Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2000-04-04 Application Drainage Calculations
DRAINAGE CALCULATIONS Relocated Peabody House Brooks School By JOHN scam Rist-Frost-Shumway Engineering, P.C. CIVIL Laconia, New Hampshire A� AFc.zs1aako Q �� o�Fs3►CPTL�''°��f V`iWr�V� March 2, 2000 Impermeable Area Computations Stormwater Treatment Standard Information from HIL Technology on Downstream Defender removal efficiency TSS Removal Calculation Worksheet Equivalent Pipes for Modeling Downstream Defender Tailwater Calculations for Modeling Downstream Defender HydroCAD Output for 1-Year, 10-Year, 25-Year, and 100-Year Storms Literature on Downstream Defender Literature on"The Snout' Catch Basin Hood Operation and Maintenance Plan for Post-Development Stormwater Controls lFS SHIimwivi ,lob Dept.By ,,I Date 2 JOB TITLE �l��J �, Fr f'C� ������ � P, ��JCia.1.. �.��. M.Ckd. Dare a C.Ckd. Date DESIGN AREA Yr.O'A' , C. (`. Sheet E Of Reference Al t \A t" � U-�lklk'<- �9e rPK -6ve �Cexeia aver (40 + 2,5 4. xa 7-s -r LID xN(A) `'dote,. ID t 6 L( A+ + 500 Tot a l e Cl) I W w o fit. 1 t1PCA`e)(0- �Pe0L j Cs %ekr�0— Fe A"Av-�C are. n u re,,. 1 IFS sHUMWav Job # Dept. l By Date . JOB TITLE �( � c�, ,,, �'� (� ,.., �� ( c^r... _ �h M.Ckd. Date C.Ckd. Date DESIGN AREA , "pC ,�,utcR 'f' { r s'. Sheet 4 Of Reference In�p�1� C'a f, �!. 1b0��ti� 4`h Ca A+ ij vo (4, J J '�k It t u �P'�•r�t� �Y w �. ��. C�� (��� ���i fie..``•�� u e.V f v% w � z1, Dgw,�, � $� 90 -rot Ce wk-ova . �' ' > . 1� �� --- m e� U%opwnstream Defender Removal Efficiencyv Loading RateEA CD 120 N 100 n 80 - i (- I ' t � ! i l l l � _ ? I o LLI 40 i 10 20 30 40 50 60 70 Loading i ate lcu. . Remwal down to 150 microns Overall removal � N FES-29-00 02 :32 PM HiL TECHNOLOGY 2077566212 1,. e1 H.I.L.FAVIRAI'NSMISSIOT'S, TECHNOLOGY, INC. H.1.L 04 Hutchins Drive TECHNOLOGY,,C Portland, ME 04102 (207) 756-6200 MW Fax:(207) 756-6212 r N To: Ed Jansury Date: February 29, 2000 Rist-Frost -Shumway Fax M 803-528-7653 Pages: 3 From: David Mongeau Cc: Subject: Removal efficiency chart The volumes for the four sizes are as follows: 4 25.1 �ftl ) 6' 84.8 8' 201,1 10' 392.7 a 0 1' DdCU1RtI�I '. Location: Brooks School, North Andover, MA TSS Removal Calculation Worksheet TSS Removal Starting TSS Amount Remaining BMP Rate Load Removed Load Hooded Catch Basin .25 1.00 .25 .75 "Downstream Defender" .80 .75 .50 .15 TSS Total Removal .85 Project: Relocation and Additions to Peabody House Prepared by: Rist-Frost-Shumway Engineering, P.C. Date: February 29, 2000 S d 6 RFS ?�,���=Sri=����- ��tu�+uvwv Job # _ Dept. By -Date JOB TITLE M.Ckd. Date C.Ckd. Dare DESIGN AREA c<c . =', .,I "'lll :�..a:,% ;..> r Sheet Of 1 ,h Reference Dow ,-75 c 5 2v y w v A Vf � r I J i P D 1L 3 IFS .''iklumWAY Job # Dept. - By Date JOB TITLE M.Ckd. Date C.Ckd. Date DESIGN AREA Sheet Of Reference Fro vvv 1.`7 " �VC a -L-e aAc� P�I0 e 4o cUrr .e- vex D vA be 44 F,a 11 1 y�' . J Y I I SHUMWAY .lob Dept.By Date JOB TITLE M.Ckd. Date C.Ckd. Date DESIGN AREA Sheet Of Reference cA,',U �o.�� �•.t c� c+tx �i o w►'�� �' J 41 017 Tie &\olive— eiul\W-ev.k twe ce_ v �-ec A0 dP 6,-, �CV-s 0� 'le(i iCOA rat ctc. e- , 0 ill 0 -'o r ,L C 1 IFSS14UMWAY Job Dept. By Date JOB TITLE-- M.Ckd. Date C.Ckd. Date DESIGN AREA 2, o0 Sheet Of P, L-w 5 Reference 0-Q 4 3S- b- z 3 J5; + & s- C-lv 0 19 Data for PEABODY HOUSE RELOCATION Page 1 TYPE III 24--HOUR RAINFALL= 2.30 IN Prepared by RIST-FROST--SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING O z � FI E >z� T OSUBCATCHMENT REACH Q PCND LINK SUHCATCHMENT 1 = Drainage Area 1 -> POND 1 SUSCATCHMENT 2 = Drainage Area 2 -> POND 1 REACH 1 = DOWNSTREAM DEFENDER EQUIV. PIPE -> REACH 2 REACH 2 = DOWNSTREAM DEFENDER OUTLET PIPE -> POND 2 ' POND 1 = Hooded Catch Basin REACH 1 POND 2 = Velocity Reducing Drain Manhole -> e Data for PEABODY HOUSE RELOCATION Page 2 TYPE III 24-HOUR RAINFALLa= 2.30 IN Prepared by RIST-FROST--SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5. 11 001039 c 1986-1999 Applied Microcom uter Systems SUBCATCHMENT 1 Drainage Area 1 PEAK= .23 CFS @ 12.01 HRS, VOLUME= .02 AF SQ-FT CN SCS TR-20 METHOD 2120.00 98 Roof TYPE III 24-HOUR 776.00 98 Walkway RAINFALL= 2.30 IN 2208.00 98 Paved SPAN= 1-24 HRS, dt=.1 HRS 1888.00 61 Grass, Good, Group B 6992.00 88 Method Comment Tc min TR-55 SHEET FLOW Segment ID: • 1 Smooth surfaces n=.011 L=30' P2=3. 1 in s=.75 TR-55 SHEET FLOW Segment ID: .2 Smooth surfaces n=.011 L=15' P2=3.1 in s=.05 TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 TR-55 SHEET FLOW Segment ID: 3. 1 Grass: Short n=. 15 L=20' P2=3.1 in s=.015 Total Length= 90 ft Total Tc= 3.9 SUBCATCHMENT 2 Drainage Area 2 PEAK= .22 CFS @ 12.02 HRS, VOLUME= .02 AF SO-FT CN._ SCS TR--20 METHOD 1828.00 98 Roof TYPE III 24-HOUR 144.00 98 Concrete Pad RAINFALL= 2.30 IN 3400.00 98 Paved SPAN= 1-24 HRS, dt=.1 HRS 668.00 85 Gravel 4748.00 61 Open Space, Good, Group B 10788.00 81 Method Comment Tc min TR-55 SHEET FLOW Segment ID: •1 Smooth surfaces n=.011 L=25' P2=3.1 in s=.3 TR-55 SHEET FLOW Segment ID: 1.6 Grass: Short n=. 15 L=20' P2=3.1 in s=.08 TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=20' P2=3.1 in s=.04 TR-55 SHEET FLOW Segment ID: 2 Smooth surfaces n=.011 L=17 ' P2=3.1 in s=.04 TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=. 15 L=13' P2=3. 1 in s=.03 al Tc= 3.9 Total Length= 95 ft Tot Data for PEABODY HOUSE RELOCATION Page 3 TYPE III 24-HOUR RAINFALL= 2.30 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 HydrocAD 5 11 001039 (c) 1986-1999 Applied Microcomputer Systems _ REACH 1 DOWNSTREAM DEFENDER EQUIV. PIPE Qin = .44 CFS @ 12.02 HRS, VOLUME= .03 AF Qout= .42 CFS @ 12.03 HRS, VOLUME= .03 AF, ATTEN= 5%, LAG= .6 MIN DEPTH END AREA DISCH FT S -FT CFS 8" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .32 FT .07 .02 .02 n= .01 PEAK VELOCITY= 2.5 FPS .13 .05 .08 LENGTH= 47 FT TRAVEL TIME _ .3 MIN .20 .09 . 17 SLOPE= .003 FT/FT SPAN= 1-24 HRS, dt=.1 HRS .47 .26 .72 .53 .30 .84 .60 .33 .92 .63 .34 .93 .65 .35 .92 .67 .35 .86 REACH 2 DOWNSTREAM DEFENDER OUTLET PIPE Qin = .42 CFS @ 12.03 HRS, VOLUME= .03 AF Qout= .41 CFS @ 12.04 HRS, VOLUME= .03 AF, ATTEN= 3%, LAG= .5 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 121, PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .13 FT .10 .04 . 19 n= .01 PEAK VELOCITY= 6.2 FPS .20 .11 .81 LENGTH= 95 FT TRAVEL TIME _ .3 MIN .30 .20 1.81 SLOPE= .04 FT/FT SPAN= 1-24 HRS, dt=.1 HRS .70 .59 7.76 .80 .67 9.05 .90 .74 9.87 .94 .77 9.96 .97 .78 9.87 1.00 .79 9.26 Data for PEABODY HOUSE RELOCATION Page 4 TYPE III 24--HOUR RAINFALL= 2.30 IN Prepared by RIST--FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems POND 1 Hooded Catch Basin Qin = .45 CFS @ 12.01 HRS, VOLUME= .03 AF Qout= .44 CFS @ 12.02 HRS, VOLUME= .03 AF, ATTEN= 1%, LAG= .2 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE = 55 CF 187.8 13 0 0 PEAK ELEVATION= 192.2 FT 193.5 13 72 72 FLOOD ELEVATION= 195.5 FT 195. 5 3 16 87 START ELEVATION= 187.8 FT 195.6 1750 263 350 SPAN= 1-24 HRS, dt=. 1 HRS Tdet= 27.3 MIN ( .03 AF) # ROUTE INVERT OUTLET DEVICES 1 P 191.8' 8" CULVERT n=.01 L=45' S=.05'/` Ke=.5 Cc=.9 Cd=.6 TW=190.5' POND 2 Velocity Reducing Drain Manhole Qin = .41 CFS @ 12.04 HRS, VOLUME= .03 AF Qout= .41 CFS @ 12.04 HRS, VOLUME= .03 AF, ATTEN= 1%, LAG= .3 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE = 5 CF 186.1 13 0 0 PEAK ELEVATION= 186.5 FT 188.5 13 30 30 FLOOD ELEVATION= 190.5 FT 190.5 3 16 46 START ELEVATION= 186.1 FT SPAN= 1-24 HRS, dt=.1 HRS Tdet= .5 MIN ( .03 AF) # ROUTE INVERT OUTLET DEVICES 1 P 186.1' 12" CULVERT n=.013 L=20' S=.004'/' Ke=.5 Cc=.9 Cd=.6 i I R rS A Data for PEABODY HOUSE RELOCATION Page 1 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 HydroCAD 5.11 001039 (c) 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING O A----> F11 n >zL T O OSUBCATCHMENT [:] REACH Q POND I I LINK SUBCATCHMENT 1 = Drainage Area 1 -> POND 1 SUBCATCHMENT 2 = Drainage Area 2 -> POND 1 REACH 1 = DOWNSTREAM DEFENDER EQUIV. PIPE -> REACH 2 REACH 2 = DOWNSTREAM DEFENDER OUTLET PIPE -> POND 2 POND 1 = Hooded Catch Basin -> REACH 1 POND 2 = Velocity Reducing Drain Manhole -> i Y 0 0 I V j "r Data for PEABODY HOUSE RELOCATION Page 2 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by RIST-FROST--SHUMWAY ENGINEERING, P.C. 2 Mar 00 HydroCAD 5. 