HomeMy WebLinkAbout2004-12-08 Air Quality Modeling Protocol 7/23/04 Air Quality Modeling Protocol ...fir Emissions ftom
Wheelabrator North Andover Inc.
JuL 2 3 2004
Eqq1 P",Tf� L— FE ]FX1'I l +f1: wrLf f
m heelabrator North Andover Inc.
:285 Holt Road
m orth Andover) Massachusetts 01845
I
Fl€zabeth Hendrick, CCM
=Epsilon Associates, Inc.
150 Main Street
a nard, Massachusetts 01754
juiy 2004
rglneersM Enviroternerntal Consultants
Air Quality Modeling Protocol
for Emissionsfrom
Wheelabrator North Andover Inc.
Forth Andover, Massachusetts
Wheelabrator North Andover Inc.
85 Holt Road
orth Andover, Massachusetts 01845
Elizabeth Hendrick, CCM
Epsilon Associates, Inc.
150 Main Street
Maynard, Massachusetts 01754
evisicm 7
Judy 2004
Table of CO e n%
1.0 Wroduction 1
2: Facility Description 2
3: Site Characteristics 5
3. Land Use Analysis 5
32 Topography 5
3.3 Meteorological Data 5
3.4 Building DownwahAnalysis e
4.0 Dimon Madefipg Analy5ls !O
4.1 Mod| Sua|etion 10
4.2 MadQlOptions 10
4.3 Receptors 10
. 4: Reporting of Results ] l
REFERENCES
APPENDIX
hand
o_ripretoca mtoroln.Ar Z Rbf c am&
f,U /6lzx1 & Inc.
Table of Co e s
1: Introduction !
2: Facility Descdption 2
3.0 Site C mmdr || 5
aj Land Use Analysis 5
K2 Topography 5
33 MeteorologicalDab 5
3* Building Downwash Analysis a
4: Di.Sper5iOn Modeling Analysis 10
4.1 Model &ct !O
42 Modef Optiom, !O
3 Receptors 10
4.4 poAn� Results �!
REFERENCES
APPENDIX
...... .._ ... . . ......
»Sic-« amR
f-PKilon As5tkwpl lac.
List of Figures
Frl2m-- ] 5i! Location on a U5GS Topographic Map
Figure 2-2 Facility Site Man
Figure 3-1 Land Use Eva I uation Wit G 3 kni of the FaciIk
Figure 1 1991 Annual Win Rose from B t ,o , Massachusetts
Figure 2 1992 Annuat Wind Ro5efmm ft b% Massachusetts
Figure ] 199 l Arin ual W|nd Row 4om Bo m% Mk�ach use |! 9
Figure&-4 1994 Annual Win R sef m Boston, M&sadw5 e#9
Figure. 3 1995 Annual WWd R050 f FOFTI BC)�m% Mas2chu spth
�... . . .� .. . . . ...............�._
_w�Pmtv r @m&�-al chA- 3 e&k-ofContents
f-ja;firv?Aqociq fes, -
List of Tables
Table 2-1 Stark Parameters for the No Andavu�r MWC. Facility
Table 3-1 €deotafication and Classification of Land Use
Table 3-2 Building Dimensions for Downwash Analysis in ISCST3 MO&Iliflg
Table 4-1 Recvptor Elt-vatious (rueters) for the Discrete Polar Grid
Table 4-2 Foricelint, € eceptor Locations and Elevations
_..... ............. .._................... ............- —-
�rfclos�erfpmfvrol rirnfnt r�ln.r nr. Wi table of Contents
E{zdrxr A+suciates, h7c..
1 .0 INTRODUCTION
Whcelahrator North Andover Inc. (W A) has retained Epsilon Assodates Inc. of Miynard,
Massachusetts to rfc)rm air quality modeling analyses for thu- Municipal waste combustor
(MWC) faciIity ire North Andover.
