.945 0.94 0.941 0.942 6 8 0.951 0.952 0.948 0.949 8 0.957 0.958 0.9 0.953 0.955 0.956 8 0.963 0•965 0.961 0.962 _ 0.966 0.967 0.968 8 0.969 9.971 0.972 0.973 0.974 8 0.975 ).976 0.977 0.978 0.979 e 0.981 0.982 0.983 0.984 0.985 8 0.986 0.987 0.988 0.989 0.990 8 0.991 0.992 0.993 0.994 0.995 8 0.996 0.997 0.998 0.999 1.000 . 8 1.000 1.000 1.000 1.000 1.000 T R 20 rot i ENISTBL- 6 RUNOFF 1 1 6 : 00453 78. . 92 1 0 0 1 1 AREA A 6 RUNOFF 1 002 7 . 00828 71 . 4 1 .38 1 0 1 1 AREA B 6 ADDHYD 4 001 6 7 5 1 0 1 1 SUM AB 6 RUNOFF 1 3 6 . 008 75. 5 1 . 05 1 0 0 1 1 AREA C 6 ADDHYD 4 002 5 6 7 1 0 1 1 SUM BC 6 RUNOFF 1 4 6 . 0008 72. . 15 1 0 0 1 1 AREA E 6 ADDHYD 4 3 7 6 5 1 0 0 1 1 SUM EB 6 RUNOFF 1 5 6 . 00391 71 . . 42 1 0 1 1 AREA F 6 ADDHYD 4 4 5 6 7 1 0 1 1 SUM EF 6 RESVOR 2 1 7 5 227 . 5 1 0 0 1 1 CUL 1 6 RUNOFF 1 6 6 . 000515 71 . 0 . 15 1 0 0 1 1 AREA G 6 ADDHYD 4 5 5 6 7 1 0 0 1 1 SUM EG 6 RUNOFF 1 7 6 . 0041 71 . . 43 1 0 0 1 1 AREA H 6 ADDHYD 4 6 7 6 5 1 0 0 1 1 SUM GH 6 RESVOR 2 2 5 6 221 . 5 1 0 0 1 1 CUL 2 6 DIVERT 6 001 6 1 5 5. 3 1. 0 1 0 1 1 TO .LL 6 RUNOFF 1 8 6 . 0003 80 . . 15 1 0 0 1 1 PD SUR 6 ADDHYD 4 7 1 6 7 1 0 0 1 1 POND 6 RESVOR 2 3 7 2 221 . 5 1 0 0 1 1 POND 6 ADDHYD 4 8 2 5 4 1 0 1 1 J+DIV 6 RUNOFF 1 9 7 . 003 71 . . 43 1 0 0 1 1 ARE I 6 ADDHYD 4 9 4 7 5 1 0 0 1 1 AR I+J 6 RUNOFF 1 10 6 . 00138 68. . 98 1 0 0 1 1 AREA K 6 ADDHYD 4 10 5 6 7 1 0 0 1 1 SUM K+,- 6 RUNOFF 1 11 6 . 00419 72.6 1.37 1 0 0 1 1 AREA N 6 RUNOFF 1 12 4 . 00113 72. . 59 1 0 0 1 1 AREA 0 6 ADDHYD 4 11 4 6 5 1 0 0 1 1 SUM NO 6 ADDHYD 4 12 5 7 6 1 0 0 1 1 S KJNOI 6 RUNOFF 1 13 7 . 00164 65-. . 98 1 0 0 1 1 ARE LL 6 ADDHYD 4 13 6 7 5 1 0 1 0 1 TOT LL 6 RUNOFF 1 14 6 . 00116 70 . 0 . 58 1 0 0 1 1 AREA M 6 RUNOFF 1 15 7 . 0081 71 . 8 . 48 1 0 0 1 1 AREA--P 6 ADDHYD 4 14 6 7 4 1 0 0 1 1 ARE MP 6 RUNOFF 1 16 7 . 00217 65 . 1 .69 1 1 0 1 AREA L 6 ADDHYD 4 15 4 7 3 1 0 0 1 0 1 TOT L 6 ADDHYD 4 16 3 5 4 1 0 1 0 1 SM @ Ll 6 RESVOR 2 4 4 6 211 . 5 1 0 0 1 1 LL DAM 6 RUNOFF 1 17 3 . 00131 73. 4 . 45 1 1 1 AREA R 6 RUNOFF 1 18 4 . 00017 65. . 25 1 1 1 AREA Q 6 ADDHYD 4 17 3 4 5 1 0 1 1 SUN RQ 6 ADDHYD 4 18 6 5 7 1 0 1 1 MAIN 6 RESVOR 2 5 7 4 205. 5 1 1 1 1 1 1 WOLF 6 RUNOFF 1 19 1 . 00228 72. .30 1 1 0 1 1 1 AREA S 6 RUNOFF 1 20 7 . 00484 73 . 9 1 . 42 1 0 0 1 1 AREA D 6 RUNOFF 1 21 5 . 0028 72. .74 1 0 0 1 1 AREA T 6 ADDHYD 4 19 7 5 6 1 0 0 1 1 SUM DS 6 RUNOFF 1 22 5 . 0005 65 . . 58 1 0 0 1 1 AREA C 6 ADDHYD- 4 20 5 6 7 1 0 0 1 1 SUM U 6 RESVOR 2 6 7 3 225 .3 1 1 1 1 1 1 OUT U ENDATA 7 INCREM 6 . 05 7 COMPUT 7 1 6 6 .7 1. 7 2 1 1 ENDCMP 1 ENDJOB 2 o o � KF- �V 0 PF' I v _ n � -r- T R-20 D XT A T,3 L a CtJ �v �S �► � RI�TI u 3-STRUCT 1 1 Cu . Dk f cc�'i� S'�O AC� , 8 2- 27 0 • . 5 228 . 5 2 .6 0 0.. C rt75Sc n 88 229 . 0 3 .7 .. 02 0 3 8 5 ,l� � 229 . 5 4 . 6 . 04 8 tu P\ 230 . 0 5 . 3 . 14 9 ENDTBL 230 . 5 50 . . 35 3 STRUCT 2 221 . 5 0 . 0. 0 8 222 . 5 2. 6 0 . 02 Cxvc,1 c,Ln crti 8 223 . 0 3 .7 0. 03 ST'K��y1 8 223 . 5 4 .6 0. 04 223 .75 4. 9 0. 14 8 sP 224 . 0 5. 3 0. 20 224 . 5 50 . 0 . 35 9 ENDTBL E STRUCT 3 X rh^ 8 CCIA S�it� 222. 5 0 . 0 0 . 0 (� 8 � v • 0 2.6 0 . 1 w 0,JJ, C�� 2 2 3 . 0 3 .7 0 . 3 8 223 . 5 8 ALL. 22M• ® 4 .6 0. 4 9 ENDTBL 224 . 0 5.3 0. 5 3 STRUCT 4 � V--�OJ 4V X41 8 �11. 5 0. 0 0 . 12. 0 1. 9 8 212. 5 3 . 8 . 01 . 02 C�� 8 C Q 213 . 0 5. 5 J f °�I k 213 . 5 6. 8 . 05 8 214 . 0 50 . 10 1 . 0 . 20 9 ENDTBL 3 STRUCT 5 8 205 . 5 v 8 0. 0 0 . 0 206 . 5 10. 0 . 032 CS"`5 8 207 . 17 . 0 . 045 207 . 5 28. 0 . 064 8 208. 36. 0 . 075 8 208. 5 44 . 0. 096 8 209. 51 . 0. 111 8 209 . 5 58 . 0 . 124 8 S 1 �� kv4 210. 0 65. 0 . 148 8 P -----� 210. 5 75. 0 0. 23 9 ENDTBL 3 STRUCT 6 �r 8 225. 3 0. 0. 8 226 . 5 3. 2 . 02 8 227 . 0 4. 2 . 05 A 8 228. 0 5.6 . 15 8 ;11 -a228. 25 6. 5 . 175 8 228. 5 15. . 19 rtmy6ys TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRA' SPORTATION HmV2-36 SN:84021695 TEXAS HYDRAULIC SYSTEM 221108 XFQ: 01/01/1980 Time. 05:13 THYSYS VER 2.3 MAR 86 NORTH ANDOVER CAL71-TTA SCHOOL TWIN 24" CULVERT UNDER WOLF DRIVE WAY INLET INVERT 205-.75 ASSUMED OUTLET INVERT 204.25 ASSUMED TAILWATER 205-.75 ASSUMED CULBRG ANALYSIS CULVERT SINGLE SUPPLY Q= 20.0A-6 CFS TW ELEV = 205.75 CLB0005--NO FREQUENCY GIVEN. CLVRT 001 CIRCULAR CLVRT 001 STRAIGHT .024 CLVRT 001 OUTLT STA 0. EL204 .25 INLET STA 24. EL205-.NORMAL75 KE=.90 CLVRT 001 DIMENSIONS DIAM=24. ENDATA BARRELS= 02 2 y ' N C vl�- �s Chops ` lip ( -� ® r��QW PTHYSYS TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION Xl':Q-- 01/01/1980 Time: 05:13 HMV2.36 SN:84021695 TEXAS HYDRAULIC SYSTEM — 221108 THYSYs ro I — nr FLOW = 20.0 CFS FREQUENCY = 0 YEAR TAILWATER = 205.75 H.W. CA I,C. TOTAL BBLS DIAM WIDE HIGH LENGTH ELEV. H.W. VELOC. COST($) 2 24 0.0 0.0 24 207.58 1.83 8.60 0. INLET STATION = 24 ELEVATION = 205.75 OUTLET STATION = 0 ELEVATION = 204.25 ®V INLET po SLOPE PROFILE SHAPE TYPE KE MATERIAL 'N' 0.06250 STRAIGHT CIRC NORMAL 0.90 0.024 PTHYSYS TEXAS DEPARTMENT OF HIGHWAYS AND PUBLTC TPANSP(MTATION TEXAS HYDRAULIC SYSTEM - 22110H HMV2.36 SN:84021695 THYSYS 1 Tw iN �y�� c Z0 6 to ENVIRONMENTAL DESIGN D 5 Cv 1v -a�15 vp SD cc ****** PART 2 CALZETTA FARM SCHOOL DRAINAGE ANALYSIS ****** SECTION 1 : INTRODUCTION & CONCLUSIONS Figure 1 shows the analysis area encompassing roughly 42 acres . This area was subdivided into 22 subcatchments for the purpose of utilizing the Soil Conservation Service TR-20 model implementation. Figure 2-A and 2-B depicts the catchments. Table 1 presents summary hydrologic parameters for the 22 catchments . " Pre and post" modeling required a total of 49 and 62 modeling operations, respectively, to model the complex interaction of functions, ie , computing runoff hdrographs, adding hydrographs and routing through storage elements. TR20 permits interaction of multiple catchments, storage areas , diversions , multiple outlets , etc . The model is widely used in large scale urban drainage catchment modeling , but lends itself also to smaller complicated watersheds having multiple flow directions . Figures 3 and 4 depict the "pre and post" logic TR- 20 logic digrams necessary to model this problem. By inspection it can be seen that the problem is extremely complex. Some descriptive materials for the TR20 are provided in appendix B of this report. It should be noted that the diversion option was used to model the interaction of the flow patterns at the existing Farm Pond. The pond is bermed well above ground level The lower stream culvert and the inlet and outlet pipes in pond are at same elevations and have similar diameters . When ditch spills it passes into a low area and flows to wetland "LL" at about elevation 224 . The pond is completely encircled with a protective berm preventing sheet flow input. The analysis considered the 100 year and 10 year 24 hour rainfall events ( SCS Type III rainfall ) . The analysis is summarized in Figures 5-8 and in Tables 2 and 3 . Figures 5 and 6 show the 100 year and 10 year pre/post hydrographs leaving the site through the existing sets of twin barrel culverts passing under the Wolf Driveway, respectively . The estimated post project peak flow condition is deliberately less than the pre condition for both expediency in review. The final design is conservative and should provide sufficient allowance for contingenicies . (a) Since the both the land surface( imperviousness changes ) and the flow patterns of the on-site land mass will be modified under post project condtions, an informative calculation is to sum the three hydrographs leaving the site for pre and post conditions. Figures 7 and 8 show the pre and post 100 year and 10 year summed hydrographs, respectively, for the Wolf culvert, sheet flow directly onto Abbott and the discharge from the upper wetland culvert. Tables 2 and 3 summarize important pre/post flow conditions at various locations on the site for the 100 and 10 year events respectively. The 100 year ananlysis indicates that for pre project conditions, all the on-site storage areas are slight and overtopping occurs ( with the exception of the Wolf culvert and the Farm Pond) . It should be noted that the on-site ground elevation at Wolf cuvert is about 210+/-. The existing storage behind the lower wetland road crossing and the two stream crossings above Farm Pond are neglible. Similar conclusions are reached for the pre 10 year event. Under post conditions, additional onsite storage is generated in the lower wetland ( by ponding to higher elevation) and in a new proposed stormwater detention facility. It is intended that the storage within the new detention pond would not overtop for either the 10 or 100 year event ( emergency bypass would just be in operation for the 100 year storm ) . The new lower wetland crossing is designed to pass the 10 year storm without topping , and permit spill at the 100 year storm event. During spill conditions, overflow would pass through 3 orifice slots on the upper side and pass out three additional slots into the outlet area to the culverts under Wold Driveway. Estimated capacities at different depths of flow within the rock ditch running parallel to Wolf driveway from the culvert crossing down to Abbott Street is shown in Table 4. Field measurements were made to ascertain dimensions. The invert profile generally is parallel with the ground fall down the driveway. By inspection of the ditch area , it appears that any flow depth in excess of 1811 would begin to substantially cause erosion and damage to the existing trees along the driveway. By inspection of Tables 2-4 , there appears to be adequate capacity to handle project pre and post flows. More substantive rip rap protection at the Wolf driveway culvert outlet should be provided as a general precaution if there are signs of warning signs of side erosion. Additionally, it is recommended that rip-rap protection should be provided in the turning section near the intersection at Abbott Street. Without such protection , erosion on the face slope of Abbott Street may occur Both observations are general management precationary measures that should be considered by the Town of North Andover. Section TWO : TR20 ANALYSIS A. Data Preparation Table 5 depicts the SCS type III fractional distribution used to scale total rainfall per events into 24 hour hyetregraph. Totals for 100 and 10 year events used are 6. 6 inch and 4 . 7 inches , respectively. Table 6 depicts the input data for existing conditions . Types of operations, area ( sq. mile) composite CN values and times of concentration ( hr) are given along with operation controls, etc. Table 7 provides an operation key to the particular TR-20 functions useds in this analysis. Due to the smallness of the watershed and the relatively short length of the main system "spline, the TR20 "Reach" function was not used As a result the design will be slightly conservative. Table 8 presents storage & flow rating curves developed for the existing on-site culverted areas. Six such areas are used and the locations are noted Storage was developed from existing topo map . The "Thysys " culvert routine was used to compute discharge for various headwater elevations. Table 9A-B shows a typical calculation and Figure 9 gives the stage rating curves for the two twin culverts sets crossing Wolf Road. Hydraulic flows at over-topping conditions for the storage areas were not calculated , only estimated. B. Pre condition Results For the 100 year event Tables 10, 11 , and 12 depict the hydrographs of the three outlets from the site: a) Wolf Way culvert, sheet flow from subarea 11S" onto Abbott and the upper wetland discharge ( subarea "U") , respectively. Water surface elevations are also given for various hydrograph points for the wetlands within subareas " Q and U" . Table 13A-B provides summary for all areas summed areas , and storage area outlets for the 100 year event. By inspection it can be seen that nearly all of the storage areas ( with the exception of Farm Pond and Wolf Road culvert ) substantially topped ( the elevations shown are onl-.- representative) . Table 14A-B presents similar results for the 10 year storm. The existing storage areas within the stream section and the lower wetland crossing provide very little attenutation The upper wetland area does provide dampening of flows . Table 15 presents the 10 year storm hydrograph and corresponding water elevations at the Wolf Way culvert entrance. C. Wolf way Channel Capacity Figure 10 depicts sketch of rock channel cross section parallel to Wolf driveway from outlet of culvert sets down to Abbott Street. Tables 16A-B-C present typcial calculations for various assumed depths of flow within the channel section. D. Post Conditions The TR20 model approach for post conditions was as follows. First, all of the impacted areas ( building, pavement, grass, planters, replicated wetlands, etc) were noted for each subcatchment shown on Figure 2B . This impacted areas ( noted in Table 17 A ) were deducted from the Pre project catchments A total area of 5. 