11 001039 c 1986-1999 A2plied Microcomputer Systems SUBCATCHMENT 1 Drainage Area 1 PEAK= .59 CFS @ 12.01 HRS, VOLUME= .04 AF SQ-FT CN SCS TR-20 METHOD 2120.00 98 Roof TYPE III 24-HOUR 776.00 98 Walkway RAINFALL= 4.50 IN 2208.00 98 Paved SPAN= 1-24 HRS, dt=.1 HRS 1888.00 61 Grass, Good, Group B 6992.00 88 Method Comment Tc min TR-55 SHEET FLOW Segment ID: •1 Smooth surfaces n=.011 L=30' P2=3.1 in s=.75 TR--55 SHEET FLOW Segment ID: •2 Smooth surfaces n=.011 L=15' P2=3.1 in s=.05 TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 TR-55 SHEET FLOW Segment ID: 3.1 Grass: Short n=.15 L=20' P2=3.1 in s=.015 Total Length= 90 ft Total Tc= 3.9 SUBCATCHMENT 2 Drainage Area 2 PEAK= .73 CFS @ 12.01 HRS, VOLUME= .05 AF S -FT CN SCS TR-20 METHOD 1828.00 98 Roof 'TYPE III 24-HOUR 144.00 98 Concrete Pad RAINFALL= 4.50 IN 3400.00 98 Paved SPAN= 1-24 HRS, dt=.1 HRS 668.00 85 Gravel 4748.00 61 Open Space, Good, Group B 10788.00 81 Method Comment Tc min TR-55 SHEET FLOW Segment ID: •1 Smooth surfaces n=.011 L=25' P2=3.1 in s=.3 TR--55 SHEET FLOW Segment ID: 1.6 Grass: Short n=.15 L=20' P2=3.1 in s=.08 TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=20' P2=3.1 in s=.04 T TR-55 SHEET FLOW Segment ID: •2 Smooth surfaces n=.011 L=17 ' P2=3.1 in s=.04 TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=.15 L=13' P2=3.1 in s=.03 Total Length= 95 ft Total Tc= 3.9 I. Data for PEABODY HOUSE RELOCATION Page 3 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems REACH 1 DOWNSTREAM DEFENDER EQUIV. PIPE Qin = 1.30 CFS @ 12.01 HRS, VOLUME= .09 AF Qout= 1.24 CFS @ 12.02 HRS, VOLUME= .09 AF, ATTEN= 4%, LAG= . 5 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD - 0.00 0.00 0.00 PEAK DEPTH= .52 FT .07 .02 .03 n= .01 PEAK VELOCITY= 4.3 FPS .13 .05 .12 LENGTH= 71 FT TRAVEL TIME _ .3 MIN .20 .09 .26 SLOPE= .007 FT/FT SPAN= 1-24 HRS, dt=. 1 HRS .47 .26 1.10 .53 .30 1.28 .60 .33 1.40 .63 .34 1.41 .65 .35 1.40 .67 .35 1.31 REACH 2 DOWNSTREAM DEFENDER OUTLET PIPE Qin = 1.24 CFS @ 12.02 HRS, VOLUME= .09 AF Qout= 1.21 CFS @ 12.03 HRS, VOLUME= .09 AF, ATTEN= 2%, LAG= .4 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .24 FT .10 .04 .19 n= .01 PEAK VELOCITY= 8.3 FPS .20 . 11 .81 LENGTH= 95 FT TRAVEL TIME _ .2 MIN .30 .20 1.81 SLOPE= .04 FT/FT SPAN= 1-24 HRS, dt=.1 HRS .70 . 59 7.76 .80 .67 9.05 .90 .74 9.87 .94 . 77 9.96 .97 .78 9.87 1.00 .79 9.26 Data for PEABODY HOUSE RELOCATION Page 4 TYPE III 24-HOUR RAINFALL= 4.50 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 A lied Microcom cater Systems POND i Hooded Catch, Basin Qin = 1.32 CFS. @ 12.01 HRS, VOLUME= . 10 AF Qout= 1.30 CFS @ 12.01 HRS, VOLUME= .09 AF, ATTEN= 2%, LAG= .2 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE = 62 CF 187.8 13 0 0 PEAK ELEVATION= 192.7 FT 193.5 13 72 72 FLOOD ELEVATION= 195.5 FT 195.5 3 16 87 START ELEVATION= 187.8 FT 195.8 1750 263 350 SPAN= 1-24 HRS, dt=.l HRS Tdet= 11.5 MIN ( .09 AF) # ROUTE INVERT OUTLET DEVICES 1 P 191.8' 8" CULVERT n=.01 L=45' S=.051/' Ke=.5 Cc=.9 Cd=.6 TW=191.1' POND 2 Velocity Reducing Drain Manhole Qin = 1.21 CFS @ 12.03 HRS, VOLUME= .09 AF Qout= 1.21 CFS @ 12.03 HRS, VOLUME= .09 AF, ATTEN= 0%, LAG= .1 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE = 9 CF 186. 1 13 0 0 PEAK ELEVATION= 186.8 FT 188.5 13 30 30 FLOOD ELEVATION= 190.5 FT 190.5 3 16 46 START ELEVATION= 186.1 FT SPAN= 1-24 HRS, dt=.1 HRS Tdet= .4 MIN ( .09 AF) # ROUTE INVERT OUTLET DEVICES 1 P 186.1' 12" CULVERT n=.013 L=20' S=.004'/' Ke=.5 Cc=.9 Cd=.6 u u yo i P 1' Data for PEABODY HOUSE RELOCATION Page 1 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5. 11 001039 c 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING O 51 ] Z�L T 0 OSUBCATCHMENT REACH Q POND LINK SUBCATCHMENT 1 = Drainage Area 1 -> POND 1 SUBCATCHMENT 2 = Drainage Area 2 > POND 1 REACH 1 = DOWNSTREAM DEFENDER EQUIV. PIPE -> REACH 2 REACH 2 = DOWNSTREAM DEFENDER OUTLET PIPE -> POND 2 POND 1 = Hooded Catch Basin -> REACH 1 POND 2 = Velocity Reducing Drain Manhole -> 3 iJ 3 Data for PEABODY HOUSE RELOCATION Page 2 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 1 Drainage Area 1 PEAK= .72 CPS @ 12.01 HRS, VOLUME= .05 AF SQ-FT CN_ SCS TR-20 METHOD 2120.00 98 Roof TYPE III 24-HOUR 776.00 98 Walkway RAINFALL= 5.30 IN 2208.00 98 Paved SPAN= 1--24 HRS, dt=.l HRS 1888.00 61 Grass, Good, Group B 6992.00 88 Method Comment Tc min TR-55 SHEET FLOW Segment ID: .1 Smooth surfaces n=.011 L=30' P2=3.1 in s=.75 TR-55 SHEET FLOW Segment ID: •2 Smooth surfaces n=.011 L=15' P2=3.1 in s=.05 TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 TR-55 SHEET FLOW Segment ID: 3.1 Grass: Short n=.15 L=20' P2=3. 1 in s=.015 T Total Length= 90 ft Total Tc= 3.9 SUBCATCHMENT 1 RUNOFF PEAK= .72 CFS @ 12.01 HOURS HOUR 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 .01 .01 .01 .01 .01 .01 .01 .01 8.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 9.00 .01 .02 .02 .02 .02 .02 .02 .02 .02 .02 10.00 .02 .03 .03 .03 .03 .03 .03 .04 .04 .04 11.00 .04 .05 .05 .06 .07 .08 . 13 .19 .26 .38 12.00 .72 .47 .31 .24 . 17 .11 .09 .08 .07 .07 13.00 .06 .06 .05 .05 .05 .05 .05 .05 .04 .04 14.00 .04 .04 .04 .04 .04 .03 .03 .03 .03 .03 15.00 .03 .03 .03 .03 .03 .03 .02 .02 .02 .02 16.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 17.00 .02 .02 .02 .02 .02 .02 .01 .Ol .01 .01 18.00 .01 .01 .01 .01 .41 .01 .01 01 .01 .01 19.00 .01 .01 D1 .01 .01 .01 .01 .01 .01 .01 20.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 21.00 .01 .Ol 01 .01 .01 .01 .01 .01 .01 .01 22.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 23.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 24.00 0.00 s C Data for PEABODY HOUSE RELOCATION Page 3 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems SUBCATCHMENT 2 Drainage Area 2 PEAK= .93 CFS @ 12.01 HRS, VOLUME= .07 AF S -FT CN SCS TR-20 METHOD 1828.00 98 Roof TYPE III 24-HOUR 144.00 98 Concrete Pad RAINFALL= 5.30 IN 3400.00 98 Paved SPAN= 1-24 HRS, dt=.1 HRS 668.00 85 Gravel 4748.00 61 Open Space, Good, Group B 10788.00 81 Method Comment Tc min TR-55 SHEET FLOW Segment ID: .1 Smooth surfaces n=.011 L=25' P2=3.1 in s=.3 TR-55 SHEET FLOW Segment ID: 1.6 Grass: Short n=.15 L=20' P2=3. 1 in s=.08 TR-55 SHEET FLOW Segment ID: .3 Smooth surfaces n=.011 L=20' P2=3.1 in s=.04 TR-55 SHEET FLOW Segment XD: .2 Smooth surfaces n=.011 L=17' P2=3.1 in s=.04 TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=. 15 L=13' P2=3.1 in s=.03 Total Length= 95 ft Total Tc= 3.9 SUBCATCHMENT 2 RUNOFF PEAK= .93 CFS @ 12.01 HOURS HOUR 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00 .01 .01 .01 .01 .01 .01 .01 9.00 .01 .01 .01 .01 .01 .02 .02 .02 .02 .02 10.00 .02 .02 .03 .03 .03 .03 .03 .04 .04 .04 11.00 .04 .05 .06 .07 .08 .09 .15 .22 .31 .48 12.00 .93 .62 .42 .32 .23 .15 .12 .11 .10 .09 13.00 .08 .08 .08 .07 .07 .07 .07 .06 .06 .06 14.00 .06 .05 .05 .05 .05 .05 .05 .05 .05 ,04 15.00 .04 .04 .04 .04 .04 .04 .04 .03 .03 .03 16.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 17.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 18.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 19.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 20.00 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01 21.