The modeling is in response to Policy 91-001 of the Massachusetts DepartmerIt Of
Environmental Protection (DEP) that was adopters by the DEP to }provide guidance oil thce air
duality impact analyses required for municipal waste coal bcstors -rubbed to 211-1 Section 5C
of floc Massachusetts Gesneraf haws and 3.10 C R 7kB, The 21 H iegi5s atiorr requires the
operators of municipal waste c-ombugors to test for dioxins and furans in MWC e-missions
and ash every niflie months- Whi-eslabrator also peifoi-ms additional stack testing for Other
pollutants that Massachu!;Ltts currently regulate=-5, a,,agreed to with the DE regional office.-
In addition to the stack testing, dispersion modeling is performed with the stack parameters
mQasured during the testing to as es the air duality i€npads. from flit facility- This modeling
protocol serves as a fevkion to the 1992 modefing protocol (DiCristofaro, 1992) to kipd4ite.
the modeling methodology that wiII be used for each of the dispersion mode IiFlg asses_sfnents
that accompany the stack test every r14W months-
Us i n g the stack pararneters and the polfutant emission rates detefmined by the stack testing,
tht� rviodvled in-rpao,; would be compared w1th the Massachusetts' annual Allowable
AnnbitInt Limit valr,es ( ALL) and the 24-hour average "I'lirushold Effects Exposure Limit
vafues flEk).
The fo flow ing out Iin(c� the specific' changes from the 1992 protocol to the! c urrent modeling
protocol,
1, The U.S. EPA has 4Cr-OFTirm nded the use of the Industrial Source Complex Short Term
Version 3 (IS ST3) fnodel in Appendix A of the Guideline on Air Quality Mode-Is
(EPA, 1997). The COMPLEX# model dispemion algorithrn i for receptors above stack
top elevation have been incorporated into I5C=ST3- Therefore, all receptors,
inc If-id ing both sinil)le and complex terrai ix, can be modeled by I CST3,
2, A screening modeling analysis will not be perform b�,cause the refined modeling
rf,suIts supercesde-the screening resifts.
3. The hourly rnclvorologic-ai data set for the refined modeling was Updated to 41se the
1991-1995 hiQoric-al data- This is crrrreOly the most recerit 5-year data set available
for dispersion modeling. The 1992 protocol used an earlier 5-year meteorological
data s& (1985-1990)-
_.-_.._............... .. .......... ---....... . ...-_.._...._.._
Itrarrelaver�oratornll�xtrxnlrr-r}n� Pa�,•e J f��lruclere�icu�
[,us don Associates, Inc,
2.0 FACILITY DESCRIPTION
SN.ri�
The WNA Facility is located in Noah Andover, asstachusetts at UTM coordi�jates 326,293
kni east and 4732.393 krn north (zone 19), These coordinates wore identified through field
measurements using global positioning systern (CPS) equipment. Thu' coordinates obtained
from the GPS were than overlaid onto an orthographic image to validate their accuracy.
Figure 2-1 shows the WNA facility location on a USGS topographic map. A site plan of the
facility is presented in Figure 2-2,
The WNA WOL)rwent an air pollution control retrofit that was completed in 2000. This
retrofit was requirod to comply with the Clean Whir Ant Arnendinents of 19 90, specifj cal Iy 40
CFR 60 Subpart Cb Ernission Guideline as implemented by 310 CMR 7_08 (2) Municipal
Waste Combustor Regina ions.
The base elevation of the facility is 66 feet (20.1 in) above mean sea level. The WNA
Facility consists of two ideritical municipal waste combustors. The pfoducts of combustion
from each combustor are emitted through jridividual flues of one dual flee stark, the top of
which is 230 feet (70.1 m) above ground level. Each individual flue has, are inside exit
diameter of 7 feet (2.1 in), The stack diameter used ir1 the modeling is an effective diameter;
th;� diameter of an effective stack is equal in area to the area of the two flues Combined, (i.(--_,
(square root of 2) * 2.1 m - 3.02 in)_ € oth units at the facility are tested every nine, months_
[rased 0n the l'(=1]F)/PC DF stack tests (Method 23), the average air flaw rate and an average
temperature will be used far inodi,_lirig purp0ses. If 0�1ly 0€1C unit is tested uAng Method 23,
then the data from that unit will be used with parameters inc�asur€-i during the metals tests
(Methad 29) for thfe other unit, Thc air flow ft-oni the two units will be co nil)ined to calculate
an exit velocity that is used as input to the dispersion model along with the average exit
temperature. Table 2-1 gfnjin.trices the fixed stack paraMetcrs avid the flue gas paraF'RtA ifs
from the mosf recent stack tests conducted i€r April 2003 (Deeco, 2003)-
Table 2-1 Stack Parameters for the North Andover MWG Fac!lily
............... -....... ........_.._ -
Fixed Stack Parameters
_........ .
Stack location UTM-E (W 326,293 ...........