31 acres of impact are noted. Next new catchments and functions were modeled and their catchment areas and characteristics are noted in part B of Table 17 . The sum of the new areas equals the sum of the deleted areas from the original set. The new areas discharge to the new detention pond, the lower wetland storage area , and the upper wetland Figure 4 depicts the operational logic for the post condition. Table 18 summarizes the revised post condition input operations to TR20. Tables 19A-B present the storage and discharge 01� characteristics for the seven storage areas . For storage area 4 ( lower wetland) , discharge and storage quantities are indicated for a maximum pool elevation of 219 . 5 . Two 15" culverts are proposed along with 3 - 3 foot long by 1 foot high slots in the retaining wall set at spill elevation 218 . 5 . It is intended thatn no flow is to spill out the slots for the 10 year storm . Table 20A-B presents typical calculations ( using THYSYS ) for a new proposed twin 1511CMP culvert set at the road crossing. Figure 11 depicts the rating curve for the combination of the proposed culverts and 3 wall slots at this location. For storage area 5, the new stormwater detention pond ( 0 . 45 acre-ft at spill) is proposed with a 3 cfs +/- vortex flow controller ( see Figure 12 for stage discharge curve) and emergency spill at elevation 213 . 50 ( +/-) . Pond spill control occurs via 2 twin 12" pipes . These two pipes connect into the manhole chamber downstream of the chamber containing the vortex throttle. An 18" outflow pipe then continues and discharges into the brook via a wingwall section. Tables 21 and 22 present the 100 year post hydrographs ( tablular form ) for the new storage pond and Wolf culvert outlets , respectively. Input flows peaks are also shown. Table 23A-B summarizes peak flow conditions at all locations and provides peak water surface elevation for each storage area for the 100 year storm event. Estimated maximum water levels in lower wetland, new detention pond and in front of the Wolf culvert are : 219. 14 , 212 . 50, 208 . 56 respectively. Table 24A-B summarizes peak flow conditions at all locations and provides peak water surface elevation for each storage area for the 10 year storm event. The maximum water elevations estimated for the 10 year event for the lower wetland, the new detention pond, and in front of the Wolf culvert are : 217 . 71, 211. 32 , and 207 . 15, respectively. Note that no spill occurs through the wall slots at the lower wetland crossing. O'! � (1/I, Su' l6D f Li I o 1 'I , I - f - zi �, � �� }% '� � ��� I � � �I� \v ! ��� i� •', S' a �� I Pal, �� I(, ,���_ �"� � 5 J` •�t,,,;> > -� I �>. is 41 t I � � I c ae t y. '` �'`- � � � 1 1 t � 1' �C',/.�.� ������ li. •�-' �' � � �I) � � � � ' I ion , I .� � III ��1a � �� I I �� �i� I i '' ��� � � ��� •if ��� . . ��. � � � �� � �I� �;�e� � p "� �. i ( �'� K ✓ 0�� '"4 �waa: r •3` -x : '\_ :"�6' " w.'*J ` ,r,,•, +r'-. N n c r/01( i� ro w o I C vl Uel(l Cross OPERATION ADDHYD CROSS SECTION 18 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.48 51.20 (NULL) RUNOFF VOLUME ABOVE BASEFLOW = 2-.28 WATERSHED INCHES, 80.63 CFS-HRS, 6.66 ACRE-FEET; BASEFLOW = 0.00 CFS OPERATION RESVOR STRUCTURE 5 C b A cl!� PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.51 51.10 209.01 TIME(HRS) FIRST HYDROGRAPH POINT = 0.00 HOURS TIME INCREMENT = 0.05 HOURS DRAINAGE AREA = 0.05 SQ.MI. 8.00 DISCHG 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 8.00 ELEV 205-.50 205.50 205.50 205.50 205.50 205.50 205.50 205.50 205.50 205.50 8.50 DISCHG 0.04 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 8.50 ELEV 205.50 205.50 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.52 9.00 DISCHG 0.19 0.21 0.24 0.26 0.29 0.32 0.35 0.38 0.41 0.45 9.00 ELEV 205.52 205.52 205.52 205.53 205.53 205.53 205.54 205.54 205.54 205.54 9.50 DISCHG 0.48 0.52 0.56 0.60 0.64 0.68 0.73 0.77 0.82 0.87 9.50 ELEV 205.55 205.55 205.56 205-.56 205.56 205.57 205.57 205.58 205.58 205.59 10.00 DISCHG 0.92 0.98 1.03 1.08 1.14 1.19 1.26 1.32 1 .39 1.47 10.00 ELEV 205.59 205.60 205.60 205.61 205.61 205.62 205.63 205.63 205.64 205.65 10.50 DISCHG 1.54 1.63 1.71 1.79 1.88 1.97 2.07 2.17 2.27 2.38 10.50 ELEV 205.65 205.66 205.67 205.68 205.69 205.70 205.71 205.72 205.73 205.74 11.00 DISCHG 2.49 2.62 2.75 2.89 3.03 3.19 3.34 3. 51 3.69 3.88 11.00 ELEV 205.75 205.76 205.77 205.79 205.80 205.82 205.83 205.85 205.87 205.89 11.50 DISCHG 4.03 4.15 4-.30 4.47 4.68 4.92 5.21 5.57 5.96 6.37 11.50 ELEV 205.90 205.92 205.93 205.95 205.97 205.99 206.02 206.06 206.10 206.14 12.00 DISCHG 6.91 8.37 12.86 18.18 21.49 25.26 32.43 40.50 46.72 50.12 12.00 ELEV 206.19 206.34 206.70 207.05 207.20 207.38 207.78 208.28 208.69 208.94 12.50 DISCHG 51.0E 50.76 49.76 48.40 46.91 45.41 44.00 42.77 41.44 40.11 12.50 ELEV 209-.00 208.98 208.91 208-.81 208.71 208.60 208.50 208.42 208.34 208.26 13.00 DISCHG 138.76 37.37 35.91 33.95 32.58 31.11 29.71 28.35 27.12 25.88 13.00 ELEV 208.17 208.09 207.99 207.87 207.79 207.69 207.61 207.52 207.46 207.40 13.50 DISCHG 24.67 23.53 22.45 21.42 20.43 19.51 18.66 17.87 17.14 16.48 13.50 ELEV 207.35 207.30 207.25 207.20 207.16 207.11 207.08 207.04 207.01 206.96 14.00 DISCHG 15.85 15.26 14.72 14.22 13.76 13.34 12-.94 12.57 12.21 11.85 14.00 ELEV 206.92 206.88 206.84 206.80 206.77 206.74 206.71 206.68 206.66 206.63 14.50 DISCHG 11.50 11.19 10.91 10.65 10.42 10-.19 9.99 9.85 9.71 9.58 14.50 ELEV 206.61 206.58 206.56 206.55 206.53 206.51 206.50 206.48 206.47 206.46 (� RUNOFF VOLUME ABOVE BASEFLOW = 2.27 WATERSHED INCHES, 10,26 CFS-HRS, 6,63 ACRE-FEET; BASEFLOW = 0.00 CFS --- HYDROGRAPH FOR STRUCTURE 5, ALTERNATE 1, STORM 1, ADDED TO OUTPUT HYDROGRAPH FILE --- f�- OPERATION RUNOFF CROSS SECTION 19 PEAR TIME(HRS) PEAR DISCHARGE(CFS) PEAR ELEVATION(FEET) 12.23 4-.36 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = 0.00 HOURS TIME INCREMENT = 0.05 HOURS DRAINAGE AREA = 0.00 SQ.MI. 8.00 DISCHG 0.00 0.00 0-.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 8.50 DISCHG 0.01 0.01 0.01 0.01 0.01 0-.02 0.02 0.02 0.02 0.02 9-.00 DISCHG 0.03 0.03 0.03 0.03 0-.03 0.04 0.04 0.04 0.04 0.05 9.50 DISCHG 0.05 0.05 0.05 0.06 0.06 0-.07 0-.07 0.07 0.08 0.08 10.00 DISCHG 0.08 0.08 0.09 0.09 0.09 0-.10 0.11 0.11 0.12 0.12 10.50 DISCHG 0.13 0.13 0.14 0.15 0.15 0.16 0.17 0.18 0.19 0.20 11.00 DISCHG 0.21 0.22 0-.23 0.24 0.25 0.27 0.28 0.30 0.32 0.35 11-.50 DISCHG 0.37 0.40 0-.43 0-.46 0.51 0.59 0.71 0.92 1.22 1.63 12.00 DISCHG 2.15 2.78 3.43 3.97 4.31 4.34 4.15 3.78 3.31 2.80 12.50 DISCHG 2.32 1.92 1.60 1.38 1.21 1.09 0.99 0.91 0.84 0.78 13.00 DISCHG 0.74 0.70 0.67 0-.63 0.61 0-.60 0.58 0.56 0.55 0.53 13.50 DISCHG 0.52 0.51 0.49 0.47 0.45 0.45 0.44 0.43 0.42 0.41 14.00 DISCHG 0.40 0.40 0.40 0.39 0.39 0.39 0.38 0.37 0.36 0.35 14.50 DISCHG 0.34 0.35 0.35 0.35 0.34 0.33 0.32 0.31 0.30 0.29 RUNOFF VOLUME ABOVE BASEFLOW = 2.70 WATERSHED INCHES, 3.97 CFS-HRS, 0.33 ACRE-FEET; BASEFLOW = 0.00 CFS --- HYDROGRAPH FOR XSECTION 19, ALTERNATE 1, STORM 1, ADDED TO OUTPUT HYDROGRAPH FILE --- Pre OPERATION ADDHYD CROSS SECTION 20 ZDIR r'� ® �J -PEAK TIME(HRS) P CFS AK ELEVATION(FEET) 12.68 7.33 (NULL) 13.33 CFS-HRS, 1.10 ACRE-FEET; BASEFLOW = 0.00 CFS RUNOFF VOLUME ABOVE BASEFLOW = 2.54 WATERSHED INCHES, (, '}n �-�^_� OPERATION RESVOR STRUCTURE 6 0 v� � ow��L j PEAK TIME(HRS) PEAK DISCHARGE(CFS) EV ON(FEET) 13.22 5-.71 228.03 TIME(HRS) FIRST HYDROGRAPH POINT = 0.00 HOURS TIME INCREMENT = 0.05 HOURS DRAINAGE AREA = 0.01 SQ.MI. 8.50 DISCHG 0.00 0.00 0.00 0-.01 0-.01 0.01 0.02 0.02 0.02 0.03 8.50 ELEV 225.30 225.30 225.30 225.30 225.30 225.31 225-.31 225.31 225.31 225.31 9.00 DISCHG 0.03 0.04 0.04 0-.05 0.05 0.06 0.06 . . . 2 2255 9.00 ELEV 225-.31 225.31 225.32 225.32 225.32 225.32 225.3 .33 2 225.33 225.33 9.50 DISCHG 0.08 0.09 0.10 0.10 0.11 0.12 0.13 0.13 0.14 0.15 9.50 ELEV 225-.33 225.33 225.34 225-.34 225.34 225.34 225.35 225.35 225.35 225.36 10.00 DISCHG 0.16 0-.17 0.18 0.18 0.19 0.20 0.21 0.22 0.23 0.24 lu.uu EbEV z25-.36 225.36 225.31 225-.37 225.37 225.38 225.38 225.38 225.39 225.39 10.50 DISCHG 0.26 0.27 0.28 0.29 0.31 0.32 0.34 0.35 0.37 0.38 10.50 ELEV 225.40 225.40 225.41 225.41 225.42 225.42 225.43 225.43 225.44 225.44 11.00 DISCHG 0.40 0.42 0.44 0.46 0-.49 0.51 0.54 0.56 0.59 0.62 11.00 ELEV 225-.45 225.46 225.47 225.47 225.48 225.49 225.50 225.51 225.52 225.53 11.50 DISCHG 0.66 0.69 0-.73 0.77 0.82 0.87 0.93 1.01 1.10 1.23 11.50 ELEV 225.55 225.56 225.57 225.59 225.61 225.63 225.65 225.68 225.71 225.76 12.00 DISCHG 1.40 1.63 1.93 2.31 2.77 3.22 3.38 3.60 3.86 4.16 12.00 ELEV 225-.83 225.91 226.03 226.17 226.34 226.51 226.59 226.70 226.83 226.98 12.50 DISCHG 4-.32 4-.46 4.61 4.76 4-.91 5.04 5.16 5.27 5.37 5.45 12.50 ELEV 227.08 227.19 227.29 227.40 227.50 227.60 227.69 227.77 227.83 227.89 13.00 DISCHG 5-.52 5.57 5.62 5.68 5.71 5.70 5.67 5.61 5.57 5.52 13.00 ELEV 227.94 227.98 228.01 228.02 228.03 228.03 228.02 228.00 227.98 227.95 13.50 DISCHG 5-.47 5.41 5.33 5.26 5-.17 5.08 4.99 4 .89 4.79 4 69 13.50 ELEV 227.91 227.86 227.81 227.75 227.69 227.63 227.56 227.50 227 .42 227 .35 14.00 DISCHG 4-.59 4.49 4.39 4.29 4.17 3.94 3.73 3. 54 3.36 3.20 14.00 ELEV 227.28 227.21 227.14 227.06 226.98 226.87 226.77 226.07 226.58 226. 50 14.50 14.50 DIELEV 226.28 226.16 226.09 226.05 226.01 225.99 225.97 225.95 225.93 225.92 RUNOFF VOLUME ABOVE BASEFLOW = 2.52 WATERSHED INCHES, 13.21 CFS-HRS, 1.09 ACRE-FEET; BASEFLOW = 0.00 CFS --- HYDROGRAPH FOR STRUCTURE 6, ALTERNATE 1, STORM 1, ADDED TO OUTPUT HYDROGRAPH FILE --- v"vy\uA 100 kty- Pre ( e uelvT SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT. ) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA t COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 --------------------------- XSECTION 1 RUNOFF 0.00 7 2 0-.05 0-.0 6.70 23.90 3.12 --- 12.65 6.05 1336.1 XSECTION 2 RUNOFF 0-.01 7 2 0.05 0.0 6.70 23.90 2-.38 --- 12.99 7.08 855.3 XSECTION 1 ADDHYD 0.01 7 2 0-.05 0-.0 6.70 23.90 2.65 --- 12.80 12.34 963.4 XSECTION 3 RUNOFF 0.01 7 2 0.05 0.0 6.70 23.90 2.86 --- 12.74 9.25 1156.1 XSECTION 2 ADDHYD 0.02 7 2 0.05 0.0 6.70 23.90 2-.73 --- 12.77 21.56 1036.0 XSECTION 4 RUNOFF 0.00 7 2 0.05 0-.0 6.70 23.90 2.72 --- 12.14 1.79 2242.3 XSECTION 3 ADDHYD 0.02 7 2 0.05 0-.0 6.70 23.90 2.73 --- 12.77 21.84 1010.8 XSECTION 5 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.9Q 2.59 --- 12.32 6.45 1648.6 XSECTION 4 ADDHYD 0.03 7 2 0.05 0.0 6.70 23.90 2.71 --- 12.69 24.48 959.4 STRUCTURE 1 RESVOR 0.03 7 2 0.05 0.0 6.70 23.90 2.61 230-.21 12.74 24.37 954.8 XSECTION 6 RUNOFF 0.00 7 2 0-.05 0.0 6.70 23.90 2.63 --- 12.15 1.12 2170.6 XSECTION 5 ADDHYD 0.03 7 2 0.05 0.0 6.70 23.90 2.61 --- 12.74 24.55 943.1 XSECTION 7 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 2.59 --- 12.33 6.69 1631.7 XSECTION 6 ADDHYD 0.03 7 2 0.05 0.0 6.70 23.90 2.60 --- 12.56 27.95 927.5 STRUCTURE 2 RESVOR 0-.03 7 2 0.05 0.0 6.70 23.90 2.48 224.25 12.61 27.90 925.8 XSECTION 1 DIVERT 0.00 7 2 0.05 0.0 6.70 23.90 2.48 --- 12.25 5.30 ********** XSECTION 1 DIVERT 0.03 7 2 0.05 0.0 6.70 23.90 1.43 --- 12.61 22.60 749.9 XSECTION 8 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 3.47 --- 12.15 0.81 2706.8 XSECTION 7 ADDHYD 0.00 7 2 0.05 0.0 6.70 23.90 108.24 --- 12.25 5.93 19764.6 STRUCTURE 3 RESVOR 0.00 7 2 0.05 0.0 6.70 23.90 80.16 223.75 14 .95 4.94 164 83.2 F t1 T 1M �61'� XSECTION 8 ADDHYD 0.03 7 2 0.05 0.0 6.70 23.90 2.21 --- 12.63 26.10 857.7 XSECTION 9 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 2.59 --- 12.33 4.89 1631.7 XSECTION 9 ADDHYD 0.03 7 2 0.05 0.0 6.70 23.90 2.24 --- 12.51 29.46 881.2 XSECTION 10 RUNOFF 0.00 7 2 0.05 0-.0 6.70 23.90 2.22 --- 12.71 1.32 960.0 XSECTION 10 ADDHYD 0.03 7 2 0.05 0.0 6.70 23.90 2.24 --- 12.52 30.63 879.8 XSECTION 11 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 2.49 --- 12.98 3.73 891 .3 XSECTION 12 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 2.65 --- 12.43 1.65 1461.5 XSECTION 11 ADDHYD 0.01 7 2 0-.05 0.0 6.70 23.90 2.52 --- 12.82 4.48 842.7 XSECTION 12 ADDHYD 0.04 7 2 0.05 0-.0 6.70 23.90 2.28 12.55 34.71 865.0 XSECTION 13 RUNOFF 0.00 7 2 0.05 0-.0 6.70 23.90 1.97 12.72 1.41 861.4 XSECTION 13 ADDHYD 0.04 7 2 0-.05 0-.0 6.70 23.90 2.27 --- 12.57 36.01 862. 