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 22.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 23.00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 24.00 .01 Data for PEABODY HOUSE RELOCATION Page 4 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 HydroCAD 5 11 001039 (c) 1986-1999 Applied Microcomputer Systems REACH 1 DOWNSTREAM DEFENDER EQUIV. PIPE Qin = 1.61 CFS @ 12.01 HRS, VOLUME= .12 AF Qout= 1.58 CFS @ 12.02 HRS, VOLUME= . 12 AF, ATTEN= 2%, LAG= .3 MIN DEPTH END AREA DISCH FT S -FT CFS 8" PIPE STOR-IN❑+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .50 FT .07 .02 .04 n= .01 PEAK VELOCITY= 5.6 FPS .13 .05 .15 LENGTH= 56 FT TRAVEL TIME _ .2 MIN .20 .09 .34 SLOPE= .012 FT/FT SPAN= 1-24 HRS, dt=.1 HRS .47 .26 1.44 .53 .30 1.68 .60 .33 1.83 .63 .34 1.85 .65 .35 1.83 .67 .35 1.72 REACH 1 OUTFLOW PEAK= 1.58 CFS @ 12.02 HOURS HOUR 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 .01 .02 .02 .02 .02 .02 .02 .02 9.00 .03 .03 .03 .03 .03 .03 .04 .04 .04 .04 10.00 .05 .05 .05 .06 .06 .06 .07 .07 .08 .08 11.00 .09 . 10 . 11 . 13 .14 .17 .26 .41 .56 .84 12.00 1.56 1.22 .67 .63 .36 .31 .18 .22 .15 .18 13.00 . 13 .14 .13 .13 . 12 .12 .12 .10 . 11 .10 14.00 .10 .09 .10 .08 .09 .08 .09 .08 .08 .07 15.00 .08 .07 .07 .06 .07 .06 .06 .06 .06 .05 16.00 .05 .05 .05 .05 .05 .05 .05 .04 .04 .04 17.00 .04 .04 .04 .04 .04 .04 .04 .03 .03 .03 18.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 19.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 20.00 .03 .03 .03 .03 .03 .02 .02 .02 .02 .02 21.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 22.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 23.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 24.00 .01 Data for PEABODY HOUSE RELOCATION Page 5 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droGAD 5.11 001039 c 1986-1999 A lied Microcomputer Systems REACH 2 DOWNSTREAM DEFENDER OUTLET PIPE Qin = 1.58 CFS @ 12.02 HRS, VOLUME= .12 AF Qout= 1.54 CFS @ 12.02 HRS, VOLUME= .12 AF, ATTEN= 2%, LAG= .3 MIN DEPTH END AREA DISCH (FT) (SQ--FT) (CFS)_ 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .27 FT .10 .04 . 19 n= .01 PEAK VELOCITY= 8.8 FPS .20 .11 .81 LENGTH= 95 FT TRAVEL TIME _ .2 MIN .30 .20 1.81 SLOPE= .04 FT/FT SPAN= 1-24 HRS, dt=.1 HRS .70 .59 7.76 .80 .67 9.05 .90 .74 9.87 .94 .77 9.96 .97 .78 9.87 1.00 .79 9.26 REACH 2 OUTFLOW PEAK= 1.54 CFS 12.02 HOURS HOUR 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 .01 .02 .01 .02 .02 .02 .o2 .02 9.00 .03 .03 .03 .03 .03 .03 .04 .04 .04 .04 10.00 .05 .05 .05 .06 .o6 .06 .07 .07 .08 .08 11.00 .09 .10 . 11 . 12 .14 .17 .26 .40 .55 .82 12.00 1.52 1.26 .68 .64 .38 .31 . 19 .21 .17 .16 13.00 .15 .13 .14 .12 .13 .11 .12 .10 .11 .10 14.00 .10 .09 .09 .09 .09 .08 .08 .08 .08 .08 15.00 .07 .07 .07 .07 .06 .o6 .06 .06 .06 .05 16.00 .05 .05 .05 .05 .05 .05 .05 .05 .04 .04 17.00 .04 .o4 .04 .o4 .04 .04 .04 .04 .03 .03 18.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 19.00 .03 .03 .o3 .03 .03 .03 .03 .03 .03 .03 20.00 .o3 .03 .03 .03 .03 .02 .02 .02 .02 .02 21.00 .02 .02 .02 .02 .o2 .02 .02 .02 .o2 .02 22.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 23.00 .02 .02 .02 o2 .02 .02 .02 .02 .02 .02 24.00 .01 Data for PEABODY HOUSE RELOCATION Page 6 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST--FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems POND 1 Hooded Catch Basin Qin = 1.65 CFS @ 12.01 HRS, VOLUME= .12 AF Qout= 1.61 CFS @ 12.01 HRS, VOLUME= .12 AF, ATTEN= 2%, LAG= .3 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE 66 CF 187.8 13 0 0 PEAK ELEVATION= 193.0 FT 193.5 13 72 72 FLOOD ELEVATION= 195.5 FT 195.5 3 16 87 START ELEVATION= 187.8 FT 195.8 1750 263 350 SPAN= 1-24 HRS, dt=.l HRS Tdet= 9.4 MIN ( .12 AF) # ROUTE INVERT OUTLET DEVICES 1 P 191.8' 8" CULVERT n=.01 L=45' S=.05'/' Ke=.5 Cc=.9 Cd=.6 TW=191.3' POND 1 TOTAL OUTFLOW PEAK= 1.61 CFS @ 12.01 HOURS HOUR 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9 8.00 0.00 0.00 .01 .02 .02 .02 .02 .o2 .02 .02 9.00 .03 .03 .03 .03 .03 .03 .04 .04 .04 .04 10.00 .05 .05 .05 .06 .06 .06 .07 .07 .08 .08 11.00 .09 .10 .11 .13 .14 .17 .27 .41 .56 .85 12.00 1.60 1. 16 .67 .61 .36 .30 . 17 .23 . 14 . 19 13.00 .12 . 16 .11 .14 . 11 . 13 .10 .12 .10 . 11 14.00 .09 . 10 .09 .09 .08 .09 .08 .08 .08 .08 15.00 .07 .07 .07 .07 .06 .06 .06 .06 .06 .05 16.00 .05 .05 .05 .05 .05 .05 .05 .04 .04 .04 I 17.00 .04 .04 .o4 .04 .04 .o4 .04 .03 .03 .03 18.00 .03 .03 .03 .03 .03 .03 .03 03 .03 .03 19.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 20.00 .03 .03 .03 .03 .03 .02 .02 .02 .02 .02 21.00 .02 .o2 .02 .02 o2 .02 .02 .02 .02 .02 22.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 23.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 24.00 .01 Data for PEABODY HOUSE RELOCATION Page 7 TYPE III 24-HOUR RAINFALL= 5.30 IN Prepared by RIST--FROST--SHUMWAY ENGINEERING, P.C. 2 Mar 00 H drOCAD 5. 11 001039 c 1986--1999 Applied Microcomputer Systems POND 2 Velocity Reducing Drain Manhole Qin = 1.54 CFS @ 12.02 HRS, VOLUME= .12 AF Qout= 1.53 CFS @ 12.03 HRS, VOLUME= .12 AF, ATTEN= 1%, LAG= .1 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE = 10 CF 186.1 13 0 0 PEAK ELEVATION= 186.9 FT 188.5 13 30 30 FLOOD ELEVATION= 190.5 FT 190.5 3 16 46 START ELEVATION= 186.1 FT SPAN= 1-24 HRS, dt=.1 HRS Tdet= .3 MIN ( .12 AF) # ROUTE INVERT OUTLET DEVICES 1 P 186.1' 12" CULVERT n=.013 L=20' 5=.0041/' Ke=.5 Cc=.9 Cd=.6 POND 2 TOTAL OUTFLOW PEAK= 1.53 CFS @ 12.03 HOURS HOUR 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 .01 .02 .02 .02 .02 .02 .o2 .02 9.00 .o2 .03 .03 .03 .03 .03 .o4 .04 .04 .04 10.00 .05 .05 .05 .06 .06 .06 .07 .07 .08 .08 11.00 .09 .10 .11 .12 .14 .16 .25 .40 .54 .81 12.00 1. 50 1.28 .68 .64 .39 .31 .20 .20 .18 .15 13.00 .16 .12 .14 .12 .13 . 11 .12 . 10 . 11 . 10 14.00 . 10 .09 .09 .09 .09 .09 .08 .08 .08 .08 15.00 .07 .07 .07 .07 .06 .06 .06 .06 .Ob .05 16.00 .05 .05 .05 .05 .05 .05 .05 .04 .o4 .o4 17.00 .04 .04 o4 .04 .04 .o4 .04 .03 .03 .03 18.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 19.00 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 20.00 .03 .03 .03 .03 .03 .02 .02 .02 .02 .02 21.00 .02 .02 o2 .02 .02 .02 .02 .02 .02 .02 22.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 23.00 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 24.00 .01 d r a Data for PEABODY HOUSE RELOCATION Page 1 TYPE III 24-HOUR RAINFALL= 6.40 IN Prepared by RIST--FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems WATERSHED ROUTING O A^--> TI � > 2 T O OSUBCATCHMENT [:] REACH Q POND � LINK SUBCATCHMENT 1 = Drainage Area 1 -> POND 1 SUBCATCHMENT 2 = Drainage Area 2 -> POND 1 REACH 1 = DOWNSTREAM DEFENDER EQUIV. PIPE -> REACH 2 REACH 2 = DOWNSTREAM DEFENDER OUTLET PIPE -> POND 2 POND 1 = Hooded Catch Basin -> REACH 1 POND 2 = Velocity Reducing Drain Manhole -> Data for PEABODY HOUSE RELOCATION Page 2 TYPE III 24-HOUR RAINFALL= 6 ,40 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 A lied Microcomputer Systems SUBCATCHMENT 1 Drainage Area 1 PEAK= .90 CFS @ 12.01 HRS, VOLUME= .07 AF SO-FT ON SOS TR-20 METHOD 2120.00 98 Roof TYPE III 24-HOUR 776.00 98 Walkway RAINFALL= 6.40 IN 2208.00 98 Paved SPAN= 1-24 HRS, dt=. 1 HRS 1888.00 61 Grass, Good, Group B 6992.00 88 Method Comment Tc (min TR-55 SHEET FLOW Segment ID: . 1 Smooth surfaces n=.011 L=30' P2=3.1 in s=.75 TR-55 SHEET FLOW Segment ID: •2 Smooth surfaces n=.011 L=15' P2=3. 1 in s=.05 TR-55 SHEET FLOW Segment ID: •5 Smooth surfaces n=.011 L=25' P2=3.1 in s=.01 TR-55 SHEET FLOW Segment ID: 3. 1 Grass: Short n=. 