TM- (krn) 4732,393
.........---- ........ . ... -...... .......... .
Stack base elev, W 20.1
Stack height (m) 70.1
-- -........ -- ...._.......
Effective Stacy diameter (in) 3,02
Variable Stack Parameters (based on April 2003 tests) Unit 2
flow rate (ACC ) 158,767 1 147,067
Exit velocity (Infs) 20.15
_..... —
Exii ternp (F) 3(?3.2 ,295.
Exit temp ( ) 421,8
..... . ......_ ...... -
€r dfX1uverlVMtaroAriM10C kL Ol X !.g* —Facrh#y De-y rr{,tian
Cpsrfon Azerfares, I,i _
M
p x 2 m •.wow u
n
aid 144'
tl m
,..y
W � y io •. • ,1. x �i� �p iie� y9 w✓
• � � � P M n °W Y �e AAA
H hW,a -; ,,�.�e, e
w •� uM b " r
` Me �� J �
M
.e
ten, � ""�, .n« - � M, v" ✓ �., �,� .� �
M M
p, b � • 11 ryy
e i q
wpm
r
A>d
w
w
w
•
• �° M �u ' `' may,
m
Mn y
4,N
yLni b i
h"
M
a
e ' n
rk V� y
"s w P �
n
m � s
LAWA10 C E
I
ro . U �OIPAI, Aill T
9a
46
fi
� a
V
n
i rB+
w
r p fi
e
I 1 Y
� k
� V
y�q n
1 • u M. T warp '�Bea �
e , Id�
w
ly
00,Sol
a
° USGS Quads. Lawrence,W
bite, Location one a USGS 198'7
Topographic Map
Wheelabraltoir North Andover Facility
5cals°t �nch—0.5 knni ;PSILO � mo '"rAndover, Mw , � j
1
K INLiI
■4i�ilN
___ cwckx
----..._....---' --- - —..................__.. .._......... ilste`
�_ Cl,IRIk
--
��v
�u -. - -�_ S IiliL Y
+ir 9M1 JL MCA.
VA-
pk
� ..•o-a.....�. ...... ..err. '
�h
� � IY.IR: -X 1iT1lF
�' - Fk lI hL.b 90?TRylf
lj
sa.,rr roa.
..... . ...
S}W {1aYu_.............. ..........
_......._..... .........._..._.. _.i
.
a
i.l.MX
111 ,rar,..,� aaxi�rx.4
ir�4 � u!+..w v anew Xsn io.r raa aim ar
� w veyro,s�n rR TSSS Y4 4,PW,�F�9r
.a...1�'� •mow'.,.w4
�k.II W�Ok Hu'ai.8l�wc xauR�rltimi. � u+��S NM�A+1
l {+'},q[14Li IF]!{,IRr ihYN1C Ilwa i!h]+�itr it
n.R�o u..� u¢ O X4r,x{wi5aaq
wlx
i ak,�ui,.�..cu■c cwt�wa...,ur,.�.
N„x XMr Y4{yQ15 A 14 Pff YJC4 R,YL Q r+144+'�1YY Sw�4R
narru . ,m•pay,WMkTdv�
Figure -
Facility Site Plan
.................
SuEfle; I ffich 180feet Wheelabrator North Andover Facility
u+ocrxifs olc.
o as North Andover, IVIA �Eny«�c.rs'.}cnviranm.nlar ran.Xllanls
........... . . . ................................_.
F.4x,�lck.:w4�,.,vxrru�lx rb.� i+707�
3.0 SITE CHARACTERISTICS
3.1 Land Use Analysis
When conducting a dispersion modeling; ana€ysis, orie needs to determine whether the land-
Whe pattern in the environs of the plant is urban or nirai for modeling purposes. The United
States Geological Survey (USGS) topographic quadrangle maps of the site vicinity have been
used to determine the hvid-use pattern of the area. 1'he U.S. EPA recommended procedure
in The Guideline on Air v.21i(y Models (U.S. EPA, 1997) was f)i#owed to det-k-u-nine
urban/rural classification using the Aver 0 977) lard use toy-hnrque- This larld use within the
total area circ_umsc:ribed by a 3 km radius circle around the project site has boon c_IassifiorJ
US41g 014e rnote6r010j;ic_a€ land use typing scheme shown in Table 3-1. If the laird usr' types
#1, 12, C1, R2, and R3 account for 50% or more. of the area, then urban coefficients should
be used. Otherwise, rural dispeu lion c:oeffidPnts sl hind be used 1n the in ode Iing analysts. A
site map with the 3 km radius is depicted in Figure 3-1- The results of the analysis indicate
that greater th;in 50510 of the area within :3 kin of the North Andover Facility is c1a55ified as
rural for modeling purposes. Therefore, viral dispersion ccxoffidents will be used in the
wc&,hrigaF1alY5f-S-
3.2 Topography
The Wheel abrator North Andover MWC Facility is )c :ated on i--lolt Road ire Noilh Andover.