1 XSECTION 14 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 2.47 --- 12.43 1.61 1383.6 su _ne r1�w TR20 XEQ O1/01/1980 1990 PRE NO CONTROL CAL7_I;TTASCHOOL 100 YEAR JOB 1 SUMMARY REV 09/01/83 PAGE 14 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA A COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE, (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 ------------------------- XSECTION 15 RUNOFF 0.01 7 2 0-.05 0-.0 6.70 23.90 2.65 --- 12.36 12.92 1594.7 XSECTION 14 ADDHYD 0.01 7 2 0-.05 0.0 6.70 23.90 2.63 --- 12.36 14.47 1562.6 XSECTION 16 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 1.76 --- 13.25 1.29 596.1 XSECTION 15 ADDHYD 0-.01 7 2 0.05 0.0 6.70 23.90 2.46 --- 12.37 14.87 1301.2 XSECTION 16 ADDHYD 0.05 7 2 0.05 0.0 6.70 23.90 2.31 --- 12.46 49.37 927.9 STRUCTURE 4 RESVOR 0-.05 7 2 0-.05 0-.0 6.70 23.90 2.27 213.99 12.50 49.18 924.4 XSECTION 17 RUNOFF 0.00 7 2 0.05 0-.0 6.70 23.90 2.80 --- 12.33 2.27 1731.2 XSECTION 18 RUNOFF 0-.00 7 2 0.05 0.0 6.70 23.90 2-.08 --- 12.20 0.27 1611.1 XSECTION 17 ADDHYD 0.00 7 2 0.05 0.0 6.70 23.90 2.72 --- 12.32 2.50 1689.5 XSECTION 18 ADDHYD 0.05 7 2 0.05 0.0 6.70 23.90 2.28 --- }2.48 51.20 936.2 V,,,ol� Cv�tYrT STRUCTURE 5 RESVOR 0-.05 7 2 0.05 0-.0 6.70 23.90 2.27 209.01 12.51 51.10 934.5 XSECTION 19 RUNOFF 0-.00 7 2 0.05 0-.0 6.70 23.90 2.70 --- 12. 23 4.36 1911.3 XSECTION 20 RUNOFF 0.00 7 2 0.05 0.0 6.70 23.90 2.59 --- 13.01 4.38 904.4 XSECTION 21 RUNOFF 0.00 7 2 0.05 0-.0 6.70 23.90 2.62 --- 12.54 3.62 1294.1 XSECTION 19 ADDHYD 0.01 7 2 0.05 0-.0 6.70 23.90 2.60 --- 12.71 6.98 913.0 XSECTION 22 RUNOFF 0-.00 7 2 0.05 0.0 6.70 23.90 1.65 --- 12.45 0.47 949.7 XSECTION 20 ADDHYD 0-.01 7 2 0.05 0.0 6.70 23.90 2.54 --- 12.68 7.33 899.9 STRUCTURE 6 RESVOR 0-.01 7 2 0.05 0.0 6.70 23.90 2.52 228.03 13. 22 5.71 701.4 1�� WQA�(tA TR20 XEQ 01/01/1980 1990 PRE NO CONTROL CALZETTA SCHOOL 10 YEAR JOB 1 SUMMARY REV 09/01/83 PAGE 13 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 -------------------------- XSECTION 1 RUNOFF 0-.00 7 2 0.05 0.0 4.70 23.90 1.76 --- 12.66 3.53 780.1 XSECTION 2 RUNOFF 0.01 7 2 0-.05 0.0 4-.70 23.90 1.23 --- 13.02 3.78 456.4 XSECTION 1 ADDHYD 0.01 7 2 0.05 0.0 4-.70 23.90 1.42 --- 12.81 6.83 533.5 XSECTION 3 RUNOFF 0.01 7 2 0.05 0-.0 4.70 23.90 1.56 --- 12.76 5.23 653.8 XSECTION 2 ADDHYD 0.02 7 2 0.05 0.0 4.70 23.90 1.48 --- 12.79 12.05 579.0 XSECTION 4 RUNOFF 0.00 7 2 0.05 0.0 4-,70 23.90 1.44 --- 12.15 0.98 1227.4 XSECTION 3 ADDHYD 0.02 7 2 0.05 0.0 4-.70 23.90 1.48 --- 12.78 12.21 565.1 XSECTION 5 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.35 --- 12.33 346 883.8 XSECTION 4 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.46 --- 12.71 13..65 �34.7 STRUCTURE 1 RESVOR 0.03 7 2 0.05 0.0 4.70 23.90 1.43 230.09 12.77 V 13.57',A 431.8 XSECTION 6 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.37 --- 12.15 0.61 1176.6 XSECTION 5 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.43 --- 12.77 13.68 525.3 XSECTION 7 RUNOFF 0-.00 7 2 0.05 0.0 4.70 23.90 1.35 --- 12.34 3.59 875.1 XSECTION 6 ADDHYD 0.03 7 2 0.05 0.0 4-.70 23.90 1.42 --- 12.66 15.33 �508.7 STRUCTURE 2 RESVOR 0.03 7 2 0.05 0.0 4.70 23.90 1.30 224.11 12.73 W 15.25® 06.0 XSECTION 1 DIVERT 0.00 7 2 0.05 0.0 4.70 23.90 1.30 --- 12.55 5.30 ********** XSECTION 1 DIVERT 0.03 7 2 0.05 0.0 4.70 23.90 0.43 --- 12.73 9.95 330.2 XSECTION 8 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 2.01 --- 12.15 0.49 1640.4 XSECTION 7 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 88.64 --- 12.55 5.40 18011.3 STRUCTURE 3 RESVOR 0.00 7 2 0.05 0-.0 4.70 23.90 61.91 223.64 14.95Yey 4.79 15981.4 XSECTION 8 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.04 --- 12.75 13.13 431.5 XSECTION 9 RUNOFF 0.00 7 2 0.05 0.0 4-.70 23.90 1.35 --- 12.34 2.63 875.1 XSECTION 9 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.07 --- 12.71 14.33 428.7 XSECTION 10 RUNOFF 0-.00 7 2 0.05 0-.0 4.70 23.90 1.10 --- 12.75 0.67 486.3 XSECTION 10 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.07 --- 12.71 15.00 430.9 XSECTION 11 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.31 --- 13.01 2.03 4 84.0 XSECTION 12 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.39 --- 12.45 0.90 792.7 XSECTION 11 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.33 --- 12.86 2.43 456.6 XSECTION 12 ADDHYD 0.04 7 2 0.05 0.0 4.70 23.90 1.10 --- 12.72 17.38 433.0 l?) XSECTION 13 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.93 --- 12.75 0.68 412.9 XSECTION 13 ADDHYD 0.04 7 2 0.05 0.0 4.70 23.90 1.10 --- 12.72 18.05 432.2 XSECTION 14 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.27 --- 12.45 0.85 729.0 5vy,vvA�T TR20 XEQ O1/01/1980 1990 PRE NO CONTROL CALZETTA SCHOOL 10 YEAR JOB 1 SUMMARY REV 09/01/83 PAGE 14 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF --------------------------------------- ID OPERATION AREA t COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (Im) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 15 RUNOFF 0.01 7 2 0.05 0.0 4.70 23.90 1.40 --- 12.37 7.00 864. 2 XSECTION 14 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.38 --- 12.38 7.81 843.6 XSECTION 16 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.82 --- 13.30 0.62 284.9 XSECTION 15 ADDHYD 0.01 7 2 0-.05 0.0 4.70 23.90 1.27 --- 12.38 7.96 696.8 XSECTION 16 ADDHYD 0.05 7 2 0.05 0-.0 4-.70 23.90 1.13 --- 12.65 23.24t,- ,� 436. 8 \ow" l�rl�C C f(!`,i STRUCTURE 4 RESVOR 0.05 7 2 0.05 0-.0 4.70 23.90 1.10 213.69 12.69 23.08 433.8 XSECTION 17 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.50 --- 12.35 1.26 959.7 XSECTION 18 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0-.99 --- 12.20 0-.13 779.6 XSECTION 17 ADDHYD 0.00 7 2 0.05 0.0 4-.70 23.90 1.45 --- 12.33 1.37 926 .8 XSECTION 18 ADDHYD 0.05 7 2 0.05 0-.0 4.70 23.90 1.11 --- 12.68 23.8 434.6 STRUCTURE 5 RESVOR 0.05 7 2 0-.05 0.0 a 4.70 23.90 1.10 207.31 12.71 W o`�3.7�v'^�� 435.0 XSECTION 19 RUNOFF 0.00 7 2 0.05 0.0 4-.70 23.90 1.43 --- 12.24 2.38 1041 .7 XSECTION 20 RUNOFF 0.00 7 2 0-.05 0.0 4.70 23.90 1.38 --- 13.04 2.42 499.8 XSECTION 21 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.38 --- 12.55 1.96 700.3 XSECTION 19 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.38 --- 12.74 3.80 497.0 XSECTION 22 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.72 --- 12.50 0.20 407.8 XSECTION 20 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.34 --- 12.72 3.95 485.3 STRUCTURE 6 RESVOR 0.01 7 2 0-.05 0.0 4.70 23.90 1.32 226.73 12.98 ` 3.66 449. 3 6-, e Cu 5 JOB TR-20 SUMMARY NOPLOTS TITLE 001 1990 PRE NO CONTROL CALZETTPSCB OPERATION RESVOR STRUCTURE 5 P®v� �I®� PEAK TIME(BRS) PEA VV PEAK ELEVATION(FEET) 12.71 23.79 207.31 TIME(HRS) FIRST HYDROGRAPH POINT = 0.00 HOURS TIME INCREMENT = 0.05 HOURS DRAINAGE AREA = 0.05 SQ.MI. 9.50 DISCHG 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.05 9.50 ELEV 205.50 205.50 205-.50 205-.50 205-.50 205.50 205.50 205.50 205.50 205.50 10.00 DISCBG 0.05 0.06 0.07 0.09 0-.10 0.12 0.14 0.16 0.18 0.21 10.00 ELEV 205-.51 205.51 205-.51 205.51 205.51 205.51 205.51 205.52 205.52 205.52 10.50 DISCHG 0.23 0.26 0.29 0.32 0.35 0.39 0.43 0.46 0.51 0.55 10.50 ELEV 205.52 205.53 205.53 205.53 205.54 205.54 205.54 205.55 205.55 205.56 11.00 DISCHG 0.60 0.65 0.71 0.77 0.83 0.90 0.97 1.04 1.12 1.21 11.00 ELEV 205-.56 205-.56 205.57 205.58 205.58 205.59 205.60 205.60 205.61 205.62 11.50 DISCHG 1.31 1.42 1.54 1.67 1.82 1.99 2.19 2.45 2.81 3.31 11.50 ELEV 205.63 205.64 205.65 205.67 205.68 205.70 205.72 205.75 205.78 205.83 12.00 DISCHG 3.92 4.53 5.23 6.06 6.87 8.29 12.30 16.22 16.92 17.18 12.00 ELEV 205-.89 205.95 206.02 206.11 206.19 206 .33 206.66 206.94 206.99 207 .01 12.50 DISCHG 16.99 17.68 20.34 22-.96 23.76 23.47 22.93 22.32 21.69 21.04 12.50 ELEV 207.00 207.03 207 .15 207.27 207.31 207.29 207.27 207.24 207.21 207 .18 13.00 DISCHG 20.36 19.65 18.91 18.14 17.37 16.63 15.89 15.17 14.48 13.82 13.00 ELEV 207.15 207.12 207.09 207.05 207.02 206.97 206.92 206.87 206.82 206 .77 13.50 DISCHG 13.21 12.62 12.06 11.53 11.02 10-.54 10.10 9.77 9.42 9.08 13.50 ELEV 206.73 206.69 206.65 206.61 206.57 206.54 206.51 206.48 206.44 206 .41 14-.00 DISCHG 8.77 8.53 8.37 8.27 8.18 8.10 8.03 7.95 7.87 7.78 14.00 ELEV 206.38 206.35 206.34 206.33 206.32 206.31 206.30 206.30 206.29 206.28 14-.50 DISCHG 7.69 7.59 7.50 7.42 7.35 7.30 7.26 7.23 7.19 7.15 14.50 ELEV 206.27 206.26 206.25 206.24 206.24 206.23 206.23 206.22 206 .22 206.21 RUNOFF VOLUME ABOVE BASEFLOW = 1.10 WATERSHED INCHES, 38.85 CFS-HRS, 3.21 ACRE-FEET; BASEFLOW = 0.00 CFS --- HYDROGRAPH FOR STRUCTURE 5, ALTERNATE 1, STORM 1, ADDED TO OUTPUT HYDROGRAPH FILE --- EXECUTIVE CONTROL OPERATION ENDJOB Se rc>C-K �{'(tip t o-F Abov -e t� t,J ®v l C� cc aQ �-0, ov/) 2 roar® ape 4D VIpr' =nCC+� INC. If++DESIGN HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-88 Advanced Enqineerinq Software (aes) Ver. 2.7A Release Date: 6/25/88 Serial # 3234 Analysis prepared by: TIME/DATE OF STUDY: 6:57 1/ 1/1980 ************************** DESCRIPTION OF STUDY ************************** * NORTH ANDOVER SCHOOL * CALZETTA SCHOOL ROCK CHANNEL PARALLEL TO WOLF DIVEWAY * CAPACITY CALCULATIONS - NO LOSSES FOR TURNS ETC >>>>CHANNEL INPUT INFORMATION<<<< ------------------------------- ------------- NORMAL DEPTH(FEET) = 1.50 CHANNEL Z(HORIZONTAL/VERTICAL) .83 BASEWIDTH(FEET) = 4.50 CONSTANT CHANNEL SLOPE(FEET/FEET) _ -.055000 MANNINGS FRICTION FACTOR = -.0400 ___________ NORMAL-DEPTH FLOW INFORMATION: rr --------------------------------------- -------------------------------- ®r 26 >>>>> NORMAL DEPTH FLOW(CFS) - 76.45 C K FLOW TOP-WIDTH(FEET) = 7.00 FLOW AREA(SQUARE FEET) = 8.62 ��®�� HYDRAULIC DEPTH(FEET) = 1.23 C'`1 N rl``� FLOW AVERAGE VELOCITY(FEET/SEC.) = 8.86 UNIFORM FROUDE NUMBER = 1.407 j PRESSURE + MOMENTUM(POUNDS) = 1687.56 I1 �f(�UTA AVERAGED VELOCITY HEAD(FEET) = 1-.220 SPECIFIC ENERGY(FEET) 2.720 CRITICAL-DEPTH FLOW INFORMATION: -------------- --------- -- CRITICAL FLOW TOP-WIDTH(FEET) = 7.57 CRITICAL FLOW AREA(SQUARE FEET) = 11.11 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.47 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC. ) = 6.88 CRITICAL DEPTH(FEET) = 1-.84 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1603.55 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) _ -.735 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.576 >>>>CHANNEL INPUT INFORMATION<<<< ---------------------------------------- ------------------------------------ NORMAL DEPTH(FEET) = 1-.33 CHANNEL Z(HORIZONTAL/VERTICAL) _ -.83 BASEWIDTH(FEET) = 4.50 CONSTANT CHANNEL SLOPE(FEET/FEET) _ -.055000 MANNINGS FRICTION FACTOR = -.0400 NORMAL-DEPTH FLOW INFORMATION: ---------------------------------------------------- ------------------ >>>>> NORMAL DEPTH FLOW(CFS) = 62.46 FLOW TOP-WIDTH(FEET) = 6.72 FLOW AREA(SQUARE FEET) = 7.48 HYDRAULIC DEPTH(FEET) = 1.11 FLOW AVERAGE VELOCITY(FEET/SEC. ) = 8.35 UNIFORM FROUDE NUMBER = 1.395 PRESSURE + MOMENTUM(POUNDS) = 1301.26 AVERAGED VELOCITY HEAD(FEET) = 1.083 SPECIFIC ENERGY(FEET) 2-.416 CRITICAL-DEPTH FLOW INFORMATION: ---------------------------------------------------------------------------- CRITICAL FLOW TOP-WIDTH(FEET) = 7.22 CRITICAL FLOW AREA(SQUARE FEET) 9.56 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.32 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 6.53 CRITICAL DEPTH(FEET) = 1.63 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1239.74 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) _ .662 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.294 I >>>>CHANNEL INPUT INFORMATION<<<< ---------------------------------------------------------------------------- NORMAL DEPTH(FEET) = 1-.00 CHANNEL Z(HORIZONTAL/VERTICAL) _ .83 BASEWIDTH(FEET) = 4-.50 CONSTANT CHANNEL SLOPE(FEET/FEET) _ -.055000 MANNINGS FRICTION FACTOR = .0400 NORMAL-DEPTH FLOW INFORMATION: ---------------------------------------------------------------------------- >>>>> NORMAL DEPTH FLOW(CFS) = 38.38 FLOW TOP-WIDTH(FEET) = 6.17 FLOW AREA(SQUARE FEET) 5.33 HYDRAULIC DEPTH(FEET) _ -.86 FLOW AVERAGE VELOCITY(FEET/SEC.) = 7.20 UNIFORM FROUDE NUMBER = 1-.364 PRESSURE + MOMENTUM(POUNDS) = 693-.09 AVERAGED VELOCITY HEAD(FEET) _ -.804 SPECIFIC ENERGY(FEET) 1-.804 CRITICAL-DEPTH FLOW INFORMATION: ---------------------------------------------------------------------------- CRITICAL FLOW TOP-WIDTH(FEET) = 6.52 CRITICAL FLOW AREA(SQUARE FEET) = 6-.68 CRITICAL FLOW HYDRAULIC DEPTH(FEET) 1.02 CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 5.75 CRITICAL DEPTH(FEET) - 1-.21 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 664.65 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) _ -.513 CRITICAL FLOW SPECIFIC ENERGY(FEET) 1-.725 I4 r n POST T a—Z D 1M A r ek s A . Dt Le 4� s �ws�� 5 ���► �- � h�� u 5,b Lr4�cA + Grd P( z,e 4 YY1i5C• 1� s kh m�� 1a S �o ASS 4-0 �, 6� Gra f rC-6s P�.d O� n{� ?-i Ae!. fo Area vet 4..�d s CcL L.COwe�� CC�L> QG� c o• Zg Ll, 0 ,Cq 0 .01 fo ,00g ov$ ® ,$6H o . tv? (,332 .ol r� -., '?