15 L=20' P2=3.1 in s=.015 Total Length= 90 ft Total Tc= 3.9 SUBCATCHMENT 2 Drainage Area 2 PEAK= 1.21 CFS @ 12.01 HRS, VOLUME= .09 AF SQ-FT CN SCS TR-20 METHOD 1828.00 98 Roof TYPE III 24-HOUR 144.00 98 Concrete Pad RAINFALL= 6.40 IN 3400.00 98 Paved SPAN= 1-24 HRS, dt=.l HRS 668.00 85 Gravel 4748.00 61 Open Space, Good, Group B 10788.00 81 Method Comment Tc min TR-55 SHEET FLOW Segment ID: •1 Smooth surfaces n=.011 L=25' P2=3.1 in s=.3 TR-55 SHEET FLOW Segment ID: 1.6 Grass: Short n=.15 L=20' P2=3.1 in s=.08 T TR-55 SHEET FLOW Segment ID: •3 Smooth surfaces n=.011 L=20' P2=3.1 in s=.04 TR-55 SHEET FLOW segment ID: •2 Smooth surfaces n=.011 L=17' P2=3. 1 in s=.04 TR-55 SHEET FLOW Segment ID: 1.7 Grass: Short n=.15 L=13' P2=3.1 in s=.03 Total Length= 95 ft Total Tc= 3.9 Data for PEABODY HOUSE RELOCATION Page 3 TYPE III 24-HOUR RAINFALL= 6.40 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 H droCAD 5.11 001039 c 1986-1999 Applied Microcomputer Systems REACH 1 DOWNSTREAM DEFENDER EQUIV. PIPE Qin = 2.06 CFS @ 12.01 HRS, VOLUME= .15 AF Qout= 2.02 CFS @ 12.02 HRS, VOLUME= . 15 AF, ATTEN= 2%, LAG= .2 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 8" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .54 FT .07 .02 .04 n= .01 PEAK VELOCITY= 6.7 FPS .13 .05 .18 LENGTH= 54 FT TRAVEL TIME _ .1 MIN .20 .09 .40 SLOPE= .017 FT/FT SPAN= 1-24 HRS, dt=. 1 HRS .47 .26 1.71 .53 .30 2.00 .60 .33 2.18 .63 .34 2.20 .65 .35 2.18 .67 .35 2.05 REACH 2 DOWNSTREAM DEFENDER OUTLET PIPE Qin = 2.02 CFS @ 12.02 HRS, VOLUME= .15 AF Qout= 1.97 CFS @ 12.02 HRS, VOLUME= .15 AF, ATTEN= 2%, LAG= .3 MIN DEPTH END AREA DISCH (FT) (SQ-FT) (CFS) 12" PIPE STOR-IND+TRANS METHOD 0.00 0.00 0.00 PEAK DEPTH= .31 FT .10 .04 .19 n= .01 PEAK VELOCITY= 9.5 FPS .20 .11 .81 LENGTH= 95 FT TRAVEL TIME = .2 MIN .30 .20 1.81 SLOPE= .04 FT/FT SPAN= 1-24 HRS, dt=. 1 HRS .70 .59 7.76 .80 .67 9.05 .90 .74 9.87 .94 .77 9.96 .97 .78 9.87 1.00 .79 9.26 Data for PEABOD'Y' HOUSE RELOCATION Page 4 TYPE III 24-pHOUR RAINFALL= 6.40 IN Prepared by RIST-FROST-SHUMWAY ENGINEERING, P.C. 2 Mar 00 HydroCAD 5.11 001039 (c) 1986-1999 Applied Microcomputer Systems _ POND I Hooded Catch Basin Qin = 2.11 CFS @ 12.01 HRS, VOLUME= . 15 AF Qout= 2.06 CFS @ 12.01 HRS, VOLUME= .15 AF, ATTEN= 2%, LAG= .3 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD FT SF CF CF PEAK STORAGE = 73 CF 187.8 13 0 0 PEAK ELEVATION= 193.6 FT 193.5 13 72 72 FLOOD ELEVATION= 195.5 FT 195.5 3 16 87 START ELEVATION= 187.8 FT 195.8 1750 263 350 SPAN= 1-24 HRS, dt=.l HRS Tdet= 7.8 MIN ( .15 AF) # ROUTE INVERT OUTLET DEVICES 1 P 191.8' 8" CULVERT n=.01 L=45' S=.05'1' Ke=.5 Cc=.9 Cd=.6 TW=191.6' POND 2 Velocity Reducing Drain Manhole Qin = 1.97 CFS @ 12.02 HRS, VOLUME= .15 AF Qout= 1.96 CFS @ 12.02 HRS, VOLUME= .15 AF, ATTEN= 1%, LAG= .1 MIN ELEVATION AREA INC.STOR CUM.STOR STOR-IND METHOD (FT) (SF) (CF) (CF) _ PEAK STORAGE = 12 CF 186.1 13 0 0 PEAK ELEVATION= 187.1 FT 188.5 13 30 30 FLOOD ELEVATION= 190.5 FT 190.5 3 16 46 START ELEVATION= 186.1 FT SPAN= 1--24 HRS, dt=.1 HRS Tdet= .3 MIN ( .15 AF) # ROUTE INVERT OUTLET DEVICES 1 P 186. 1' 12" CULVERT n=.013 L=20' 5=.004'/' Ke=.S Cc=.9 Cd=.6 9n li fl, ; � � a���` � �• � y `ate. r, f� `A • Treatment of stormwater runoff associated with wet weather s ' discharge • Wherever stormwater treatment is required; New developments " - Construction sites X Streets and roadways Large parking lots - ---_-__-- _ . �,_ . • Vehicle maintenance wash- - down yards. Wetland protection _ _ _ • Pre-treatment prior to retention basins • Industrial and commercial - facilities Removes solids, grit, sand and silts Retains floatables and intercepts - — oils and grease • Has no moving parts • Requires no external power source • Highly efficient with minimal headloss • Low maintenance '... • Designed to operate over a wide range of flows • Small footprint * -..,�, „ ... ,. • Simple to install • Constructed of concrete and K r stainless steel for longevity H.I.L. Technology, Inc. offers a cost-effective alternative for treating stormwater runoff. -� s eEM6fend'eiTM;is a treatment device designed to capture +� f :.: ,� e ersofids fMa�aW `oils and grease from stormwater runoff. More ei• an} once tonal sto'rmwater treatment systems, Downstream action of the land area of storage tanks and detention -sizes"are.avaaable,each designed to treat a predetermined redeternm,ed solids removal efficiency based on particu- ilv�tir eam� a ender is simpler effective, and economical. SIMPLE The Downstream Defender consists of a concrete cylin- drical vessel with a sloping base and internal compo- • vents. I ^ Raw liquid is introduced • . tangentially into the side of ` '" • ' the cylinder and spirals _ down the perimeter allow- ing heavier particles to Bet- tie out by gravity and the drag forces on the wall and base of the vessel. The base of the Downstream Defender is formed at a 30 degree angle. As the flow rotates DiagrammaticCufawa ` about the vertical axis, solids i..; are directed towards the base of the vessel where they are =ram- stored in the collection facility. The internal components direct the main tow away from the perimeter and back ups -- the middle of the vessel as a narrower spiraling column rotating at a slower velocity than the outer downward flow. A dip plate is suspended from the underside of a compo- nent support frame. This dip plate serves two purposes: y 1.) It locates the shear zone, the interface between the t A outer downward circulation and the inner upward cucular � tion where a marked difference in velocity encourages,. EFFECTIVE � UA d The Downstream. Defender regulates both the quality and quantity of storznwater runoff for more effective pol- lution control. Each installation is designed to achieve the performance objectives set forth in the U.S. EPA's National Pollutant Discharge Elimination System (NPDES) requirements. ..�. .- r Typical resultsshav►',overall;remaval effic> ncxes p. rF _articles-:greater`., .3m 0.mtcrons.. � a �, K ��t .r -,.?irk wr . .. _ Itxetarus floaes .Alls and grease ? ,� , � K�S ��, Y �rs++yf r a!`'•7,F„�srr�a w interception ofeirstlush } bypass rsva�ial3e, #_Y� . . . a .•E. Sa r W2"--{ai:�. b-ir .ti.?-t�e'' :1� �,w � ty�icallyes than I3eadloss across"o-e.s�ogwnstreamd] eI-,d s y A .X,a y'sa "' Used W1th the Reg�U �oYortex Valve to maxime: ? to the 1992 U.S. EPA Needs _ `. Accorafns _h'._, 1 x,l - .c k� a •sy CD IeCLI0I1 SySt II1�' t I�OV1 eS L effeC tOt O £ ila e Su uey,stormwater aur�afffrom urban +' saa•terra s y `' t9 .fu lJ s the Natfon's a l jo stOrmWater discharges K^5 ; t areas s ra ant unpair , s iIT1�rOVe$ the-(lt1 tY ' �r s s ace water quaLtty, i GRIT CHARACTERISTICS North American Influent Solids Grading Preliminary Sizing 100 a ao II C h a r t 300NIKAONSI: Unit Approximate 150 M1,714N5_-0 I!E Diameter Flow Range* 20 (feet) (cfs) 0 100 0.01 0.1 1 10 A 0 —rl 75 Pardda Sixe[mm{ "t V rt-North E.mrn^d"cennal "'a SoUth OM -+r•WWOM 6 0.7 5 — 3 g 3 -7 10 7 — 13 Based on 90% removal of all particles with a specific gravity of 2.65 down to 150 microns. ECONOMICAL. Case Study : Bell eviIle , Ontario t 1 The Problem �Y 1. The Town of Belleville was concerned about stormwater discharge from anew;houstn co #es 5 �r ;� x m development site discharged into a very shallow spawning area of the nearby Morn Rive erm River feeds into the Bay of Qu►nte, an environmentally sensitive body ofwaterAlig turn The conventional retention pond was not feasible. Its large plan area, approximatelytwa ;; ==-m building lots, would have eliminated a small strip park located between the site and:tTie rive" W I -.c �.t The Solution H.I.L. Technology, Inc. provided a practical solution M , to the problem; an 8 ft. diameter Downstream - Defender. - �,� Designed to treat flows up to 7 cfs with a 90% removal rrF:onrra'&e -. _ 8,fz..diumeterl3orunstrearrt-:;', Defenderipiciune efficiency of grit particles, aaboae)mini the Downstream Defender .