The Base elevation of the facility is approximately 20 metws ah()vt-. mean -5eaI level (MSL). A
closed landfill, wooded areas, and light to heavy industrial facilities characterize the
immediate vicinity of the site. The LawrerIre MLmici al Airport is inrMed approximately 1
km to the sokith of the W N A facility, W1011Fi 5 krn of the sire, elevations range front sea level
to g;reatFr than 108 m. The closest point at whick tltc, terrain hi-ig;ht exceeds the. fad l ity stack
Wp E-levation (90.2 m) is 2,2.E km to the south-southoast at Osgood H i I L
3.3 Meteorological Data
five years of surface r oloorolog ic-ai data (1991 - 1995) collected by the National WQather
Service ( iWS) at Boston'!; L«gdn International Airport have been acquired from the National
Climatic Data Center ( C C) or the EPA SCRAM Bulletin Board and have been used in
previous modeling analyses Of this fac-ility- Logan Airport is located approxirnately 39 kin to
the south-southeast of the (ac:Fliiy sire-
The historical five year period, 1991-1995, of hourly meteorological data will be used for
these modeling analyses because the National Weather Service offices have become
automated skice 1995. The obsurvur at the stations was removed when the automation
process went into effect. A kc!y observed parameter (total opaque sky cover) that is necessary
for stability loss determirtaEiOn fOf dispersion modeling is no longer available from the
a utomated statiors. Therefore, the period 1991-1995 remains (lie most recent data set with
the appropriate parameters for use irl dispersion rnMeling analyses.
- -
. . ..................................--.......
�rrar+Clnwer )cr c�c Ul rv�crcr�lr�,cloy Page-5- Site Characteristics
EpsiIonAsscrcr'ates, Inc.
Table. 3-1 Identification and Classification of Land Use (Auer,197 7)
.. ........................................... ... ........................ .......................................................... ....................... ................................................ ................
Type Use and Structures Vegetation
11 Heavy Industrial Grass and tree gromh
Major chemical, stool and fabrication industries; extremely rare; <5%
Generally 3-5 story b u i Id i rig�i, flat roofs vogufation
................. .. ... .................................. ........
12
Light.-Moderate tndustriat Wry limited grass, trees
Rail yards, truck depots, warehouses, industrial parks, almost absent;
m i nor fabrications; generally 1-3 5toiy h kii Id i nps, f lztt roofi,, 5% vegetation
C1 Commi-Fdal Limited grass and I mes,
Off ice anti apartment buildings, hotek, > 10 story he Ighus, 15% vegetation
f lat roofs
R I Common Residential Abundant gra5s. lawns
5 i ngi e family dwel I i n gs with normal easements; generally and light-moderately
one story, pitched roof structures; frequent driveways wooded;
>70% vegetation
................ ........................................................................... ........ .... ........................................
R2 Compact Residi,-ritimal Limited lawn sizc-F, and
S i r1 gIC, SO Me multiple-, fai'll i I y dwL,I I i rigs with <1 Use 5hade uees;
spaci rig; general ly <2 story, pi t(.hed roof structures; < 30% vegetation
garages (via alley), no dri -ways
R3 Compact Rp5idenfial Limited lawn sizes, old
0 Id multi-fancily dwel I i n gs with close f<2 ni) lateral estal)I i s hed shade trees;
separation; generally 2 story, flat roof structures; garages < 35% vcgofifion
(via allay) and ash pits, no drive ays
R4 Estate Residential Abundant glass lawns
Expan5fve family dwellings on multi ir-retracts and lightly wooded,
............ .. ..................................................................................................... ---V.qg
Al Metropolitan Natural Nearly total grass and
Milo r mu n i c ipal, state or' fode ra I pa rks, golf cou rsu , lightly wooded;
cemeterips, campuses, occasional single story ,'4ruclures > 95% vegetation
........ ..........................................................................................................................................