(,7 o ,ZS S p .go o ,OS' d. 4sS a.Ct3 0 "lly s 40 ,aSL5 .3 3 (Db �-(-c'I wlo , 5 '�` =Nc%luc�8� �\4,n�,-S w�rN r�A•ve-�. �'�5 C®•?lo A�� Afec CAC) 1- ® �> To LL) Ce�n ) •�,s �o o�so CAA •UJ,,?. lo� Oa ENVIRONMENTAL DESIGN & PL.A(tiN!NG NC. V \ 6 RUNOFF 1 1 6 .00453 78. .92 1 0 0 1 AREA A ' p- 6 RUNOFF 1 002 7 .00828 71.4 1.38 1 0 1 1 AREA B 6 RUNOFF 4 001 6 7 5 1 0 0 1 1 SUM A8 6 RUNOFF 1 3 6 .008 75.5 1.05 1 0 0 1 1 AREA C 1DDHYD 4 002 5 6 7 1 0 1 1 SUM BC .UNOFF 1 4 6 .0008 72. .15 1 0 0 1 1 AREA E o ADDHYD 4 3 7 6 5 1 0 0 1 1 SUM ES 6 RUNOFF 1 5 6 .00391 71. .42 1 0 1 1 AREA F Tl�--Zo 6 ADDHYD 4 4 5 6 7 1 0 1 1 SUM Ef 6 RESVOR 2 1 7 5 227.5 1 0 0 1 1 CUL 1 6 RUNOFF 1 6 6 .000515 71. 0.15 1 0 0 1 1 AREA G 6 ADDHYDRUNOFF 1 5 5 6 7 1 0 0 1 1 SUM AREA H 6 RUNOFF 1 7 6 .0041 71. 43 1 0 0 1 1 AREA H 6 ADDHYD 4 6 7 6 5 1 0 0 1 1 SUM GH 6 DESERT 2 2 5 2 1 0 0 1 1 CUL 2 5 5.3 / 6 DIVERT 6 001 6 1 5 5.3 1.0 1 0 1 1 TO LL 6 RUNOFF 1 8 6 .0003 80. .15 1 0 0 1 1 PO SUR 6 ADDHYD 4 7 1 6 7 1 0 0 1 1 POND 6 RESVOR 2 3 7 2 221.5 1 0 0 1 1 POND 6 ADDHYD 4 8 2 5 4 1 0 1 1 J+DIV 6 RUNOFF 1 9 7 .003 71. .43 1 0 0 1 1 ARE I 6 ADDHYD 4 9 4 7 5 1 0 0 1 1 AR I+J 6 RUNOFF 1 10 6 .00093 68. .98 1 0 0 1 1 AREA K 6 ADDHYD 4 10 5 6 7 1 0 0 1 1 SUM K+J 6 RUNOFF 1 11 6 .00419 72.6 1.37 1 0 0 1 1 AREA N 6 RUNOFF 1 12 4 .00038 72. .59 1 0 0 1 1 AREA 0 6 ADDHYD 4 11 4 6 5 1 0 0 1 1 SUM NO 6 ADDHYD 4 12 5 7 6 1 0 0 1 1 S KJNO1 6 RUNOFF 1 13 7 .0015 65. .98 1 0 0 1 1 ARE LL 6 ADDHYD 4 13 6 7 5 1 0 1 0 1 TOT LL 6 RUNOFF 1 14 6 .00116 70.0 .58 1 0 0 1 1 AREA M 6 RUNOFF 1 15 7 .003776 71.8 .48 1 0 0 1 1 AREA P 6 ADDHYD 4 14 6 7 4 1 0 0 1 1 ARE MP 6 RUNOFF 1 16 1 .001745 98. .75 1 0 0 1 1 AR PP 6 RUNOFF 1 17 2 .0007856 70. .75 1 0 0 1 1 AR PPP 6 ADDHYD 4 15 1 2 3 1 0 0 1 1 NW BDG 6 ADDHYD 4 16 3 4 6 1 0 0 1 1 MP/PPP t RUNOFF 1 18 7 .00217 65. 1.69 1 1 0 1 AREA L 0DHYD 4 17 6 7 3 1 0 0 1 0 1 TOT L ADDHYD 4 18 3 5 4 1 0 1 0 1 SM a LL 6 RUNOFF 1 19 3 .000919 73.4 .45 1 1 1 AREA R 6 ADDHYD 4 19 435 11 1 1 1 SMALL 6 RESVOR 2 4 5 6 213.5 1 0 0 1 1 LL DAM 6 RUNOFF 1 20 4 .000149 65. .25 1 1 1 AREA 0 6 ADDHYD 4 20 6 4 7 1 0 1 1 MAIN 6 RUNOFF 1 21 1 .004172 98. .133 1 0 1 1 NEW RD 6 RUNOFF 1 22 2 .0007469 72. .42 1 0 1 1 NEW PLT 6 ADDHYD 4 21 1 2 3 1 0 1 1 TO POND 6 RESVOR 2 5 3 1 209.5 1 1 1 1 0 1 OUT PND 6 ADDHYD 4 22 7 1 6 1 0 1 1 TT WOLF 6 RESVOR 2 6 6 4 205.5 1 1 1 1 1 1 WOLF 6 RUNOFF 1 23 1 .000952 72. .30 1 1 0 1 1 1 AREA S 6 RUNOFF 1 24 7 .00484 73.9 1.42 1 0 0 1 1 AREA D 6 RUNOFF 1 25 5 .001907 72. .74 1 0 0 1 1 AREA T 6 ADDHYD 4 23 7 5 6 1 0 0 1 1 SUM D&T 6 RUNOFF 1 26 5 .000500 65. .58 1 0 0 1 1 AREA U 6 ADDHYD 4 24 5 6 7 1 0 0 1 1 SUM U 6 RUNOFF 1 27 1 .000325 98. .33 1 0 0 1 1 BLD U 6 RUNOFF 1 28 2 .000841 72. .75 1 0 0 1 1 GRS U 6 ADDHYD 4 25 1 2 3 1 0 0 1 1 NEW U 6 ADDHYD 4 26 3 7 5 1 0 0 1 1 TOT U 6 RESVOR 2 7 5 3 225.3 1 1 1 1 1 1 OUT U ENDATA CALZETTA TR20 XEO 01/01/1980 1990 POST CONTROL SCHDOL 100 14R FINAL RUN MAR Z6 1 JOB 1 PASS 1 REV 09/01/83 PAGE 3 I-Q h_A T12=Zv Ploc, t EXECUTIVE CONTROL OPERATION LEST REC D ID 4 r LISTING OF CURRENT DATA STRUCT NO. ELEVATION DISCHARGE STORAGE 3 STRUCT 1 8 227.50 0.00 0.00 8 �+ <1" 228.50 2.60 0.02 8 C 229. 0 3. 0 0.03 wSs 8 229.50 4.660 0.04 G 8 y-. 230.00 5.30 0.14 8 \ 230.50 50.00 0.35 9 ENDTB t`) STRUCT NO. ELEVATION DISCHARGE STORAGE 3 STRUCT 2 8 221.50 0.00 0.00 8 �® 222.50 2.60 0.02 8 v' a 223.00 3.70 0.03 8 223.50 4.60 0.04 8 223.75 4.90 0.14 8 224.00 5.30 0.20 >�j 8 224.50 50.00 0.35 9 ENDTBL STRUCT NO. ELEVATION DISCHARGE STORAGE 3 STRUCT 3 8 G f R a,4 1 221.50 0.00 0.00 8 / r 222.00 2.60 0.10 8 (� 223.00 3.70 0.30 8 r o 1v P 223.50 4.60 0.40 8 224.00 5.30 0.50 9 ENDTBL �� ���� ( '�,.��/'� (� STRUCT NO. ELEVATION DISCHARGE STORAGE ' 1 1r) ][ I �� /`�► ✓ e" t 3 STRUCT 4 b' W - y 8 213.50 0.00 0.00 8 214.00 2.00 0.02 8 214.50 5.00 0.04 W 1 8 215.00 8.50 0.06 W CAL7ETTA �^ R20 XEQ 01/01/1980 1990 POST CONTROL SCHOOL 100 YEAR FINAL RUN MAR 26 1990 JOB 1 PASS 1 I 11 REV 09/01/83 PAGE 4 215.50 12.50 0.10 p 216.00 14.00 0.15 216.50 15.00 0.18 217.00 16.00 0.22 21 . 0 1 .00 0.30 218. 0 18.00 0.44 44 (�G) 218.500 19.00 0.56-4= 219.00 35.00 0.71 219.25 47.00 0.82 219.50 63.00 1.02 ENDTBL STRUCT NO. ELEVATION DISCHARGE STORAGE STRUCT 5 208.50 0.00 0.00 Hew 2 .50 2. 0. 5 Va P� d t 21010.50 2.75 75 0.11 LQ 5 r I 211.50 3.00 0.30 t 212.50 3.25 0.45¢-- bl11PQ}�s`j SPA t 212.75 7.00 0.46 V t 213.00 13.00 0.47 t 213.50 21.00 0.48 ENDTBL STRUCT NO. ELEVATION DISCHARGE STORAGE STRUCT 6 205.50 0.00 0.00 t 206.50 10.00 0.03 t 207.00 17.00 0.05 0,IV" e ®ssW"7 207.50 28.00 0.06 1 208. 0 36.00 0.08 S 208.50 .00 0.10 (�V �1(� S 209.0 51440 51.00 0.11 S 209.50 58.00 0.12 ! 210.00 65.00 0.12 S 210.50 75.00 0.13 ENDTBL STRUCT NO. ELEVATION DISCHARGE STORAGE S STRUCT 7 3 225.30 0.00 0.00 3 226.50 3.20 0.02 3 227.00 4.20 0.05 �/ �(J j( [A n 3 228 Q0, 5.60 0.15 33 1 2Zi�-V-5jU 6,35,0'It OilT,, 3 ` 228.50 15.00 0.19 � t -�- w �►b �S" ' � C�v PTHYSYS TEXAS DEPARTM GH UBL 0 TEXAS HYDRAULIC SYSTEM - 221108 HMV2.36 SNz84021695 THYSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $ , . NORTH ANDOVER CALZETTA SCHOOL . . $ . . * TWIN 15" CULVERT UNDER ACCESS ROAD . . $ . . INLET INVERT 213 . 50 ASSUMED . . $ . . OUTLET INVERT 212. 50 ASSUMED [ PC, $ . . TAILWATER 213 .75 ASSUMED CULBRG ANALYSIS CULVERT SINGLE SUPPLY Q= 15-. CFS TW ELEV = 212. 50 CLB0005--NO FREQUENCY GIVEN. CLVRT 001 CIRCULAR . 024 CLVRT 001 STRAIGHT NORMAL KE=. 90 CLVRT 001 OUTLT STA 0 EL212. 50 INLET STA 40 . EL213 . 50 CLVRT 001 DIMENSIONS DIAM=15 BARRELS= 02 ENDATA r-' bl�e, PTHYSYS TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATIOr TEXAS HYDRAULIC SYSTEM — 221108 HMV2.36 SN: 84021695 THYSYS ANALYZESI NGLE OPENING CULVERT JOB NUMBER = DM DUMMY CULVERT ID = 001 FLOW = 15. 0 CFS FREQUENCY = 0 YEAR TAILWATER = 212.50 H.W. CALC. TOTAL BBLS DIAM WIDE HIGH LENGTH ELEV. H.W. VELOC. COST ($) 2 15 0-. 0 0-. 0 40 216 . 67 3. 17 6 . 61 0 . INLET STATION = 40 ELEVATION = 213 . 50 J OUTLET STATION = 0 ELEVATION = 212. 50 V INLET SLOPE PROFILE SHAPE TYPE KE MATERIAL ' N' n n,)rnn GTRATCHT CIRC NORMAL 0 . 90 0 . 024 Elev , [7 a��,S = iq (Tc, �Eau a 19,0. Q� p� Q sld Q J Ott 3 5�o4/o, �� PI 7w�o t�:', �wlp Ut�-ty� cry\ Lo w v A (,e.ss Ra ENVIRONMENTAL DE MN & PZ-AI NNING INC. a ` ��56\cLrd, CC�s) T T - HUD,- ',- i h I tC�, � Y c,i« O, b,i n: 5AO+ 4.00+ Too} ---ZIP!AY.1121122!Al2i -- -- - - --�- „y„ � o '+ _.c5 5.`C 4,75+ :,80+ 2,85+ .Y.....,.yYyh......... r.h, Y,hyYyyhYyhY,. ,'.'t b.4a+ 5,5_5+ 4.0:+ ,.70+ 2.78; 'Jy '•'• -,yYYYY _.::+ bZ h 5.40+ 4.50+ 3.60+ 2.70f rYY..Y.:.. ,h _Y..y YY....Yyyyy y,,,•_y q+ b.13+ 5. 5+ 4.33+ 310+ 2.53{ .... . ..y...hr.........Y. .r,...'.y•..y :AO+ 535+ 5.1V+ 4a5+ 140f 155f ........... �+ I _ rl J,bi :, d+ 4.95+ 4,13+ 50+ 2AA .. b. 5.00+ 4.80+ 4.00+ ..20+ 2.40f _ = 43+ 415+ 1 88+ :.10+ 2.33� ,..,.r.YY'.-..'........y..Yyr...r ,.y Y + n2_`+ 410 1A5+ 330f 235; 80, 5•O8+ ,:5+ .13+ 2.90+ 2.lgf ST _oof 4.90+ 4.20f y,,50f 2.80+ 2.1Of rY.y.'.',..:: '� .h.. + 1r ` + 1+ 4.i, 4.u5+ ..3a+ �. lil 3{ .,..,<Y'.•.,rlY . ...•.... ,.. y .._'!+ 4.55+ 3.90+ ..25+ 200+ 1.95+ .,M1` jdh 5,00 4.38+ 3.75+ 110 2.5u+ 1.88{ �.y..,.'.:e.. . Y .Yy..•.+ 1 4.d0+ I 2. 3,60f 330f L40f 1.80f .h...., ti� ..Y.... yyy ..y+ . 25+ 3.30+ 2.75+ .,21+ 1.65+ l:,....III...I.rrh.hy.y_Y 4.2 + ;•o.s+ 3.15+ 2.6,,+ 2.10+ 1.58+ �'••yY....,..h. 4.r0+ ..50+ 3.00+ 2.50+ 2.0(;+ 4.50{ o....YY,....r.........y-",I...... � ..d" 1Kf 2.95+ 2.38+ 1.{0+ 1.43f .yy..y....,...,,•.r..Y..:....:r ..c'.'+ :.15+ 230f L 25+ 110+ 1.30 `,...ti,.Yrr Y.Y..YhY•.....yhh.Yy.Y.+ 60/ Ab 2,98f 2.55f n .yY G ` a + _.80+ ..40+ 2,n:;i+ 1.5ti+ 1.20f , + 2,_3+ 2.25+ 1.88+ E50+ 1.13f 1 ;t , h yy,., h,....:..h '+ " :.80+ 145+ 2.10+ 1,"5f 1.40+ IAA y ....Y.,....y 2.60+ -.28+ 1.95+ Kb if i.3t)+ 8+ 0•.yy .rY.. .Y.Y....,.,Y.+ k.JeS(,),j Lli+ 1.9J+ 1,65+ 2.0:+ 1.75+ 1.50+ 1.25+ L00f 5{ 0, _0+ 58+ 1._5 1.1J+ v.1+ Y..Y .,od{ . . Y yyy , �+ i.._. 1. ':+ 1,20 j,iIQ4 ,so+ 5J{ �.... ......,.YYY1. . 40 1.23+ K05+ .88+ 7v+ 51; yyy....Y.,..y.'.!. .+ 1,20f 1.95+ ,90+ ,75+ .60f .45{ C 1.00+ .d + .75+ .63+ .50+ .JB{ 8 0+ .7i'+ .b0+ 50+ .40+ 30{ 9 l H*Y#D#F:#O V#E * X +---------+---------+---------+---------+---------+------� t ----- u 20. 27.5 :1 4 A.3 40 `+ ------55.1 -------- s e r i +---------+---------+--------- ------- -- ------- e . b O/ , 0 14.'v 28.i 42.1 +,--------+_ -+^----- -+^ -+ 4 200 ,6.1 70.i 84.2 98.2 112.2 +---------+---------+---------+-- J O H N M E U N I E R Inc -------+---------+---------+---------+---------+-%# =5i'_/y, 0 24.3 48.5 7-.8 97.1 121.4 145, b, ? 194 ( 5 - +---------+- ------- ------- ------ 1 4 ) 4-7 .Q --------+ -+- -+-- -+------------- 1 --- -+- # 30n .8 lf-S 18-.7 227.6 ___=7`.b-____J0 +---------+---------;B----------2----------- � ---- ------ -- # 35i 1 1 n•- 55.4 '7 t +---------+---------+---------1---------+---------+---------+--------- '0•° Ob. 383.E 4`9.8 _`36.5 513.1 DEBIT - FLOW (1:s) 4S OPERATION ADDHYD CROSS SECTION 21 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) ��C t - 12.11 15.21 ,N�v� (NULL) New D--2 w pvr RUNOFF VOLUME ABOVE BASEFLOW = 4.93 WATERSHED IN S, 15.65 CFS-HRS, 1.29 ACRE FEET; B = IF OPERATION RESVOR STRUCTURE 5 V V PEAK TIME(HRS) PEAK DISCHA GE(CFS) PEAK ELEVATION(FEET) 12.55 3.25 212.50 TIME(HRS) FIRST HYDROGRAPH POINT = 0.00 HOURS TIME INCREMENT = 0.05 HOURS DRAiNAGE AREA = 0.00 SO.MI. �1.00 DISCHG 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 1.00 ELEV 208.52 208.52 208.52 208.52 208.52 208.52 208.52 208.52 208.52 208.52 1.50 DISCHG 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 1.50 ELEV 208.52 208.52 208.52 208.52 208.53 208.53 208.53 208.53 208.53 208.53 2.00 DISCHG 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.10 2.00 ELEV 208.53 208.53 208.53 208.53 208.53 208.54 208.54 208.54 208.54 208.54 2.50 DISCHG 0.11 0.12 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 2.50 ELEV 208.54 208.55 208.55 208.55 208.55 208.55 208.55 208.55 208.55 208.55 3.00 DISCHG 0.12 0.12 0.12 0.12 0.13 0.15 0.15 0.16 0.15 0.15 3.00 ELEV 208.55 208.55 208.55 208.55 208.55 208.56 208.56 208.56 208.56 208.56 3.50 DISCHG 0.15 0.14 0.14 0.14 0.15 0.16 0.17 0.17 0.17 0.16 3.50 ELEV 208.56 208.56 208.56 208.56 208.56 208.56 208.57 208.57 208.57 208.57 4.00 DISCHG 0.16 0.16 0.16 0.18 0.18 0.18 0.18 0.18 0.18 0.19 4.00 ELEV 208.56 208.56 208.57 208.57 208.57 208.57 208.57 208.57 208.57 208.58 4.50 DISCHG 0.20 0.19 0.19 0.18 0.19 0.20 0.20 0.20 0.19 0.19 4.50 ELEV 208.58 208.58 208.58 208.57 208.57 208.58 208.58 208.58 208.58 208.58 5.00 DISCHG 0.19 0.20 0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.23 5.00 ELEV 208.58 208.58 208.58 208.58 208.58 208.59 208.59 208.59 208.59 208.59 5.50 DISCHG 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.24 0.23 5.50 ELEV 208.59 208.59 208.59 208.59 208.59 208.59 208.59 208.59 208.59 208.59 6.00 DISCHG 0.23 0.24 0.25 0.26 0.26 0.25 0.25 0.26 0.26 0.27 6.00 ELEV 208.59 208.60 208.60 208.60 208.60 208.60 208.60 208.60 208.61 208.61 6.50 DISCHG 0.27 0.26 0.26 0.26 0.27 0.28 0.28 0.27 0.26 0.27 6.50 ELEV 208.61 208.60 208.60 208.60 208.61 208.61 208.61 208.61 208.60 208.61 7.00 DISCHG 0.27 0.28 0.29 0.30 0.30 0.31 0.31 0.32 0.32 0.32 7.00 ELEV 208.61 208.61 208.62 208.62 208.62 208.62 208.63 208.63 208.63 208.63 7.50 DISCHG 0.34 0.36 0.38 0.40 0.42 0.43 0.45 0.46 0.47 0.47 7.50 ELEV 208.63 208.64 208.65 208.66 208.67 208.67 208.68 208.68 208.69 208.69 8.00 DISCHG 0.48 0.48 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 8.00 ELEV 208.69 208.69 208.70 208.70 208.70 208.70 208.70 208.70 208.70 208.70 8.50 DISCHG 0.51 0.51 0.52 0.54 0.55 0.55 0.55 0.55 0.55 0.57 8.50 ELEV 208.70 208.70 208.71 208.72 208.72 208.72 208.72 208.72 208.72 208.73 9.00 DISCHG 0.59 0.60 0.61 0.60 0.60 0.61 0.63 0.64 0.65 0.66 9.00 ELEV 208.73 208.74 208.74 208.74 208.74 208.75 208.75 208.76 208.76 208.76 9.50 DISCHG 0.67 0.67 0.68 0.69 0.70 0.72 0.74 0.75 0.75 0.77 9.50 ELEV 208.77 208.77 208.77 208.78 208.78 208.79 208.80 208.80 208.80 208.81 10.00 DISCHG 0.78 0.78 0.78 0.79 0.81 0.83 0.85 0.88 0.90 0.91 10.00 ELEV 208.81 208.81 208.81 208.82 208.82 208.83 208.84 208.85 208.86 208.87 10.50 DISCHG 0.93 0.95 0.97 0.99 1.01 1.03 1.05 1.08 1.11 1.15 10.50 ELEV 208.87 208.88 208.89 208.90 208.90 208.91 208.92 208.93 208.95 208.96 11.00 DISCHG 1.18 1.22 1.27 1.30 1.33 1.37 1.41 1.47 1.54 1.62 11.00 ELEV 208.97 208.99 209.01 209.02 209.03 209.05 209.06 209.09 209.12 209.15 11.50 DISCHG 1.69 1.76 1.85 1.96 2.09 2.28 2.51 2.54 2.58 2.65 11.50 ELEV 209.18 209.21 209.24 209.28 209.34 209.41 209.53 209.65 209.84 210.09 12.00 DISCHG 2.74 2.81 2.90 2.98 3.05 3.12 3.17 3.20 3.23 3.24 12.00 ELEV 210.44 210.76 211.08 211.42 211.72 211.97 212.16 212.31 212.41 212.46 12.50 DISCHG 3.25 3.25 3.25 3.25 3.24 3.24 3.23 3.22 3.22 3.21 12.50 ELEV 212.49 