* ,nizedoanstruct:orecnsts L, Whae also aIIoming the 7'owetito retain uses the energy inherent in uwuseofasaw pcirWfptcftued flowing water to treat the _ atteJU' stormwater runoff and collect P p ollutants in a sum . Treated water is directed to a-perforated T-pipe assembly'b6u [ecl±~tiIIiiR far gi assembly sits on a 6 ft. bed of gravel which further polishes the water_Tht effluent' empercoIates; a., around before it reaches the river. The Downstream Defender is a unique, cost-effective method for dealing wi' .'-s rmwate= rbble siie 1 faced by the Town of Belleville. It treats runoff with a significantly smaller pl' a: air or nalvsa and, as'a result, the Town minimized construction costs and retained the use of its park r V E -=: "�' H.I.L. Technology provides cost=effective soTiit do- controlling 4 ; ' � ® controlling the quantity and improving the 4uhff] ter For more information on the complete lint of. {{' _ please contact: Grit King Storm King Reg-U-Flo SwW-Flo H.I.L. Technology, Inc, 94 Hutchins Drive Portland, ME 04102 TEL (207) 756-6200 TOLL FREE (800) 848-2706 FAX (207) 756-6212 H.LL. Technology, Inc. is a subsidiary of Hydro International plc. MINIM K.I.L. rECHNOLOGY, INC. 9,1 Hutchins Drive Portland, ME 04102 PHONE (207) 756-6200 H.L L.. FAX (207) 756-6212 'TECHNOLOGY TOLL FP E 1-800-848-2706 INC. E-MAIL: hilfechOhi!-tech.corn Downstream DefenderTm Description H.I.L. Technology, Inc. offers cost-effective non-point Source pollution prevention with the Downstream Defenders','; a treatment device engineered to capture settleable solids, filoatabies. oil and Lyrease from stormwater runoff. It is one of the family of Hydrodynamic Separators provided by H.I.L. Technologv. Inc. which augments gravitational forces with complex but stabilized vortex forces to maximize solids/liquids separation. The result is a compact separator that requires a smaller land area than conventional gravitational sedimentation A floatables trap is incorporated v,-ithin the saute vessel. Some of the features and benefits of the Downstream Defender'`1 include: > Removes sediment.. floatables. oil and <>rease Small footprint ► No pollutant re-entrainment ► No loss of treatment capacity between clean-outs ► Low head loss, typically less than 1'- inches ► Efficient over a wide range of flows ► Easv to install > Lo�,v maintenance Applications More versatile than conventional stormwater treatment systems, the Downstream Defender7` requires a fraction of the land area compared with storage tanks and detention ponds. Its small + choice wherever stormwater treatment is required. including: footprint makes it an ideal Ne%v developments & Construction sites > Streets and roadways > Parkinillots r fnt3iljii ial ciii.i .:o[I7I]]Crc:i.�F ia%iliLles k'edands protection IIYORO INTERNATIONAL H.U. Technology, Inc. is a subsidiary of Hydro International plc. Standard sizes are available, each designed to treat a ranee of flows to a specific solids removal effliciencv (See the attached Downstream DefenderT',' Design Chart). The Downstream Defender'" is a primary treatment device which requires no pretreatment. However, it can be used as a pretreatment device before detention systems, mitivating wetlands or other polishing systems. Components The Downstream Defender'' has no moving parts and no external power requirements. It consists of a concrete cylindrical vessel with polypropylene internal components and a stainless steel support frame. The concrete vessel is a standard manhole, installed below grade with a tangential inlet pipe and an overflow pipe which connect the treatment unit directly to the storm sewer. Two ports at around level provide access for inspection and clean-out of stored floatables and sediment. The internal components consist of two concentric hollow cylinders (the dip plate and center shaft), an inverted cone (the center cone), a benching skirt and a floatables lid. The internal components are labeled in the attached Downstream Defender' Interior VieNv. The purpose of the internal components is two-fold: The components act as flow modifying members to effect a complex but stable flow regime through the device: which maximizes solids separation and prevents short circuiting. • The components create isolated zones for pollutant capture and storage. System Dynamics The Downstream Defender'' is self-activating and operates on simple fluid hydraulics. The geometry of the internal components and placing of the inlet and outlet pipes are designed to direct the flow in a pre-determined path through the vessel as described below and illustrated in the attached Flow Pattern. Stormwater is introduced tangentially into the side of the vessel and initially spirals around the perimeter, in the outer annular space (between the dip plate cylinder and manhole wall), where oil and floatables rise to the water surface and are trapped. As the flow continues to rotate about the vertical axis, it travels down towards the bottom of the dip plate. Sediment is directed toward the center and base of the vessel where it is collected e °.'a 3137 - vortex chamber. The center cone protects stored sediment and redirects the main flow upwards and inwards. Flow passes under the dip plate and up through the inner annular space, inside the Pace 3 r,WPIDDSCRin a,4 uzvr.aoo<a aoi dip plate (between the dip plate and center shaft cylinders), as a narrower spiraling column rotatinu at a slower velocity than the outer downward flow. By the time the Clow reaches the top of the vessel, it is virtually free of solids and is dischar�,ed from the inner annular space, through the outlet pipe. The dip plate and center shaft cylinders are suspended from the underside of a component support frame. This dip plate serves two purposes: ► It locates the shear zone, the interface between the outer downward circulation and the inner upward circulation where a marked difference in velocity encourages solids separation, and ► It establishes a zone between it and the outer wall where floatables, oil and grease are captured and retained after a storm. The floatables lid covers the inner annular space between the dip plate and center shaft. It separates oil and floatables stored in the outer annular space, between the dip plate and the manhole wall, from the treated effluent in the inner annular space. A simple sump vac procedure is used to periodically remove the floatables and sediment. Photograph 1 is a plan-view of the flow pattern through a cylindrical vessel with a tangential feed. Without the flow-modifying internal components, a more turbulent vortex flow pattern occurs which generates unstable eddies. Photograph 2 is a plan-view of the flow pattern through the Downstream Defender"'. The flow- modifying internal components stabilize the eddies into a series of epicyclic vortices which further promotes solids separation. This complex but stable flow regime harnesses the energy in the flowing water to maximize solids removal efficiencies within a small footprint. Specifications Standard specifications are available for a typical design criteria of 90% removal of all particles greater than 150 microns with a specific gravity of 2.65 at design flow. However, the Downstream Defender7" can easily be sized to meet higher or lower performance requirements. Headloss through the unit, at design flow, is typically less than 12 inches. At lower flows, the removal efficiencies are enhanced and headlosses decrease. SEE DOWNSTREAM DEFENDER'' DESIGN CHART FOR MORE INFORMATION To meet specific performance criteria or for larger flow applications. H.I.L. offers custom designed units up to forty (40) feet in diamtte: Page 3 