A2 Agricultural Rural Local crops
(L'.g,, COM,
> 95% vegetation
........................ .................. . .......... ....... .................................................... ..........................................................................
A3 Undeveloped Mostly Wild grasses and
Uncultivated; w4steland weeds, lightly wockded;
> 90% Vegetatio
A4 Ondeveloped Rural Heavily wooded;
> 95% vegetation
........................ . . . . .. ......................................................... .......................................
AS Water Surfaces
Rivers, lake-s
........ .........................-------- ......------------..................................................................................................I've C, %5jf49 ChjrdCtej'1Sf1CN
Ep5iloa Msodales, Inc
r
A Y w °vb I 1
u' � Y �.
N � n
"a f
s � �
a ro
u
7tV9P' nZ.,
_
IN
r ph: Tw
as �;
d ¢7tl^,.q "'.
�'""M"
�1� ��ryy.ry
77
0
hJ" y �
k xAd tlyl fy s'. ,� u, a
°i a 9 'afi j ,� �p4 tea ' :�y7; ;� , '� �"�` k ti
bNl w,
NJ
wawa yh „
v
vn V
E u
r
P�
u . s
�,"�. -r` britt 'a
„ �,.............. •' �1
J111111,
� �� � ye uei�a
�'
„
ti"Ok
10,
ryry { uyta,
h G h
�f 0,dh � M'�F J�WN'9pd� •A" �J��W'� w
XFa4
W 9 °
pp
"
Figure 3-1 TopVraphto basmap�f rr
USES Quads.° Lawrenco,MA,
Land Use Evaluation Within 3 19 7 vsrr,A 1987
Kilometers of the Facility
Wheelabrator North Andover Facility
Scar, I inch- I kmi North Andover, MA
The hourly surface ob ivations include wind direction, wind speed, temperature, cloud
ever, and ceiling height The surface- data were combined with coricurrerat mixing height
data from NWS tII)per-air OhServatiOI�S Made in Portland and Gray, Maine. In Septernbe-}r of
1994, they uppPf air station at Portland ceased operation and observations were resum,2d of
Gmy, ME, Gray is approximatefy 20 miles nolh-northeast of Portland_ The PoWand surface
temperature was used to initialize the soundings for all of the five, years_ These obsewation
sites were chosen Because thc-y are the closest stations to the project site that collect the
necessary upper air meteorological data of the required quality far mod4eIirig studios_
The EVA meteorological preprocessor, P i2A 11 El', was used to generate the meteorological
input file required by tSCST3. This program pi-ovidos hourly valkies of m€x[II8 height,
atmospheric 51ability classification, wind direction, wind speed and tempefature. to the
dispersion model, PC AMMET prohibits very rapid variations in stabiIity class (+_P_, a change
of more than one stability class per hour) and interpolates hourly mixing heights from the
given morning and afternoon values (both urban and rural mixing heights arc, calculate d).
The joiFIt frequclncy dim6bution5 of the measured wind speed and wind direction kased in the
modefing are preserved in the Appendix in Figures Art th;'ough A-5. Each wine rose
presents the distribution of Elie, winds on an annual basis. The surface winds mFasure3d at
Logan Airport are predopninintly from Jhes southwesterly through rlorflI esterly directions
with very few calm periods.
3.4 Building bownwash Analysis
Thc, Building down ash analysis for the North Andover MWC Fztoility ,tack was conducted
employing they methodology described in the EPA revised Csuidefrrres for Oeter nination of
Good L:ngiw-v!dng Practice ce ,SfacA- Height (U.S. EPA, 1985) to proderce the hiiiIdIng heights
and projected building widths that affect the dispersion Of t)011utants from the source in
griestio�i, They aerodynarnir dc) rrwasfi caused by a building's wake has a direct affect on
the dispersion of a pollutant_ The area of influence of a 51ructum extends five times L (5I_)
directly do n ind from the trailing edge of the structure, where., L is the lesser of the
bui Id!ng's height or direction-spec_ific projected buiIding width. The area f!xtends 2L in the
up ind direction and 0,5L in the crosswind direction. A buiIding's wake vffise:t height ((sEP
stack height) as defined by the EPA guide=li€te 5 is;
HctF = He + 1,51,
Where, HcEF - GEP stack h6ght,
Hi. = Height of ad}acLnt or rtOarby stFUCI resr
L = Lesser of height or maxlmuin pro)e�c_te�d width of adjacent or
nearby buiIding, i.e., flip- critical. dimension, and
Nearby — Within 5L of the stack from downwind (trailing edg(.-,} of the.
huildiFI�;_
_._...... .... �. ........................ ..... .... ................