212.50 212.50 212.49 212.47 212.45 212.43 212.39 212.36 212.33 13.00 DISCHG 3.20 3.19 3.18 3.17 3.15 3.14 3.13 3.12 3.11 3.10 13.00 ELEV 212.29 212.25 212.21 212.16 212.12 212.07 212.03 211.98 211.93 211.89 13.50 DISCHG 3.08 3.07 3.06 3.05 3.03 3.02 3.01 2.99 2.98 2.97 13.50 ELEV 211.84 211.79 211.74 211.68 211.63 211.58 211.53 211.47 211.42 211.37 14.00 DISCHG 2.95 2.94 2.93 2.91 2.90 2.89 2.87 2.86 2.85 2.83 14.00 ELEV 211.31 211.26 211.21 211.16 211.10 211.05 211.00 210.94 210.89 210.83 14.50 DISCHG 2.82 2.81 2.79 2.78 2.77 2.75 2.74 2.72 2.69 2.67 14.50 ELEV 210.78 210.73 210.68 210.62 210.57 210.52 210.44 210.36 210.28 210.20 r�6I..Q 2 2- goo y 2 Ds i (ON o 17-/ 0 ^Z CALZETTA � �VG� TR20 XEO 01/01/1980 1990 POST CONTROL SCHOOL 10 FINAL RUN MAR 26 1990 �J08 1 PA REV 09/01/83 PA C� OPERATION RESVOR STRUCTURE 6 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.79 44.89 208.56 TIME(HRS) FIRST HYDROGRAPH POINT = 0.00 HOURS TIME INCREMENT = 0.05 HOURS DRAINAGE AREA = 0.06 SO.MI. 1.00 DISCHG 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 1.00 ELEV 205.51 205.51 205.50 205.50 205.50 205.50 205.50 205.50 205.50 205.51 1.50 DISCHG 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.09 1.50 ELEV 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.51 2.00 DISCHG 0.10 0.10 0.10 0.11 0.11 0.11 0.12 0.12 0.12 0.13 2.00 ELEV 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.51 205.51 2.50 DISCHG 0.13 0.14 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 2.50 ELEV 205.51 205.51 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 3.00 DISCHG 0.17 0.17 0.17 0.17 0.18 0.19 0.20 0.21 0.21 0.21 3.00 ELEV 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 3.50 DISCHG 0.20 0.20 0.20 0.20 0.20 0.21 0.22 0.23 0.23 0.23 3.50 ELEV 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 4.00 DISCHG 0.23 0.22 0.23 0.23 0.24 0.25 0.25 0.25 0.25 0.25 4.00 ELEV 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.52 205.53 4.50 DISCHG 0.26 0.27 0.26 0.26 0.26 0.27 0.27 0.28 0.28 0.27 4.50 ELEV 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 5.00 DISCHG 0.27 0.27 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.31 5.00 ELEV 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 5.50 DISCHG 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0.33 5.50 ELEV 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 205.53 6.00 DISCHG 0.33 0.33 0.34 0.35 0.36 0.36 0.35 0.35 0.36 0.37 6.00 ELEV 205.53 205.53 205.53 205.53 205.54 205.54 205.54 205.54 205.54 205.54 6.50 DISCHG 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.37 6.50 ELEV 205.54 205.54 205.54 205.54 205.54 205.54 205.54 205.54 205.54 205.54 7.00 DISCHG 0.38 0.39 0.40 0.40 0.41 0.42 0.42 0.43 0.43 0.44 7.00 ELEV 205.54 205.54 205.54 205.54 205.54 205.54 205.54 205.54 205.54 205.54 7.50 DISCHG 0.45 0.47 0.49 0.51 0.53 0.56 0.57 0.59 0.61 0.62 7.50 ELEV 205.54 205.55 205.55 205.55 205.55 205.56 205.56 205.56 205.56 205.56 8.00 DISCHG 0.63 0.65 0.66 0.67 0.68 0.69 0.70 0.70 0.71 0.72 8.00 ELEV 205.56 205.56 205.57 205.57 205.57 205.57 205.57 205.57 205.57 205.57 8.50 DISCHG 0.73 0.73 0.75 0.77 0.79 0.81 0.82 0.83 0.85 0.87 8.50 ELEV 205.57 205.57 205.57 205.58 205.58 205.58 205.58 205.58 205.58 205.59 9.00 DISCHG 0.91 0.94 0.97 1.00 1.02 1.04 1.08 1.11 1.15 1.19 9.00 ELEV 205.59 205.59 205.60 205.60 205.60 205.60 205.61 205.61 205.62 205.62 9.50 DISCHG 1.23 1.28 1.32 1.36 1.40 1.46 1.51 1.56 1.62 1.67 9.50 ELEV 205.62 205.63 205.63 205.64 205.64 205.65 205.65 205.66 205.66 205.67 10.00 DISCHG 1.73 1.78 1.83 1.88 1.95 2.01 2.09 2.17 2.25 2.33 10.00 ELEV 205.67 205.68 205.68 205.69 205.69 205.70 205.71 205.72 205.73 205.73 10.50 DISCHG 2.41 2.50 2.59 2.68 2.78 2.88 2.98 3.11 3.25 3.39 10.50 ELEV 205.74 205.75 205.76 205.77 205.78 205.79 205.80 205.81 205.83 205.84 11.00 DISCHG 3.54 3.69 3.84 4.01 4.17 4.34 4.51 4.71 4.93 5.17 11.00 ELEV 205.85 205.87 205.88 205.90 205.92 205.93 205.95 205.97 205.99 206.02 11.50 DISCHG 5.43 5.70 5.99 6.32 6.68 7.12 7.67 8.22 8.79 9.49 11.50 ELEV 206.04 206.07 206.10 206.13 206.17 206.21 206.27 206.32 206.38 206.45 12.00 DISCHG 10.60 11.89 13.13 14.77 16.08 16.95 18.36 19.89 20.87 21.68 12.00 ELEV 206.54 206.63 206.72 206.84 206.93 207.00 207.06 207.13 207.18 207.21 12.50 DISCHG 25.83 33.74 38.58 41.67 43.72 44.74 44.88 44.52 43.86 43.05 12.50 ELEV 207.40 207.86 208.16 208.35 208.48 208.55 208.56 208.54 208.49 208.44 13.00 DISCHG 42.04 40.90 39.67 38.38 37.05 35.58 33.85 32.56 31.21 29.92 13.00 ELEV 208.38 208.31 208.23 208.15 208.07 207.97 207.87 207.79 207.70 207.62 13.50 DISCHG 28.66 27.51 26.41 25.30 24.25 23.25 22.36 21.94 21.86 21.73 13.50 ELEV 207.54 207.48 207.43 207.38 207.33 207.28 207.24 207.22 207.22 207.22 14.00 DISCHG 21.59 21.43 21.26 21.08 20.90 20.72 20.54 20.36 20.17 19.97 14.00 ELEV 207.21 207.20 207.19 207.19 207.18 207.17 207.16 207.15 207.14 207.14 14.50 DISCHG 19.71 19.38 19.05 18.60 18.02 17.35 16.68 16.11 15.59 14.83 14.50 ELEV 207.12 207.11 207.09 207.07 207.05 207.02 206.98 206.94 206.90 206.85 CALZETTA TR20 XEQ 01/01/1980 1990 POST CONTROL SCHOOL 100 YEAR FINAL RUN MAR 26 1990 JOB 1 SUMMARY REV 09/01/83 PAGE 29 U lM VYNC.0 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS 1N THE ORDER PERFORMED Io'(ll/v ���1r (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) o SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE Qd rJ STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF ---------------------------------.---- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (►N) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 1 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 3.05 --- 12.65 5.92 1307.8 XSECTION 2 RUNOFF 0.01 7 2 0.05 0.0 6.60 23.90 2.32 --- 12.99 6.91 834.5 XSECTION 1 ADDHYD 0.01 7 2 0.05 0.0 6.60 23.90 2.58 --- 12.80 12.06 941.1 XSECTION 3 RUNOFF 0.01 7 2 0.05 0.0 6.60 23.90 2.79 --- 12.74 9.04 1130.3 XSECTION 2 ADDHYD 0.02 7 2 0.05 0.0 6.60 23.90 2.66 --- 12.77 21.07 1012.5 XSECTION 4 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.65 --- 12.14 1.75 2189.9 XSECTION 3 ADDHYD 0.02 7 2 0.05 0.0 6.60 23.90 2.66 --- 12.77 21.35 987.9 XSECTION 5 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.52 --- 12.32 6.29 1608.9 XSECTION 4 ADDHYD 0.03 7 2 0.05 0.0 6.60 23.90 2.64 --- 12.69 23.92 937.5 STRUCTURE 1 RESVOR 0.03 7 2 0.05 0.0 6.60 23.90 2.54 230.21 12.74 23.81 933.0 XSECTION 6 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.56 --- 12.15 1.09 2119.2 XSECTION 5 ADDHYD 0.03 7 2 0.05 0.0 6.60 23.90 2.54 --- 12.74 23.99 921.5 XSECTION 7 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.52 --- 12.33 6.53 1592.3 XSECTION 6 ADDHYD 0.03 7 2 0.05 0.0 6.60 23.90 2.54 --- 12.57 27.30 905.8 STRUCTURE 2 RESVOR 0.03 7 2 0.05 0.0 6.60 23.90 2.41 224.25 12.61 27.25 904.2 XSECTION 1 DIVERT 0.00 7 2 0.05 0.0 6.60 23.90 2.41 --- 12.25 5.30-********* XSECTION 1 DIVERT 0.03 7 2 0.05 0.0 6.60 23.90 1.38 --- 12.61 21.95 728.3 XSECTION 8 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 3.39 --- 12.15 0.80 2653.0 XSECTION 7 ADDHYD 0.00 7 2 0.05 0.0 6.60 23.90 107.20 --- 12.25 5.92 19724.2 STRUCTURE 3 RESVOR 0.00 7 2 0.05 0.0 6.60 23.90 79.18 223.74 14.95. 4.94 16459.8 XSECTION 8 ADDHYD 0.03 7 2 0.05 0.0 6.60 23.90 2.14 --- 12.63 25.43 835.7 XSECTION 9 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.52 --- 12.33 4.78 1592.3 XSECTION 9 ADDHYD 0.03 7 2 0.05 0.0 6.60 23.90 2.18 --- 12.51 28.69 858.1 XSECTION 10 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.15 --- 12.70': 0.87' 934.6 XSECTION 10 ADDHYD 0.03 7 2 0.05 0.0 6.60 23.90 2.18 --- 12.52 29.46 857.2 XSECTION 11 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.43 --- 12.98 3.65 870.2 XSECTION 12 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.57 --- 12.45 0.54 1424.6 XSECTION 11 ADDHYD 0.00 7 2 0.05 0.0 6.60 23.90 2.44 --- 12.94 3.87 846.6 XSECTION 12 ADDHYD 0.04 7 2 0.05 0.0 6.60 23.90 2.21 --- 12.56 32.45 833.6 XSECTION 13 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 1.91 --- 12.72 1.26 837.5 XSECTION 13 ADDHYD 0.04 7 2 0.05 0.0 6.60 23.90 2.20 --- 12.58 33.61 831.2 XSECTION 14 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.41 --- 12.43 1.57 1349.4 CALZLTTA SOS 1 O() f eC1� TR20 XEQ 01/01/1980 1990 POST CONTROL SCHOOL 100 YEAR FINAL RUN MAR 26 1990 JOB 1 SUMMARY S v Jn VY\Ck C REV 09/01/83 PAGE 30 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (1N) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 15 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.58 --- 12.36 5.88 1556.8 XSECTION 14 ADDHYD 0.00 7 2 0.05 0.0 6.60 23.90 2.54 --- 12.37 7.40 1498.7 XSECTION 16 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 5.21 --- 12.51 3.55 2033.1 XSECTION 17 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.37 --- 12.55? 0.93? 1183.1 XSECTION 15 ADDHYD 0.00 7 2 0.05 0.0 6.60 23.90 4.33 --- 12.51 4.47 1767.3 XSECTION 16 ADDHYD 0.01 7 2 0.05 0.0 6.60 23.90 3.15 --- 12.41 11.56 1547.7 XSECTION 18 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 1.70 --- 13.25? 1.26? 579.5 XSECTION 17 ADDHYD 0.01 7 2 0.05 0.0 6.60 23.90 2.82 --- 12.42 12.00 1245.6 XSECTION 18 ADDHYD 0.05 7 2 0.05 0.0 6.60 23.90 2.32 --- 12.50 44.97 898.0 XSECTION 19 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.73 --- 12.34 1.55 6 1.4 XSECTION 19 ADDHYD 0.05 7 2 0.05 0.0 6.60 23.90 2.32 12.49 46.24 906.8 STRUCTURE 4 RESVOR 0.05 7 2 0.05 0.0 6.60 23.90 2.29 219.14 12.76 41.70 817.8 XSECTION 20 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.01 --- 12.20 0.23 1567.0 XSECTION 20 ADDHYD 0.05 7 2 0.05 0.0 6.60 23.90 2.29 --- 12.76 41.75 816.4 XSECTION 21 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 5.35 --- 12.10 oek � 1 41 3454.6 er. �e-r P®-�,d. XSECTION 22 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.61 12.32 1.24 1657.9 XSECTION 21 ADDHYD 0.00 7 2 0.05 0.0 6.60 23.90 4.93 12.11 15.21 3091.7 STRUCTURE 5 RESVOR 0.00 7 2 0.05 0.0 6.60 23.90 4.66 212.50 12.55 3.25 660.6 XSECTION 22 ADDHYD 0.06 7 2 0.05 0.0 6.60 23.90 2.50 ... 12.76 44.99 802.5 STRUCTURE 6 RESVOR 0.06 7 2 0.05 0.0 6.60 23.90 2.49 208.56� 12.79 44.89 00 8 l_jo�� u�lr8r� XSECTION 23 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.63 --- 12.23 1.78 1866.2 XSECTION 24 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.52 --- 13.01 4.28 883.5 XSECTION 25 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.55 --- 12.54 2.41 1263.3 XSECTION 23 ADDHYD 0.01 7 2 0.05 0.0 6.60 23.90 2.53 --- 12.78 5.86 868.0 XSECTION 26 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 1.98 --- 12.45' 0.57' 1133.5 XSECTION 24 ADDHYD 0.01 7 2 0.05 0.0 6.60 23.90 2.49 --- 12.74 6.21 857.5 XSECTION 27 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 5.30 --- 12.25 0.93 2854.1 XSECTION 28 RUNOFF 0.00 7 2 0.05 0.0 6.60 23.90 2.55 --- 12.55 1.06 1259.0 XSECTION 25 ADDHYD 0.00 7 2 0.05 0.0 6.60 23.90 3.31 --- 12.35 1.68 1443.7 XSECTION 26 ADDHYD 0.01 7 2 0.05 0.0 6.60 23.90 2.61 --- 12.65 7.44 884.9 STRUCTURE 7 RESVOR 0.01 7 2 0.05 0.0 6.60 23.90 2.58 228.09 13.16 5.93 705.0 Uvy) M CALZETTA fR20 XEQ 01/01/1980 1990 POST CONTROL SCHOOL 10 YEAR F►NAL RUN MAR 26 1990 JOB 1 SUMMARY REV 09/01/83PAGE 29SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED(A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) 3ECT10N/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 KSECTION 1 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.76 --- 12.66 3.53 780.1 KSECTION 2 RUNOFF 0.01 7 2 0.05 0.0 4.70 23.90 1.23 --- 13.02 3.78 456.4 KSECTION 1 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.42 --- 12.81 6.83 533.5 KSECTION 3 RUNOFF 0.01 7 2 0.05 0.0 4.70 23.90 1.56 --- 12.76 5.23 653.8 KSECTION 2 ADDHYD 0.02 7 2 0.05 0.0 4.70 23.90 1.48 --- 12.79 12.05 579.0 KSECTION 4 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.44 --- 12.15 0.98 1227.4 KSECTION 3 ADDHYD 0.02 7 2 0.05 0.0 4.70 23.90 1.48 --- 12.78 12.21 565.1 KSECTION 5 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.35 --- 12.33 3.46 883.8 KSECTION 4 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.46 --- 12.71 13.65 534.7 STRUCTURE 1 RESVOR 0.03 7 2 0.05 0.0 4.70 23.90 1.43 230.09 12.77 13.57 531.8 KSECTION 6 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.37 --- 12.15 0.61 1176.6 KSECTION 5 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.43 --- 12.77 13.68 525.3 KSECTION 7 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.35 --- 12.34 3.59 875.1 KSECTION 6 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.42 --- 12.66 15.33 508.7 STRUCTURE 2 RESVOR 0.03 7 2 0.05 0.0 4.70 23.90 1.30 224.11 12.T3 15.25 506.0 KSECTION 1 DIVERT 0.00 7 2 0.05 0.0 4.70 23.90 1.30 --- 12.55 5.30' R******** XSECTION 1 DIVERT 0.03 7 2 0.05 0.0 4.70 23.90 0.43 --- 12.73 9.95 330.2 XSECTION 8 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 2.01 --- 12.15 0.49 1640.4 XSECTION 7 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 88.64 --- 12.55 5.40 18011.3 STRUCTURE 3 RESVOR 0.00 7 2 0.05 0.0 4.70 23.90 61.91 223.64 14.95' 4.79' 15981.4 XSECTION 8 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.04 --- 12.75 13.13 431.5 XSECTION 9 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.35 --- 12.34 2.63 875.1 XSECTION 9 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.07 12.71 14.33 428.7 XSECTION 10 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.10 12.75' 0.45' 486.3 XSECTION 10 ADDHYD 0.03 7 2 0.05 0.0 4.70 23.90 1.07 --- 12.71 14.78 430.2 XSECTION 11 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.31 --- 13.01 2.03 484.0 XSECTION 12 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.39 --- 12.45' 0.30, 792.7 XSECTION 11 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 1.32 12.97 2.15 470.9 XSECTION 12 ADDHYD 0.04 7 2 0.05 0.0 4.70 23.90 1.10 --- 12.72 16.74 430.1 XSECTION 13 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.93 --- 12.75 0.62' 412.9 XSECTION 13 ADDHYD 0.04 7 2 0.05 0.0 4.70 23.90 1.09 --- 12.T3 17.34 429.0 XSECTION 14 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.27 --- 12.45' 0.85 729.0 CALZETTA ---�� TR20 XEQ 01/01/1980 1990 POST CONTROL SCHOOL 10 YEAR FINAL RUN MAR 26 1990 JOB 1 SUMMARY �- REV 09/01/83 PAGE 30 C` 2(q-3 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED /!� (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH ��� (V 1"e r A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE vYLQ STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF ---------------------------_---____- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 (SECTION 15 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.40 --- 12.37 3.26 864.2 (SECTION 14 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 1.37 --- 12.38 4.08 826.5 (SECTION 16 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 3.64 --- 12.51 2.52 1442.5 (SECTION 17 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.25 --- 12.55 0.50 636.7 (SECTION 15 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 2.90 --- 12.52 3.01 1190.1 (SECTION 16 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.89 --- 12.43 6.92 927.0 (SECTION 18 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.82 --- 13.30 0.62 284.9 (SECTION 17 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.65 --- 12.44 7.11 737.3 (SECTION 18 ADDHYD 0.05 7 2 0.05 0.0 4.70 23.90 1.20 --- 12.66 22.97 458.7 (SECTION 19 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.50 --- 12.35 0.86 959 - /-6 Lower 5 Q.i[ (SECTION 19 ADDHYD 0.05 7 2 0.05 0.0 4.70 23.90 1.20 ,q/ 12.66 23.45 4 9. STRUCTURE 4 RESVOR 0.05 7 2 0.05 0.0 4.70 23.90 1.19 217.71 13.14 17.43 341.8 (SECTION 20 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.99 --- 12.20 0.12 779.6 (SECTION 20 ADDHYD 0.05 7 2 0.05 0.0 4.70 23.90 1.18 --- 13.13 17.45 341.2 (SECTION 21 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 3.74 --- 12.10 10.23 2452.3 ►4ew Dip-T-e-nrl one po"p (SECTION 22 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.41 12.35 0.69 920.4 (SECTION 21 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 3.39 12.11 10.64 2163.8 >TRUCTURE 5 RESVOR 0.00 7 2 0.05 0.0 4.70 23.90 3.53 211.32 12.45 2.96 600.9 (SECTION 22 ADDHYD 0.06 7 2 0.05 0.0 4.70 23.90 1.39 --- 13.11 20.29 361.9 STRUCTURE 6 RESVOR 0.06 7 2 0.05 0.0 4.70 23.90 1.38 207.15 13.13 20.29 36 9 �.�- Cv�V»�� (SECTION 23 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.43 --- 12.25 0.99 1 41.4 (SECTION 24 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.38 --- 13.04 2.42 499.8 (SECTION 25 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.38 --- 12.55 1.34 700.3 (SECTION 23 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.38 --- 12.82 3.28 486.1 (SECTION 26 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 0.97 --- 12.45 0.28 563.1 (SECTION 24 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.35 --- 12.78 3.45 476.7 (SECTION 27 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 3.70 --- 12.25 0.66 2025.9 (SECTION 28 RUNOFF 0.00 7 2 0.05 0.0 4.70 23.90 1.37 --- 12.55 0.59 697.8 (SECTION 25 ADDHYD 0.00 7 2 0.05 0.0 4.70 23.90 2.02 --- 12.35 1.04 892.6 (SECTION 26 ADDHYD 0.01 7 2 0.05 0.0 4.70 23.90 1.45 --- 12.67 4.15 493.6 STRUCTURE 7 RESVOR 0.01 7 2 0.05 0.0 4.70 23.90 1.43 226.81 12.95 3.83 454.9 J I (��P� CI' i k /� i low AN H T Loo i<OVEA PRODUCT INFORMATION : INCLINED HYDROVEX VALVE Qf � I HHV HORIZONTAL HYDROVEX VALVE ml H im I t ummi Adikommm Development History IThe usage of vortex throttles in sewage systems, as a discharge limiting device, was first discussed in 1976. A short time thereafter, the first testing station was established near Heilbronn, West Germany. The results Flow inlet Iwere so encouraging that UFT-BROMBACH GmbH took O O up the marketing of these devices in Germany in 1977. I By mid 1984, more than 800 "HYDROVEX" valves from �Dn/ U FT-Brombach GmbH were in use.None of these devices have failed up to date, which is the best proof of the ® O extraordinary reliability and durability of the product. / IIn 1984, JOHN MEUNIER INC. acquired the fabrication and marketing rights from UFT-Brombach GmbH, to / extend the usage of these valves,under the"HYDROVEX trade mark, to North America. IThe-HYDROVEX"valve in its many variations has a wide range of application. "HYDROVEX" valves limit the discharge from storm overflows, storm overflow tanks, storm water retention tanks, and sewage systems. Extensive optimisation work indicated that the flow / throttling was significantly increased with the housing Igeometry, by approximately 20%. This implies that the ® \ optimized "HYDROVEX" Valve will have a larger water passage area.As a result the likelihood of blockage is also q decreased. The main components of a "HYDROVEX" Valve are Dn Nominal inlet diameter illustrated in Figure 1. 1 Inlet 2 Air vent The "HYDROVEX"Valve may also be used as a flowmeter 3 Removable cover (optional) or an active flow regulator. 4 Vortex chamber S Vortex air core Advantages of the"HYDROVEX"Valve 6 Exchangeable discharge orifice (optional) — no moving parts 7 Pressure sensor (optional) — no wear — no auxiliary energy requirements I — large inlet and outlet openings — corrosion-free structure Figure 1 : Major Components of"HYDROVEX" Valves — high-precision outflow throttling — limited back pressure effects — small head losses — easy to modify outflow characteristics — simple and quick installation — no maintenance requirements except inspection Operating Principle Hydraulic Properties "HYDROVEX" valves have S-shaped flow curves. The The "HYDROVEX" Valve has a rigid housing with no lower leg marks the area of the curved flow distribution, moving parts.The water flows through the tangential inlet the steep leg the vortex flow.The flow characteristics are into the valve chamber. In the case of small flows, a free, determined by the geometry of the housing alone. The large water surface forms in the vortex chamber where the most important parameters being flow is deflected in a smooth arc (Refer to Figure 2a). In this state,the-HYDROVEX"Valve has practically no flow — Nominal inlet diameter resistance. — Valve chamber size If the upstream water pressure increases, the air escapes — Mounting angle— Outflow-aperture diameter from the valve chamber and swirling current forms in the now rotation naly-symmetric mass of water. At the center "HYDROVEX" Valves are manufactured with standard of the valve chamber large tangential speeds build up, nominal inlet diameters of 100 to 1000 mm, or 4 to 40 which leads to the formation of an air-filled vortex core, inches. Owing to the many parameters, this results in a which effectively blocks most of the outlet orifice without total of several hundred possible valve variations.We have physically reducing its size (Refer to Figure 2b). In this at ourdisposai a computer program which determines the state,the"HYDROVEX"Valve serves as an ideal resistor optimum solution from this multitude of possibilities and to flow. Flow resistance is as large as in the case of an carries out the hydraulic dimensioning. A few typical orifice plate with an orifice diameter as small as 1/6 that of examples of outflow ranges for"HYDROVEX"valves are a"HYDROVEX" valve outlet. listed in Table 1. The Mounting angle affects the, shape of the discharge rating curve as may be seen in Figure 3, IHV11 a) Open positionIHV30 o HHVOO ra IHV45 a) Mounting CO % angle e S— IHV60 CL b) Throttle position Flow Figure 2: "HYDROVEX'' Valve in Open and Throttle Figure 3 Effect of Mounting Angle on Flow Rating Curve, Positions The shape of the discharge rating curve is the result of the Table 1 : Typical HYDROVEX Valve Discharge Range valve going from an open to a throttle state. (Refer to Figure 2). The effect of various outlet orifice diameters (da) on the Nominal discharge characteristics are illustrated in Figure 4 for a Diameter Discharge typical 200 IHV 11 model (That is to say, for a unit with a Dn Model minimum maximum nominal diameter of 200 mm (8 inches) and a mountin (m m) (I n) (I/s) (cis) T,/-S) (.t n 9 100 4 - angle of 11 degrees). IHV 11/6 s 5.6 0.2 104 0A 125 5 1HV 11/6 s 8.8 0.3 16,2 06 150 6 IHV 11/6 s 112 0.5 24.4 0,9 200 8 IHV 30/6 29.3 1.0 54,11 1 9 Maintenance 250 10 lHV 30/5 48.0 1.7 88,8 31 "HYDROVEX" Valves are designed and built to be 300 12 IHV 30/4 65,13 2,3 121 7 4.3 350 14 lHV 30/4 760 27 1406 so maintenance free units. However it is recommended that 400 16 IHV 45/4 1450 51 2680 9 5 visual inspections of the valve, the outlet orifice and the s00 20 HV 45,4 2260 8 0 417 0 14 7 cover seal rings be carried out from time to time. 600 24 IHV 60/3 394.0 13.9 729.0 25.7 700 28 1 HV 60/3 536.0 18.9 992.0 350 In addition, the valves are normally equipped with 800 32 1HV 60/3 700,0 24 7 1295,0 45 7 removable orifices. Therefore, should the flow require- 900 36 1HV 50/2.5 1009.0 35.6 1867 0 65.9 1000 40 IHV 60,2 5 1246 0 44.0 2305 0 814 ments change, a new orifice can be installed by maintenance personnel in a matter of minutes. John Note Flows tabulated above are based on a 2m (6 it) upstream water Meunier Inc. will be pleased to supply a new orifice and pressure carry out the installation. ft m h da< N da>DN g 2.5 -Orrin 2 6 4 a m = 1.5 I 4 1 For comparison I 2 Kick-bac orifice plate 0.5 D N 200. O DN 0 10 20 30 40 50 Crossection i i i C F S 0 0.5 1.0 1.5 Discharge Figure 4: Effect of Various Outlet Orifice Diameters on Flow Rating Curve for a 200 IHV 11 Model. I nstallation Guarantee "HYDROVEX"Valves may be installed ineitheraseparate "HYDROVEX" Valves are guaranteed against manufac- dry chamber ora wet pit,with the outflow discharging into turing and design defects for a period of 5 years. Should an open channel or a fixed pipe. We recommend dry pit the hydraulic characteristics not be within 5% of these installation, as access and maintenance may be carried submitted forapproval orshould the device be found to be out with greater ease."HYDROVEX"Valves are supplied defective, John Meunier Inc. will be only responsible for i ready to install. the modification or replacement of the "HYDROVEX" Valve by John Meunier Inc. personnel. Accuracy The"HYDROVEX"Valves are guaranteed to an accuracy of t 5 percent of the design discharge and are shipped ready to install.A pressure transducer connection may be attached to certain types of "HYDROVEX" Valves. With this addition, the "HYDROVEX" Valve may also be used for flow metering or as an active flow regulating device. WERE n ME A E mum la"m I E INC. 6290 Perinault, Montreal, Que. H4K 1 K5 Telephone (514) 334-7230 Telex: 05-825693 Fax: (514) 334-5070 10- DISCHARGE CURVES IMPORTANT: The models shown in this brochure are only those called"standard". Other nominal diameters, configurations and shapes are also available.If your present application cannot be covered by one of the "standard models", please contact us. Because of various correction factors used to compute the exact curves,the flow curves shown in this manual may differ from the exact values. To confirm the HYDROVEX selection and/or to get the exact discharge curve, please contact our nearest office or the local John Meunier Inc. agent. How to read the curves: In minimum orifice maximum orifice nominal O B diameter.— ` ""` "..o ,c x DN ... a '.;:•1 e:• .: -_d ...................... . ,. _. ...,y..4i'b......, desired flow Qb—►I Head w Have DARAUAV6E$X i. _- •.....-.. ... •- _ V..�,. 