J'WV DOSCKIn�:GN 0_'9 5-000 50 001 Performance The Downstream Defender" is designed to remove settleable solids, floatables, oils and grease from stormwater runoff. Full-scale test results show settleable solids removal efficiencies of 90°% at desiLm flows. Because the sediment and oii storage areas are outside the main , o�v path through the unit, previously collected solids, oil and floatables are not re-entrained in the effluent dunnL, major storm events or surcharge conditions. In addition, treatment capacities are not reduced as pollutants accumulate between clean-outs. Installation The unit should be installed in a location that is easily accessible for the maintenance vehicle. preferably in a flat area close to a roadway or parking area. The Downstream Defender'" is delivered to site completely fabricated, ready to be installed into the excavated hole and connected to the inlet and outlet piping. It is compact and can fit within an excavation trench guard. Larger units are delivered to site in component form for final assembly at the job site. Installation time for a 6 foot unit is typically I1; hours. Detailed Installation Instructions. complete with reference photographs, are available. System Operation and Maintenance Features The Downstream Defender' is unique in that the sediment and oil storage areas are outside the treatment flow path. As mentioned above, previously collected solids, oil and floatables are thereby protected from re-entrainment into the effluent during major storms or surcharge floatables and oil are collected and stored over a period of conditions. Furthermore, as sediment several months. treatment capacities are not reduced as pollutants accumulate between clean-outs. After a storm event, the water level in the Downstream Defenders' drains down to the invert of the outlet pipe. keeping the unit wet. Maintaining a wet unit has two major advantages: l. It keeps the oil and floatables stored on the water surface separate from sediment stored below the vortex. chamber, providing the option for separate oil disposal, such as passive skimmers; if desired. ?. It prevents stored sediment from solidifvim-, in the base of the unit. The clean-out procedure becomes much more difficult and labor intensive if the system allows fine Page 4 11WP1DDSCR11 r6E%02'"N050001 sediment to dry-otit and consolidate. When this occurs, clean-out crews must enter the chamber and manually remove the sediment; a labor intensive operation in a hazardous environment. The Downstream Defender" has large clear openings and no internal restrictions or weirs. minimizinu the risk of blockage and hydraulic losses. Orifices and internal weirs can create two serious hydraulic problems: l. Increased risk of block<ave - Small orifices tend to collect debris and trash such as soda cans, sticks and Stvrofoam cups which further reduce opening size and may even block openings completely. This alters the hydraulics in a flow-through treatment device, adversely affecting operation and performance and can eventually lead to system back:-ups and maintenance issues. Removing debris from a submerged orifice may require pumping down the chamber. 2. Increased head losses - Internal restrictions, such as weirs and baffles, significantly increase hydraulic losses in a flow-through treatment device. The higher the flow through the system, the higher the head loss. This problem is exacerbated during, the more intense storm events. backing up the storm sewer and increasing the risk for upstream flooding. Maintenance Procedure commercially or municipally owned sump-vac is used to remove captured sediment and e top of the manhole. The floatables access port is floatables, access ports are located in th above the outer annular space between the dip plate and the manhole wall, where floatables are retained. The sediment removal access port is located directly over the hollow center shaft which leads to the sediment storage facility below the vortex chamber. l loatables and oil should be removed prior to the removal of the sediment. The frequency of the sump vac procedure is determined in the field after installation. During the first year of operation the unit should be inspected every six months to determine the rate of i sediment and floatables accumulaton. A probe can be used to determine the level of solids in the j sediment storage facility. This information can then be used to establish a maintenance schedule. ' When sediment depth has accumulated to the specified depth, the contents should be removed by I mended that the units be cleaned annually. sump vac. In most situations, it is recom o ?►lthaugh a small portion of water is removed along with the pollutants during the clean- u out process, tnimizingisosal costs. he units are typically not completely dewatered - mefe Defender" withone foot of The sump vac procedure for a typical b-ft diameter Downstream D i sediment depth and two inches of oil and debris takes about 25 minutes and removes about 1 50- P 200 u-allons of water in the process. Pate 11wT^DU,�t:RJFIT G+EN OT:4iti00050 001 Longevity The Downstream Defender"A consists of a standard concrete manhole with internal components made from either polypropylene or Type 304 stainless steel. There are no moving parts, and it has no external power requirements. With regular maintenance, the Downstream Defender''" will treat stormwater for a period in excess of 30 years. Secondary Benefits The Downstream Defender"I can be used in conjunction with H.I.L. Technology's Reg-U-Flo(& Vortex Valve to regulate the quantity as well as the quality of stormwater dischari, s. MEM Costs Site-specific criteria will determine equipment requirements. Approximate delivered costs for the Downstream Defender" range from S I0,0C� to S26,000. Additional Information H.I.L.'s professional engineers work closely with municipalities, consultants, industries and developers. They offer a full technical support service and can advise on the design of stormwater treatment and stormwater management schemes. Customized Plan and Elevation Views. which show hvdraulic grade lines, are venerated in AutoCAD 14 for each Downstream Defender'" application. H.I.L. Technology offers free training and technical seminars. Standard emuneer-M2 drawings (AutoC AD 14) and specifications (WordPerfect) are available on disk. For more information or to submit an on-line inquiry, visit H.I.L. Technology's web site at w�vw.hil-tech.com. H.I.L. Technology, Inc. Address: 94 Hutchins Drive Portland, ivlE 04102 Telephone: (207) 756-6200 Fax: (207) 756-6212 EAMaiL hiltechO.H.I.L.-tech.com Contact: Pamela Deahl, P.E., Vice-President Page 6 J IWP`DDSCRIn 13EN OVI4 O50 001 '.. . ................................................................................... Downstream Defender.................. 7 N! Design chart (imperial) OIL SEDIMENT JJO. DESIGN FLOWV INLET PIPE OUTLET PIPE HEADLOS9 HEADLOSS WEIGHT WEIGHT STORAGE STORAGE UNIT PACITY DIAMETER DIAMETER RDESIGNFI.OW @CAPACITY FULL EMPTY' CAPACITY CAPACITY DIAMETER (cfs) (gprn} (inches) (inches) (in(hes) (inches) (lbs) (lbs) (gallons) (Cy) (feet) 23 13,200 10,000 70 0.70 4 513.0 330/1,350 8 12 3 t��,. .... 3.00/8-0 1,350/3,590 12 18 7 33 32,800 22,440 230 2.14 6 r° `� gt 7.401150 3,140/6,734 18 24 9 23 63,000 39,000 525 4.65 8 13.0/25.0 5,830/11,220 24 30 14 22 140,300 94,000 1,050 8.70 10 1. Based on 90% removal of all particles with specific gravity of 2.65 clown to 150 microns. 