20 J U H N ME UN 1 1 n0 Il.ii01.1 IIi.A 11.9/ .r :6.' :LO 'B.v IV:.I I.i.l c�.' desired flow Qb(6 17 t 826 51136 •.......................................... Tel e. (t- Ili S8.1 ;I•.B .., 'te is :BB.B ICI.: I tl ,IY I Flow 28 nominal diameter model DN ya 0- INTRODUCTION The HYDROVEX valves are automatic discharge controllers having no movin fferating without auxiliary power sources. The controlling function is produced sole) b f effects. 9 parts and Y y low In addition to the large throttling effect, the HYDROVEX valves automatically flow when the water level rises or falls. Because of their "S-shape"e have extraordinarilyproperties. produce a peak good backflow ro erties. The normal flow (average flow)OVER valves negligible backflow. HYDROVEX valves can therefore be used when relatively small hea available. passes with ds are HYDROVEX valves are patented in many countries including North America, 1- DISCHARGE CHARACTERISTICS The figure 1 shows a typical discharge curve for a HYDROVEX valve. In the lower part of the discharge curve, —oriice _i t, the HYDROVEX valve offers praticall rapidly with increasing inlet pressure. At this Point,resistance to the incoming flow. The discharge reaches its maximum at Qflush. Y no If the water level in front of the HYDROVEX increases, the orifice flow gradually changes to a vortex flow. At the switching point, the flow is stable and reaches its minimum Above the switching point, the discharge curve a Oswitch. a Torricellian discharge throttle such as a nozzle, ano orifice orecon pipe rder parabola typical of h FIGURE 1.- 3 / TYojcal orifice plate / 2 (smaller d) /® �Vortex \ ® flow Storm regime ———————— �I Oswitch Transition regime -' 0 Orifice flow 0 10 20 (� Dry weather regime 4 ! �J�� � � i x U TECHNICAL RELEASE 20 COMPUTER PROGRAM FOR PROJECT FORMULATION ! -t HYDROLOGY CHAPTER 1. INTRODUCTION This chapter describes the Computer Program for Project Formulation, Hydrology (TR-20) in terms of the purpose, computer requirements, and availability of the program. The remaining chapters describe in detail: the program organization, capabilities, and limitations; input preparation; and output description. The appendices contain five sample jobs showing different levels of complexity, blank input forms, a description of the reach routing procedure and guidelines for rating curve coefficients and reach lengths. 1.1 PROGRAM PURPOSE The TR-20 computer program assists the engineer in hydrologic evaluation of flood events for use in analysis of water resource projects. The program is a single event model which computes direct runoff resulting from any synthetic or natural rainstorm. There is no-provision for recovery of initial abstraction or infiltration during periods of no rainfall. It develops flood hydrographs from runoff and routes the flow through stream channels and reservoirs. It combines the routed hydrograph with those from tributaries and computes the peak discharges, their times of occurrence and the water surface elevations at any desired cross section or structure. Any one of the above items can be printed out as well as discharge hydrograph elevations, if requested. rThe program provides for the analysis of up to nine different rainstorm distributions over a watershed under various combinations of land treatment, floodwater retarding structures, diversions, and channel work. Such analysis can be performed on as many as 200 reaches and 99 structures in any one continuous run. The program uses the procedures described in the SCS National Engineering Handbook, Section 4, Hydrology (NEH-4) except for the reach flood routing procedure. The reach routing is described in Appendixes G & H until Chapter 17, NEH-4 can be revised. The program was originally developed by the Hydrology Branch of the Soil Conservation Service (SCS) in cooperation with the Hydrology Laboratory, 3-15 3.6 STANDARD CONTROL STATEMENTS The Standard Control (see form, Appendix F, pages F-14 and F-15) is used to set forth the sequence in which flood routings through the reaches and structures of a watershed will be performed. The statements on the completed form cause a runoff hydrograph to be developed, to be routed through a structure or routing reach, and to be added to hydrographs for intervening areas. They may also be used to move a hydrograph to a different location in computer storage, or to divide it into 2 separate hydrographs. A "6" must be inserted in column 2, the "Data Code", for all Standard Control statements except ENDATA. The "Operation" (Columns 4 through 11) is described by a code name and a number. The code names are RUNOFF, RESVOR, REACH, ADDHYD, SAVMOV, DIVERT, and ENDATA. These names are for the convenience of the user while the corresponding number in column 11 identifies to the computer the operation to be performed. Appendices A through E show completed Standard Control instructions for five related sample jobs. For example, in Sample Job Number 1 (Appendix A, page A-5 and repeated below for the readers' convenience) the first statement, RUNOFF 1 causes an inflow hydrograph to be developed for the area above structure I. The •statement, RESVOR 2, causes the inflow hydrograph to be routed through structure 1. The statement, REACH 3, causes the outflow from structure 1 to be routed through the next stream reach (1). The ENDATA card signifies completion of the Standard Control. td-so I.10 11.20 P1.90 91.®0 '1621Q[USN J )Gl7 B9012s 05GB9DiSi. )09G7 3 ®901P + G70 z1. E90i21e1 G1 ®9 s o. 3 LL kL T In Sample Job number 2 (page B-5), continuing downstream the RUNOFF 1 statement for cross section 1 causes a hydrograph to be developed for the local inflow to the reach previously routed. The ADDHYD 4 statement causes the reach routed hydrograph to be combined with the local inflow hydrograph. The REACH 3 operation instructs the computer to do the 16 reach routing through reach 2. Thus, the routing sequence can be directed from one reach to the next. The SAVMOV 5 and DIVERT 6 statements will be explained in sections 3.6.6 and 3.6.7. The "xsection/structure" heading (Columns 13 thru 18, page A-5) contains blank spaces that are to be filled in with either the cross section number or the structure number. A cross section and structure number must never both be used on the same line. Leading zeros do not need to be inserted in the number field. The largest numbers that can be expressed for any structure or cross section are 99 and 200, respectively. The smallest number, in either case, is 1. Ways in which cross section/structure numbers are associated with the statements in TR-20 are given in Table 3-4. The "Hydrograph Number" heading (Columns 19 through 24) provides spaces in which a hydrograph storage location is designated by numbers 1 through 7. Up to three hydrograph storage location numbers are specified on each Standard Control operation in these columns. One or two. of the hydrographs may be required to be available to perform the Standard Control operation and the third hydrograph storage number to save the resultant operation hydrograph. DIVERT is different in that it has one source hydrograph and two resultant hydrographs. All seven storage locations are similar and may be used inter-changeably for input and output hydrographs of any operation.. However, in order to keep track of hydrographs and assist in error detection the user should standardize storage locations by selecting three locations for the "operating" hydrograph storages. The user might generally use locations 5, 6, and 7 as the "operating" storage locations. For example, 6 ADDHYD 4 5 6 7 would take the hydrographs in locations`5 and 6, add them, and place the resulting hydrograph in location 7. Use rem.:A,� (1+.+) as +cvn rava-1 sk 0®ca+1 .1 +a save hy4ral—fhs vw+e( heeled. The cardinal rule to remember is that only one hydrograph can occupy any one storage location at a time and that there must be a hydrograph in the storage location from which an operation is "calling it up.01 A hydrograph remains in a storage location ready for use until new data is placed into that location. It is recommended that all storage locations be checked for compliance with these rules before field input data are submitted for data entry. The same storage location must not be used in the input and the output for a single operation. For example, 6 ADDHYD 4 7 2 7 should be 6 ADDHYD 4 7 2 5. 3-17 Table 3-4. Association of cross section/structure numbers with TR-20 Standard Control statements Statement Number of What the number designates 6 RUNOFF 1 Cross section Drainage area for which the or structure hydrograph is developed 6 RESVOR 2 Structure Structure through which routing is performed 6 REACH 3 Cross section Terminal point to which the stream reach routing is performed 6 ADDHYD 4 Cross section Point at which the two or structure hydrographs are combined 6 SAVHOV 5 Cross section Hydrograph being moved internally or structure between storage locations 6 DIVERT 6 Cross section Output hydrograph number 1 or structure The three "Data Field" headings (Columns' 25 through 36, 37 through 48, and 49 through 60) are filled with data according to the individual headings as explained below. Data entered in each of these field must have a decimal point. If no decimal point is entered its location is assumed but probably not where the user intended. No error message is printed for this error, however, any time such data are printed and exceeds the number of print positions, asterisks are printed in the edited listing of Standard Control instructions. Commas must not be used within data fields to indicate thousands. Different output options may be specified in columns 61-72. These options are discussed in Section 3.6.7. ®gg 3.6. 1 RUNOFF (Fig. 3-3) The RUNOFF statement causes a runoff hydrograph to be developed for a subwatershed. The input data is drainage area, CN and time of concen- tration. Determination of the CN is described in Chapters 7, 8, and 9, NE-H-4. Techniques in NU-4, Chapter 15 may be used for estimation of time of concentration. 3.6.2 RESVOR (Fig. 3-4) The RESVOR statement causes an inflow hydrograph to be routed through a structure such as a reservoir, starting with the outflow discharge rate at the elevation corresponding to the beginning of the storm. The "Surf. Elev. at T = 0, Ft." is the water-surface elevation at the structure at the beginning of the storm (See page A-5, record 170) . The routing continues until the outflow rate returns to zero or until the 300 ordinate limit for a hydrograph is reached. If "Surf. Elev. at T = 0, Ft." is left blank, routing begins at the first elevation on the structure data table (page A-4) . There are three ways to start routings^(1)Normally the starting elevation will be the lowest crest of the principal spillway, with outflow discharge equal to zero. The storage associated with the starting elevation can be equal to or greater than zero. 2 (1) Below the principal spillway crest with zero discharge. The second data card on the structure data table must have a discharge greater than zero and must increase in storage. Therefore, a small discharge may have to be shown, even though it is not the case. 3 (Z) Above the principal spillwa crest where discharge is greater than zero. Routing starts at aa"o di _h incza.a" to the continues until the outflow discharge returns to zero or where it ends because of 300 point storage limitation. The volume of the outflow hydrograph will include the volume between the starting elevation and the elevation at zero discharge or when it ends because of the 300 Point storage limitation. 3-19 Col. No. Value Description 2 6 Data code signifying Standard Control statement 4-9 RUNOFF Operation name 11 1 Operation number 13-15 b or var. Cross section number, 1 thru 200, right justified must enter one 16-17 b or var. Structure number, 1 thru 99, (but not both right justified 19-21 b 23 var. Output hydrograph storage location no. , 1 thru 7 25-36 *var. Drainage area, sq. miles 37-48 *var. Runoff curve number 49-60 *var. Time of concentration, hours 61 b or 1 *Output option, print peak discharge 63 b or 1 '° discharge hydrograph 615 . b 67 b or runoff volume 69 b or 1 generate discharge hydrograph file 71 b or 1 '° save results for summary tables 73-80 b or var. Record/statement identification, optional Notes: Decimal required in these fields, omitted in all others Enter 1 to turn the option on, otherwise leave it blank var. - variable data to be entered by user b - denotes blank Example: r Ml 23.3o4 7 p12 7<3 G 7 Y 9 0 12 I.3 G 7 p 7 0 2 ? 3 G 7 Y 9 0 I ;CT./ 11YU440. UCT, NUMOER OUTPUT CPTI,'NS+- on- 04TA FIELD I DATA FIELD 2 ;DA;T�A FIELD + 3 NAIAC No. it. PrmT IOEuTTIL I.Z 7.J 3 1 The RUNOFF statement shown above would cause an inflow hydrograph to be developed for structure 1. The subwatershed has a drainage of 1 .20 square miles, a RCN of 75 and a time of concentration of 0.33 hours. The hydro- graph is placed in storage location 6. The hydrograph will be printed out and the results will be printed in Summary Tables 1 and 3. The peak discharge and volume of runoff will also be printed. Figure 3-3. -- RUNOFF Statement Col. No. Value Description 2 6 Data code signifying Standard Control statement 4-9 RESVOR Operation name 11 2 Operation number l3-►5 lb 16-17 var. Structure number, 1 through 99, right justified 19 var. Input hydrograph storage location no. , 1 thru 7 23 var. Output hydrograph storage location no. , 1 thru 7 25-36 *var. Surface elevation in feet, that routing begins 37-`0 b 61 b or 1 **Output option, print peak discharge 63 b or 1 °' it of discharge hydrograph 65 b or 1 " it elevation hydrograph 67 b or 1 it itrunoff volume 69 b or 1 '° itgenerate discharge hydrograph file 71 b or 1 '° it save results for summary tables 73-80 b or X var, Record/statement identification, optional. Notes: Decimal required in these fields, omitted in all others Enter 1 to turn the option on, otherwise leave it blank var. - variable data to be entered by user. b - denotes blank Example: 1.10 11.20 1 21.30 1 31•00 41•50 SI.CO 14t•70 r1•P` 1 12131415 161710 191011 123 1 M15 I G 2 0'1101 1 2 J o 5 6 1719191011 1 2 J a 3 6 r 8 9 0 1 2 J<p 1 6 7 7 l 0 1 2 • 5 6 IT I®9 0 1 : •6 *!• 1 xSECT./ "I Ono. OUTPVY OFY1onr PTI 0^EnaT10N STRUCT r1U`aOER DATA FIELD 0 1 DATA FIELD * 2 DATA FIELD E' csttr rn,c rr:1NY ID •Y pit UaY ,� J.5 I l f I l 4 1 .7 The RESVOR statement shown above would cause the hydrograph in computer storage location 6 to be routed through structure 1 and the routed hydrograph to be placed in storage location 7. The routing would begin in the structure at elevation 521.5 feet.- The output hydrograph and water surface elevations will be printed and the results will be printed in Summary Tables 1 and 3. The peak discharge and the volume under the outflow hydrograph will also be printed. Figure 3-4. -- RESVOR Statement 3-23 The coefficient x is transformed to k, where k = x = Lm and L is the reach length specified in Data Field #1. The reach routing is performed using Q = kS®, which is a straight line log-log relation between discharge (Q) and reach storage (S = LA) . Therefore, when coefficients x and m are entered in Data Fields 2 and 3, the actual cross section discharge end-area data as given on the corresponding cross section table are not used. Conversely, if the Data Fields 2 and 3 are left blank, a cross section table must have been previously entered and will be used. An "m" value will be determined for each flow listed in the table. The slope of the Line between each two consecutive data points is weighted by the difference in flow between the two points. In this way, "m" can be computed for each flow in the table based on flow from the lowest flow to the flow in question. The computation of "m" is described in Appendices G and H. This method allows the "m" used in the reach routing to change when the slope of the discharge-area curve changes. In typical cross sections (with channel and floodplain) the slope of the discharge-area curve changes (becomes flatter) when the discharge exceeds channel capacity and then changes (becomes steeper) again at a point where water fills the floodplain and depth of flow increases in the floodplain. Once the discharge-storage relation is established for the reach, the routing coefficient is calculated that is used to perform the routing. Details on how the routing coefficient is calculated and how the Modified Att-Kin routing is accomplished are given in Appendix G. 3.6.4 ADDHYD (Figure 3-6) 4 The 6 ADDHYD statement causes the hydrographs from two hydrograph storage locations to be combined and places the resultant hydrograph in a third storage location (See page B-5, record 200) . Only two hydrographs can be combined at one time. For example, if 3 hydrographs are to be combined to describe a final hydrograph, two ADDHYD statements are needed. 4 Col. No. Value Description 2 6 Data code signifying Standard Control statement 4-9 ADDHYD Operation number 11 4 Operation name 13-15 b or var. Cross section no. , 1 thru 200, right justified must eater one but 16-17 b or var. Structure no. , 1 thru 99, not both right justified 19 var. Input hydrograph storage location no. , 1 thru 7 21 var. Input hydrograph storage location no. , 1 thru 7 23 var. Output hydrograph storage location no. , 1 thru 7 2 s 40 b 61 b or 1 **Output option, print peak discharge 63 b or 1 °° discharge hydrograph 65 b or 1 '° " °° elevation hydrograph 67 b or 1 to of runoff volume 69 b or 1 to it generate discharge- hydrograph file 71 b or 1 it It save results for summary table 73-80 b or var. Record/statement identification, optional. Notes: ** Enter 1 to turn the option on, otherwise leave it blank var. - variable data to be entered by user. b - denotes blank Example: I.tO I1.20 21.30 )I.<O T:i.�0 9i•f.0 Gi•10 9i.10 2 a�_;I; t'n 'n ,• 5 8 1�7,G.12: :'7 C ii .. '< ill S 91+1?.(:ilil.• :71';T `i e .:; CI:^0 ?5 r.SECT/ IIrc10. AT. CPERATIC`I sTRUG' t:U`t;:ER OUTPUT oPT10Ns R_C0A0 satlsre....'' " 04 DATA FIELD *1 DATL FIELD 2 DATA FIELD ] FEINT IOQ+L NAME NO• 'd'~•�PVT ie. ii .f, Y2 atls•,m This ADDHYD statement causes the hydrograph is computer storage location 5 to be combined (added) with the hydrograph in location 6 and the resulting hydrograph placed in location 7. The peak discharge, the output hydrograph, and the volume under the hydrograph will be printed out and the results will be printed is Summary Tables 1 and 3. Figure 3-6. -- ADDHYD Statement 3-25 3.6.5 SAVMOV (Figure 3-7) The 6 SAVMOV 5 statement causes the hydrograph in one computer storage location to be placed in another storage location. To facilitate keeping track of hydrographs, the user may standardize on storage locations 5, 6, and 7 as the "operating" locations and use the other locations as temporary storage. In this case, 6 SAVMOV 5 will remove a hydrograph from computer storage location 5, 6, or 7 and place it into location 1; 2, 3 or 4 for safe keeping until called up as input for a subsequent operation. The computer "operating" storage locations can thus be vacated in order to transfer operations to a tributary (See page C-7, record 480) . When operations are completed for the tributary, a 6 SAVMOV 5 can recall the hydrograph from its storage location 1, 2, 3 or 4 and place it back into an "operating" location 5 or 6 (See page C-8, record 550) . 3.6.6 DIVERT (Figure 3-8) The 6 DIVERT 6 control statement is used to separate a hydrograph into two hydrographs. An example of the use of DIVERT is where the maximum flow in a channel must be limited and the excess flow diverted into a floodway or bypass that may or may not reenter the main channel at some point downstream in the watershed. There are three hydrographs involved in this operation - an input hydrograph that is to be separated into output hydrograph #1 and output hydrograph #2. These output hydrographs cannot be stored in the same storage location as the input hydrograph. For example, on page C-8, record 580, the inflow hydrograph is in storage location 5. Therefore, the outflow hydrographs must be placed in locations other than 5. The cross section or structure number (columns 13-15 or 16-17) applies to the output hydrograph #1. The cross section number for output hydrograph #2 is placed in Data Field #3. A structure number is not permitted for output hydrograph #2. Two procedures are available to divert a hydrograph. The first procedure diverts all flow above a constant discharge provided in Data Field #1. Col. No. Value Description 2 6 Data code signifying Standard Control statement 4-9 SAVMOV Operation name 11 5 Operation number 13-15 b or var. Cross section no. , 1 thru 200, Cnot both enter right justified ne but 16-17 b or var. Structure no. , 1 thru 91 right justified 19 var. "From" hydrograph storage location no. , 1 thru 7 2y 3 var. "To" hydrograph storage location no. , 25'-G0 6 1 thru 7 73-80 b or var. Record/statement identification, optional Notes: var. - variable data to be entered by user b - denotes blank Example: 1.10 11.70 1 21.30 1 31•<0 1 01.60 61.71 12M9876 0123 •l 6 T890123 a if ,192 I23s3670l 01234l6T 3012.` a56719C1 ; .-1 7 It 1 1.I• t•!'-'•.• xSECT./ IITOna ,Tz 0-lEnnT1011 STIIUCL NUMUEn 0UrPUT or•iioKs FeC3;D NAME a0• lsur teat roT wi Rt DATA itELD 1 DATA FIELD + 2 DATA FIELD * 3 PRINT tCE'af. This SAVMOV statement causes the hydrograph in hydrograph storage loca- tion 5 to be moved to location 1. The associated cross section is 2. No output options work with SAVMOV. Figure 3-7. -- SAVMOV Statement SCS-ENG.- 273 DRAFT REV. May 1982 TR — 20 U. S. DEPARTMENT OF AGRICULTURE STANDARD CONTROL FOR . WATERSHED SOIL CONSERVATION SERVICE Watershed Hydrologist Dole 1234367890 2�3O 901 12345S-6HE7E8T 901 OF1-10 11-20 5- 41-50 51-6 71-8012345678901234 234678902 56 0 2436 t I 1 I 1 I 1 1 I I t 1 1 t 1 1 1 t 1 I 1 1 1 1 1 1 I 1 1 1 X SECT./ HYDRO, DATA OPERATION STRUCT. NUMBER OUTPUT OPTIONS RECORD CODE XSEcr.STRUC IN- IN- our- DATA FIELD * I DATA FIELD 2 DATA FIELD 3 NAME NO. PUT PUT PUT PRINT IDENT �11 412 FILE Suit PEAS Ny4[LE VOL. 6 RUNtDFF I 6 `:. AREA, SO. MI. RUNOFF CURVE N0. Tc, HRS. 6 'R E S v lb R 2:�. :;:';';' ::: 7 SURF. Ln EL.AT T 0,FT. wl-� 6 `R A o E CH :;; 7 :`• g :. LENGTH FT. I OPTIONat t 1 oPT10NA )..:: EXAMPLES az w END AREA COEff. 1 X XP NENT M 2 1- 6 :. D D H Y D 4 5:-`. 6 7 7. Qo 2 D N w 0-NOT x 0 0 : 6 A w S V V 5 •rr ENTER ER 6 01 V E R T 6 .'•: - OUT I DISCHARGE,CFS OUT 1,Decimal%D.A. OUT2, I.O. ' Thls record is I be used only of end of atI standard control records, : 1 1 1 t 1.•..:1:' •1 1 IRgwl Iwnry 1 1 I I 1 ' 1 I = I I I 1 likes® fields I 1 I IMPORTANT: Data Fields No. 1,2, and 3 require decimal points. 1 l i j j l l l I I 1 1 A r F-15 STANDARD CONTROL Data Code/Operation 6 RUNCTY 1 Develops a runoff hydrograph using the data from Data Fields #1, 2, mad 3. 6 RESYM 2 Performs storage indication routing of a hydrograph. Data Field 01 is the starting elevation for routing to begin. If Data Field ®1 is left blank, the routing will begin at the first entry in the STRUCT table. 6 Ma 3 Performs ATT-M reach routing using the reach lensth (Data Field #I) and, optionally, the end area coefficient, x, SData Field 02) and the exponent, a, (Data Field r3) in the equation Q c xA . If Data Fields /2 and 3 are not used, a YSECTY table for the specific cross section is required. 6 AM= 4 Adds two bydrographs together. 6 SAVIdov 5 Moves a hydrograph from one storage location to another storage location. 6 DIVERT 6 Divides an inflow hydrograph into two separate outflow hydrographs. Two procedures are available with this operation: Procedure i1 Output O1 rill contain that portion of the inflow hydrograph below and equal to the discharge given in the Data Field fl. Output Y2 will contain that portion of the inflow hydrograph above the given discharge in Data Field il. Col,. 25-36 Data Field No. 1 - Maximmus discharge in cfs for Output iI hydrograph. Col. 37-43 Data Field No. 2 - Drainage area split in decimal fraction to retain with Output f1 hydrograph. If left blank, all drainage area goes with Output /2 hydrograph. Col. 49-60 Data Field go. 3 - YSECTV ID associated with Output 02 hydrograph. (Note - YD seat be provided in decimal fors, i.e., 102.) Procedure #2 The inflow hydrograph may be divided proportionally using two elevation vs. discharge rating tables. These tables must be provided by the user as cross sections. Col. 13-15 ID of rating table associated with Output 01 hydrograph. Col. 25-36 Blank or Zero. Col. 37-48 Sane as Procedure 01. Col. 49-60. Same as Procedure /1 and a rating table must be given for the YSECTN. Output Options If a particular option is wanted, put a 1 in the ap propriate ppzopriace column. Col. 61 FLU - will print Peak discharge, Peak Time and Peak Elev. (if rating table is available). Will supply up to the ten largest peaks of multi-peaked bydro- graphs. Col. 63 HYD - Will print hydrograph discharges in tabular form. Col. 65 ELEV - Will print hydrograph elevations in tabular fora. Col. 67 VOL - Will print the volume minus constant baseflow under the hydrograph is -.Inches, cfs-hrs, mud ac-ft and the current constant baseflov in cfs. Col. 69 FILE - Will generate a file of the discharge hydrograph coordinates in machine readable READHD format. Col. 71 SUM - Requests the results of the operation be inserted in S uammary Tables 1 and 3 at the end of the job. ECON output must appear in Summary Table 1 but does not have to be selected here. Col. 73-80 RECORD identification. Any characters including blanks.