2. Headloss is defined as the difference between the top water level upstream and the top water level downstream of the unit. H.I.L. 3_ Weights are CalcUlated with stainless steel internal components. Components are also available in polypropylene. TECHNOLOGY • AutoCAD drawings and WordPerfect specification available on disk. • For pricing, delivery, and custom designs, please call I-I.I.L. -Technology, InC,, Proposal Engineering Department. M l l.l_L. TECHNOLOGY INC., 94 Ilutchins Drive, Portland, ME 04102 • (207) 756-6200 • (207) 756-6212 (Fax) ^ E-mail: hiltech@11il-tech.com ...................... . ............................................................................................................. .. s H.f.L. TECHNOLOGY INC. Access Forts Floatables Lid Support Frame 1• �k Dip Plate s Outlet Pipe e Tangential Inlet Pipe Center Shaft and Cone Y,5 }t}� .Y Concrete Manhole Benching Skirt Sediment Storage Facility Flow Pattern „,s. Aa � , { >;;>,'ii+... ..9>3i•' ..""�`''•���i�E;•}sib ..,.yh}Y.•i �<' v:+2 �W "i r1 YY V l.k�• 1}+h';•'';.;FR�v rL :+A,r,:}+,.ry: ���gqrss,�� •;•;'i:h .�J� ♦ :?�:5::,:1+ Yi r'�'rr{+:+:'+.i;,. �Q ;r{ON. r�"�� ��' '��'{ }?. F{� •� N ti..�• Y4 f:+•. .y:y^�'i` f�i?i:a, �;�' TM :.. � .:....,s,$�''i 5 � S '�:0�'7+ .'. wM t ��k".vyro.."'^"3s'Rext►«►n s r' �{{' �,;+���+, '.Y• :R'q{ e sK: ;:$;''� 5 I :�� .. �Xw..vyp, {// y X ;. a� Lf' :�?:;h. ':�✓ :v''r.A•�:Y��{v} r !� !, III ..,}. .ry:T•+! � W � ! �i.$y } b. +R '2:5� :�;�,.,yi.y..,;;f I •�' �"La” Yam}.• 4 {.t r t ' �� v;} �:;fi;l .4�f`•���, `'k .r�,;•i.'r';'r.''..�''•"�}'.•�,•':'+.. ...Z..:2.::�M7 ?!►'t'�51W,.:c..r.::i;iti;c•:i:,,�i�+��t•.:+��?:.:.. •r< .::ao-f :,52' ¢. :i4+i;w::}: R;�...ykii R���,r•K.+ r- L{. 4 3 '�''+ .+?;;:,. 3. �; .:o �;,r. 7�,••E c s' b�rx�n''' '� o,. {:ss�s��+: ,.;S:o�'.3.�.� x'h '��}<,:4. ', �.,." ::;'shy`•• � i �'g4: �If {'..�f '+}:,#;i?2::Sa• 1 •\ Lg( 5✓f.r; .S{'S' „� J,.? >� y'M Y<4 ➢�•i r'+�1 2 �X ;,tY¢:r:}::t�r �w L•., {�+r. y.L:.,{i�. l .. "�6{'{yh< 4 �i\ is^l 'x K { { }:�,xi{ L • .;.Y +,y. �'e; aq;rram�.. r��� S qe 'i'{ -�'?' arkk^ �/ ?{'fit>t i x ��.. ,k' .R .�7� .f ••+trrr v. �{111 {p.. :T { *y, y �{�++,�. y f yy.9 <'�4 �" �<'7 " � '? 4 �•, i0 i � �' } i?7 �} !r r�r.� ��{� fa��� A 4� �y� x \ ''.�• 1::r Atttivi 11w„ _�`\ -'1 r y � r �r.��ve J•JY '� ��' i f F `Oa �, rs QXS' h -;�7, #, { �. •'t•$ ,x � Yf? •�r�'f M \ � '3�w �d r /e �� 4F R ?* � � H,"�•.y�R i� �_- r ;`?`,}�y{ .R yli 3' � � �''i, L.{+• {� .�,,� � 6 �""X+M 4 '-�cl�''• '�.'� y+ +�.•._. �, 3 ,.i .v_ _ rv�': >:'r `'si�itf4i r 'G. '.F5- w F�x f fir. �• 1. 'e�: � .� � �;f,�� r, L{� r# ;',�?{ i _� � M;�; {�43°i,.,\*i'� �px �` ? { i -.}. 2 +. �'£, <. a �}"�� < Ri ✓ X' -{{ � ; �' �e 'r, ��r�r ry„iv .r"'\ }y F �, � .sin F �ti_,-�y.� u<x.J�r+lr y.�,yy9P�.,fi.�e }'�i�}- [ ,fr,C' xo a'Lt'lr 1{1•'.�{r'w K 'y"!' i er'{_\\}_ < �'\+cys.{�}, t '>;w �is 'i• ram' ,A{'�fF ,�5� 3 y�4:4 #,.� h •��' fA�Y/�x• Y� � \ +. h k�{ •,hF y '�"� � %' �" x,*-- �}�'.rfy�(�/i�}��[• .3� -�'r�f 9 .)q{" $�.srf y�{�, >�f�$f�[V, 9C3K+t�,' +.} s. } �{} ? r •. ,w �e�'.at" 1111�� �,A 'f ,4 F''� ?,.tWiwi r f '�{,i W s rile r ✓'{,: F � r ii.r. Sy{ �.4 5{>1'4_ 'Y, r s � r$,, f,f y i Cary F• + �l�{ \i{gi9 r}7•+ ,j r :{+:x?'x w yay {! �R,'n::�n�.j�^. Fy { 4 > r ��.'�ir•a,�w+k��k�„a'2%R t yr. 4..�..o *'b t,�}°�tyq �, ' � y � r �,+' 2 v '11�v��n r ��r�ar- r � r 'XN+ +�'b c,�Ff. t71Fjy13n<rr,� �'I►p +.yw� oa�r�•!: :i"r"'•N p. f r s.� �va��' raa ��,.a 5. n+ ��, 'ii A�� �'�•�iL"�•�ti .n�r !�' '� r' k ..f .� �'�Ya �"a f "°{•.�w'�' ,}r5Z�. �!:}. i� 4 rY, ��J4.ay,'Rr:,""' �w � �y. �,.;,,:' :V�' by} ^i� aJ,�,� w�.���yK-}!. � t: ``::,,�4���,�x'�C r n r r•^s'° ',�' '"JF,,��'� '.v'�s ,jr• � �•.r � r aw "'r„'',, .titi 'r,:;,;w„N•s'us:^�i {r- .�.•• �::d,:.. r ;Y!!;vh}rw a w+• +�P'� ,-�. k k' w r �,• ...+>. �,<w3,+•.:y w {�•„^^.;. \c? .��� -,M �';: ....u:,, •riW ,� 'k�> �:2 „yw r`.� : „ 'sat x � � �t ay•v.n�:.7�;. <„�., •.,•j,�M ..„: .�,.- ^F,...{1K. n n� "b i7� �� 4 ''}''x:'�"' b h '�•�'r+ •^�r�,� .wrw � }r.;: '4! ! �• f�,,.yaa}.d:f,� .at'",c .Yw � �e��a .:v'a��✓•r..• '�.. } � 'f r� -,,yea�' .. v wr...,� � ..�. JJ r ��;.{ ':kk'o. � �£�ry �.••e w ,..v,,,, „v:�•^'�\'",. � .�• 2¢�al• 1'.;. 't:y afa ,,'v�Fye[� ...\ '��..•C,{f1�yy++�a° ,I`x°, x.},. �.}�}lis. .+.;4:• ,va��. � J �wV �'V�.Y ''fin '2•v 1I�"... 7. ..py�••,yin„n.,w. I -r ryx ''.'�. �xF�"'r �w �S: tiff^.L �4'"}' {C 7,.�.��r-' ;�.. a. �^r` .�'Y r h�. i,r•" '��<,N R'�vCs''�,Y},'�'S'y` a�'-r L.'� S "" ..�. ) as,a �.r :`,#•r�J�r f. ., F44 y }rti ���{'' ^4• �3.rr, �!%:+Q,w .• �'6; .. "` •. "' g' .r'.';c,.'. C.• ,.a,}.•ti ..S ;'"y { \t' �tr:w S'a S °`• •r ~.5:"'i, 'MAN, {. +1�':• r"• � rS, 'IY'rr :f r �, 'y�. aw\ k.�rvM1'.+s d':r{•lr. hr.. V-�`Y��Rv.�`'•'..x'w} '�`�fk� •{'; "sit, •. '.}�,,.. � 'rF r,•.},,. '•:•'r:: ox;.�•��'. �''�n� .:;+r,�,'•���':4��.,,v�'�' w�..� ''4\! r `�•7^7i'9w •». � �,�. �� >, .rf•M: ok• 4 t. v;� !• \' ,'�;,. +s. y^'4..,.+,.yi.�M,•,rayn � h ��� �A �• �,.aCi�% r �� g • �, a t S�>�,a�°�''w �._e � S K -r �r. s ,�"'i�'w�' y7* sf,���� � ��' 4 ��i'.�i,' 9'S '^C aKt r�,J " �}'k'k•+xy a��''�?c tip•\ � �� \ - a}�25 o�;'�w,�, ^G }#R'' r^ i •. +,., rU` +rrJ u'yc'«'' ,"' +y}'�' Y°�rw rs ti:;'W ih^'�,.'+1•.,�,.� �ctk.�, { $.c i .{r S�' +£� ,�t5t` �, � •t�{:�S'Yrl� f- d� ) r rti• a^a.,a�.r'�•py \r.7ar� ,C�''r �#X,^ •�r—w a•,r.... �� �f•^' •'`,�`P'nt�a�3� �� :Y+."u� itiw.._ Y S- .n:'_v. ,.'�'•}�y,�:rr >M�r•:' �Mf � 5 } y►`,��}' yn+,f� I Sx� .,.,.,_,�ri��a ;1�b` 4'�`4w`�' �V�+�3, \ '! 1'G��5�'" 14 "` •:�� �°S fir. ..�,�'�r'w�''4''M'w e}�•`'r i;t;LC.:'.;, I� '��,} {�da� °'4'ws+ .� - a1 » v�'. •,: _.,'Sw a r'�'^::; J;1l�'. 'f„r "`.;wn ,• '' 1�,, r.v:YC"d. ra .IV � {a �`"��! h, \ �}�A - e �\Y Y. ,.:rr., �� "� r.«R'•;�?r -_�'.'.+t?�•�i•�'��' � `'T;wx 'w�',',:;•1,,e I - j1�,,v, C;,vr� ,,"K.'ti���•�,�j�'�''�'f��k'S T` •'.:�: � - .Y'`xKfi��w�r,:+- -,J ""r�'"""C' ""ti•r,��"c� r= •'s �:u a �w? �•�app,,,,��Y"r, y,,,�,+4(w � +�� '� a .+ ;G..,.. v�`,l .fia^�.�\ a��w prh"�'K � �:,'} �.��J. ��..M•._�r�r vr�rar��, ,NS x sv,, _' Yk?�k.s� �.r�m }+ ?'� � f; �e J�"a'a<a^a' ''}n .'w'r�:"�. r yny,��i,tnv }+�.��R,`' r Y mar. -. •d�M 4 f`t' �44 :_,.r r -��;'��' �,3`x�.Gy,s v �" a,. ., _ � AY xw•}v f Fy � ��si� �S~fT }{_.��: { ,� a✓+ 2 _, ?r+�a •�'-r v 2\•�� yt c M's t 9-' a. -�'°kXv Al,+ryrtla°"krw` t vy ''^'t'rt�}y a�r,? rcy \. r ! t•X'��' 4. n`+:.'tiw i o. s{ ,wr u 4• .{!� ¢' ra'r"'t' �1 s. ,,•{:«.n"' yvy4 2 w`i {,<{"` rb nhtysr3'a :hA.. "'f w"rY._. :ti v r +' z•. �' 4y ,- --w:,,� ,CYr,,.` vr =xv ? yN�. fak W4{�i;vs.', �`.,,,_.,;y,�n+'.�'.:. 'x�:?�".ww_i;ea. ,-^�rn v'a. ��w '}:•'FY:�:1 t,+F'::;>;f.e:v.....+.:or::::ar :o, ':�•,',a ...r. "�L'�+k_•. ,.,w�• .t X!:•� ✓-.,;�?:1'., $ {�,' y...,. ::!c.;.... ,,..e,q'r.n'' ";.:.' .•v x�yr•^ ate'••'' ^•M1 f': •,. p,�; r l.: r„1'M1,•r ;' ++�;,'• :M '`.,"+ ". yr +iR• .. S{� },: 'i•r :iG: A;Sty., :� .. J: -, .M.. .'��'�',,'."v`,.•.�r�.... .,•:�,a., .�. { ,La.ral' ....! ,.,t;s.. , ;:. :, �2• r;csa4 �}`:•�•`',...r•io-<. •..r .••d,'f�::+` <.,yy,,I, .,:f.+...:. :,,:w }:. :- krf•2. 3 .r '�:�x,,>;' P.?r+. ..tiJ;n•.r..n nv i•;^f\r.:xx v...I�F"r - :f.l�• a f�.�`:.n�'! ''yY.,'%r,M. r3*.,ii y•.V: f, .}�,�I+ S'2 C' �N �•�,::"�Rv� '��,_, �K} r },{ k'i.��• k ..a..,\., yN�,., ,,f,. �., {. ' -_ ,r. _.. ,f�. � \`i•�;{.S�'�\Q+ .,.�,2, ��ik, :A•'�'G, r� :2?-^ � i� o-::��.r..:' •.� � ':. ;h'��. ,r -;�, mow, ti.•w, n•� r i f ..,ti^G2 't5,ey M. YR•1 ,q�'Af• 'NM'•,AO� Y� i�"^'' OAK", Af r•r lA,,fir' 4 F 'a. J�y.":{u;` P �y . IJRa• ru�"�}�+', :� �,rr '1: $ r.rrf� 'tE,,,, \ -> r i_ r •{ { '-" � 'y�?' F, ��, _}�;^ n#"4 '`r ! 6iv � �} �''v��{__,�,��''`� ?. 7 � �: �" ! WM '^,r7±v� �'�, a ,p � x. ,-} ,49�dr C ,�y •��r,,,Snt��'J` ��cv�,,•��,0�;."i .•.�s.�k H..ww• r� •.,, ..st'•.'�kxh'.ic3s$.Y C.��,;,�. ,+r !r4' � ari•, � ��Y �'� `r '.•,r'' :�'i - •}'•' '��`'�i�,asr'�,�4:r;,`•'Yk` f\n?$n�3.�`�. r w> �IE tiu3 t a f i rr.::• i K� � 3F.. �wG.... .r rr Fr: •+• _'Merl. { a s r r ,,� ';\, aair. ,ti4M::A• a'Tmrk'+ r- �� '�;t..:'�: ��}},, ��iin - �C`nW..+�•,.,2�;, , ., y� ; f5i r :M g� r ? a 4t�• f'.dar,,�. #f`i.`••tu.tt:.v..v + �'\ -v}��•�� .u��'! >ar;n;1 } { �� �n,.iy;3' y 44 i.i��}�r.�� .�yL,{f;��`Z•Jf•�,�"'„'..��-rY,��`� !\ !.+'�+h"v s��: ?e�' �� �XR:�:.,.'zr'`��,v v �`` �,a`C.•i,Ms >..i}^ '�,+• •w•.w...T.,.,J� +..- �"r�v�M rI7" ..,�..yy.FF..ta, ; \ k.� � }j�>\r y\\��}\.v�"w}r+lrr�,f�-r J� y t rY V r,• y t f4 ,. � �IP�+w'. r J, } M} a,,.} -k�v.-i.r. ,y r -� .rmf r .,iaor�, rn�:• 57• S?T F f wr'n; r �. �}r^w "� � ; � ivv y? Y.r}}p \� �a i' `^�r. _ •.5'+,+ - rr� n"�4.}, ��A:o�'� { 1�,•,�. CrlC� RlaNr wvv >� "�ti�fra� if} v � uM .. a F�i�L�rr r,,.',r ,n L�,,;5:r �t�,:+.yrr k}i '2} ' ... •,;"4�c '� •„ �•�.:'.4Sr,}'"r�.`{3��>.yr.#';v'.;G J:.`x�:G r. �' ,,,, +`�ti.',n':yy��aa„•:;�r>.• :.:, . 01P PLATE— FLOATABLES LAD Yr/ VENT t_ POS DQ--+C to A LED( (BY H_I,L) ; (BY "I-L.) ORY}IMl- 2. D'40%C5 006 ARE cE mE W CE LIDGER A14CLE (TYP.)—\ CENTER SHAFT AND CONE xr TERUEl1 FA'7 Ca,OF INL (BY H-LE.-) (BY Ft.LL) 3 RWD-6-tow s"�cAh e£ ' TO STYE RL{7uf>>L gPOS. SUPPORT FRAAc ` SEC Sir( PLAN FOR O®c MY H.I.L.) 4Y O-I.L-) as PIPE STUBAKD($Y !t_I.L_) INLET POP MUST TE u 1, 1►1 E Y 1�1F•C MUST S F f36 T.0 _ cot4oqoE rtiv.1 . PIP£ COUPLING 3. OkIERFLOw P.PC Slug 0 (Br OTHERS) sop-10. 6. WAMNRY nXNC E*tTS 24" OVERFLOW PIPE SUPPL-10 ST C[1F� (BY OTHERS) }} AA - HGig— t - A r YI�ST rssul _ UANHOLE LID, F By Ocrc Crlc.-pc nc FRAMES AND COVERS tc a4 (BY CONCROE SUPPLIER) 7/22/99 NT! ACCESS CTTiER (SEE PIPE ST109 � or —c.tl mpw A MR PLAN VIEW DWC GA2 (gY H.LL.) c_J tlec.'a P'o f� FOR OiRlENIATKIH) PIPE COUPLING 24- 24" C.O. (ETY onlERs) C1 mpw P�( - - - SUPPORT FRAuE- FACC£55 r,tlr -- (BY !u-L.) J ° 8 F7. DIA. 18" Dl{EI PIPE 3a 96- 10, Oomc(E-Tf L+A"xxf 01? PLATE DOWNSTREAM DE( 2{- ERFLOW (BY OTHERS) (L30 NOT SHOWN) (UY HJ-L.) l ~ PIPE BEtectllNC SKI (6Y CONCRLT'C $LIPPLJERj (13Y 0 HERS) ca 3t (EIY H.I.L) O PIAN �IL� (uyICENTER SFiA>� ue0 CDeaE (LIY kLl-L) ��� I 1 Q d - A►NLKv5 BAFFLE PLATE-- _ F .S Q .A (ey 14,1.L.) ",� I I :. 1-no GENERAL ARRANC( _ Lo —; Now PRfL"14ARY tLE.!aIQN5 } EPIH OF FLOW IN - Id" INIET PIPE t 1 FMCIiES (LIY OTHERS) OVOtFLOW PIPE AT 7.0 cfs - cv DEPTH OF FLAW IN L. ROW PIPE AT 15.Ocfs 19 INCH" ----- -__--_ ------- -- --- -- T6CNNOLOG $TIUAIED HCADL-OSSa 9 INC14E$ , W-� PI •" au T 7,0 cfs ESIWATED HEADLOSS< 1 I T 13 15.0 cfs [a�CF{ES (- 96- I.D. CONCRETE ►A"iOLE �kSnKAu OEFENQE,EWL1 L1f (BY CONCR17C SUPPUER) EMPTY WEFGIff 39.000 Lda. OET CkI7Nt SKIRT Of FRA1IOtsK WEIGHT63.000 Lts. (t3Y H,r.L.) s< r e(tirrw n��• ~ �IIEAALGSS rS IXrjWel AS Tl$ p!Y$RFNCE fe.Y OE"IIKE)r STATbC WATTP <8- l,D. AX -- (roe) r3s- e FfvCL AT THE 1[gEF Or rr+E DC%%STREAm DGENDEA 10 THE FREE - {z0>J 75 VAIM SURrACE (I+ DIC OVCRF11W PIPE. ASSaI••*.. FREE pcSy}�aJ1Ci- Ml Nailf! .SECiL�-,=A CAD q<i � [ Anr ..w.aMr p••r^ +. Njme ar.,.w -ae Lir..iW {lat_-3 ..n aas•f ary w r<.al.< eta.... w'ow q tcewe:.gy n� eannoe sec rpr ...p.r..L]:1r wr ...� r.u[i..e po-v. v aa.o••,...., (n. I<,< w p•< pt90+ pr.au..nu.lu v.�<-ar} m:pnw, e..+l_ n.an.Joctiv4 « w.Vd� a a.� '--a c<•h. Mc rv.< a PnR<T or c:'��--= 9^ca..c[ar.eloww.�+ ana re<v.t[r.. riq... [. oTw•e one sacir.c o.:o-� w <a,-.a. Q /� Nr�a Int[.npl:Y�l �fa� LIPY1 it pe<Pwnry(r al +1< +F ir..�k L« +<•V W'/ Ire•-WI. 1 rs� rP:f+'cnl h LrC1 b r�.a>.rna w[wd< a.y poyn �so�s.<rnN aac o.. . eK <s.Pr'9^I M e.--a tl•a+...y. .�..<n C1.G�'nQ l BGA 1 I lW �,gpFro in tlp.,f,p.n<a ■ m�M ..ee ly _--• [s 4.y 4../G..a+ olb Nr.r Iriol 1b wl�« i r a.y{fs0 wtl MIAI nol ta< rrYY6.K<a, iv �na!< e. ya+l, .illwl p•a• �s�r... r .r.v.q M1<Mn n'4 h0 SHUMWAY Jab # Dept. By Date JOB TITLE M.Ckd. Date C.Ckd. Date DESIGN AREA Sheet Of Reference �h� Sri.©u Products,Best Management www.bestmp.com Innovative Products for the Stormwater and Wastewater Industries The "SNOUT" Oil-Debris Stop for Stormwater Catch Basins Patent Pending Clean up your rivers, streams and harbor's Anti-siphon device prevents contaminents from being drawn downstream Attaches to catch basin wall over any type pipe y7 ' A marine-grade, gasketed, removable clean-out port is standard for easy access to pipe 3 Stainless steel hardware used throughout Hooded outlet cover for sump style stormwater Y' catch basin Strong yet light-weight plastic composite construction • Converts any sumped catch basin into an oil I debris / water separator--allowing for easy and inexpensive adoption of "Best Management Practices". • Contains floatables and oil within the catch basin. • Custom debris screens and installation kits available. • Models for rectangular and round catch basins. • Very easy to install. Unit for up to 15" pipe size weighs only ten pounds. • Unaffected by corrosive ice melting chemicals. • Low head-loss design. • 80% separation of suspended oils. 100% reduction of floatables. • Can be used in series to achieve greater degree of water quality improvement. • Pipe cleaning maintenance substantially reduced. Best Management Products, Inc. • 53 Mt Archer Rd. • Lyme CT- 860-434-0277 - 860-434-3195 fax Products,t5est Management www.bestmp.com The "SNOUT" Oil-Debris Stop ANTI-SIPHON VACUUM BREAK 1 " PVC PIPE ADAPTER SS AVAILABLE MOUNTING FLANGE SCREW-IN GASKETED ACCESS PORT D �•. SS PORT TRAPPED STATIC OUTLET OIL AND WATER EL PIPE �` ;�;,.y DEBRIS OIL ONE SURFACE .`:. CANNOT EXIT TO EIEE SECTION ELEVATION ACCESS COVER OR STORM GRATE ANTI-SIPHON VENT FLOOD LEVEL IN "SNOUT OUT FLOW LEVEL STATIC LEVEL For additional information visit our web-site at: www.bestmp.com or contact: T.J. Mullen 215-884-2345, 215-884-6195 fax, mm@bestmp.com Best Management Products, Inc. - 53 Mt Archer Rd. - Lyme CT- 860-434-0277 - 860-434-3195 fax Operation and Maintenance Plan Post-Development Stormwater Controls for the Relocated Peabody House at Brooks School Stormwater Controls for this project consist of one "Downstream Defender" stormwater treatment device and a hooded catch basin. The Downstream Defender is located near the left front corner of the building. It is a buried concrete structure accessed via manhole cover. The catch basin is on the edge of the drive on the inside of the cul-de-sac. Brooks School is the owner of the control devices and is responsible for their operation and maintenance. Downstream Defender Maintenance, A sump vac is used to remove captured sediment and floatables. Access ports are located in the top of the manhole. Tile floatables access port is above the outer annular space between the dip plate and the manhole wall, where floatables are retained. The sediment removal access port is located directly over the hollow center shaft which leads to the sediment storage facility below the vortex chamber, Fooatables and oil should be removed prior to the removal of the sediment. The frequency of the sump vac procedure is best determined in the field after installation. During the first year of operation, the unit should be inspected every 6 months to determine the rate of sediment and floatables accumulation. A probe can be used to determine the level of solids in the sediment storage facility. This information can then be used to establish a maintenance schedule. When sediment depth has accumulated to 1.5 feet, or floatables depth reaches 6 inches (whichever occurs first), the contents should be removed by sump vac. Although a small amount of water is removed along with the pollutants during the clean out process, the units are typically not completely dewatered. A Downstream Defender with 1.5 feet sediment depth removes about 400 gallons of water in the process. Disposal should be to a publically-owned wastewater treatment facility. Hooded Catch Basin Maintenance. At the same frequency as the Downstream Defender maintenance, each catch basin should be fully cleaned. Disposal should be as for the Downstream Defender.