-
�rfar�dove rrrtaxof mtnrrrnfrr_rlcxc P e Sife Clxuecferr5&3
l p;ifon r.53:oc ales, Mc.
The building with thc largest wait[- effect hi2ight, whose area of inflijence encompasses. a
sta€_k, is the dominapt influential structure to that stack. Iwo stfuciums are con-5[ e-red
'strfficiontly clo!€O if they are closer than the greater of either stare€urc's !_. These two
strictures are combiriod and the gap between tFp two is treated as if the gap had been fillt,d
ire with a stricture equal 1n height to the lowef stfucture-
Application of the Good Engineering Practice (GEP) formula to the fac_iiity strudures
indicate's a rnaximum EP stack knight for the facility of 307.5 it (93.73 m). 'file main bailer
building is farartd to be the controlling structure with the structure's height of 123 (t (37.49 m)
being the critical d1mci rsion. The new structures as&ociated with the air pollution cquipment
added to the site as patt of the retrofit project do not impact the GEP analysis and the Moiler
buil&ng is still the controlling strut-tuff for downwash- Since- the WNA stag is 230 feet
(70-1 m) in height (below GEP height), buildiFig do n ash effects will be modeled in the
iSCST3 dispersion modeling analysis. The EPA approvers Building Profile Input Program
(SPIV) was used to calculate the direction specific buiId1ng dirmcnsAons for input into fSCST3
for overy 10 degrees (36 wind dir(-c.tions). The direction specific lauiIding dini42ns ion s that
will be used ire the stack test disp€}rsi€}n mode Iing analyses are 1)resented its Table 3-2,
Table 3-2 building DimensionE; for Dawn ash Analysis in ISC T3 Modeling
--------- ------.......................... .. ... ......................
-
Flow Vectors Building Heights (mii3ters)
100-6o° 0,00 37.51 37.51 37-51 37,51 37,51
--............. .. . - -
70"- 120" 37.51 37.51 37-51 37,51 37.51 37..51
1300 ............ ..............�.. ....-........
1801, 0.00 . 0.00 0.00 0. 000
.. .. ............. -- _...-.... .-... ......... . ..
1900- 240° 0-00 37,51 37.51 37.51 37,51 37.51
.............- - --...................
. . . ... . .....................................
_
250c'- 30011 37,51 37.51 37,51 37.51 37-51 37.51
_...._........... ...... ... ................
- -
6W 0,00 0.00 0.00 0-00 0-00 0,00
........... ... ...............
--- -
Building Widths (rneter5)
10°- 60" 0.00 58.21........ .......65-1.4 70,09 72.91 73.51
..................... . . .. . . ... . ............ -
70'- 120" 71.88 72.01 75,59 76.88 75.83 72.47
130c'- 18011 {)-0C1 0,00 i 0.00 OM 0-00 a-Of}
.................-.'-- _..._.......
_..__..... ....... .. ...................
-.---
190° - 240" o.00 58,21 65-14 70-09 72-91 73.51
- ...........................
250" - 30011 71.98 72,01 75-59 76.88 75,83 72,47
310°-360C, 0-00 (}-00 �.�0 0.00 0.00 0.00
...................
. ... . ............................
...... .. ...............................
-If J Site CharOCL-rrs11.C-5
Epsilon f ssuciales Inc.
.0. DiSPERSION MODELING ANALYSIS
I
4.1 Model Selection
The LJ-5. EPA approved air qua Iity model that will be u d for these analyses. is the Industrial
Suurco Curnplcx Shod Term Version 3 (ISCS13). The currcnl version of ISCST3 is dated
02035, Those dispersion analyses wilt be performed every nine months and should a new
version of ISCST3 be released, then the most recent version of the model wil I be used.
The ISCST3 model is a steady-state Gaussian }plume model, which can be used to a5ses4
pollutant c_onc_entration5 ffnrn a wide variety of industrial sources- It accounts for b u i I d i n g
do awash efkc as and can apply terrain adjustments to the plume, It accepts hourly
rrrotcoreslogical coridillufrs and cornp€los both short-tcrrri and annual average concentrations.
corn 1)lete technical description of the ISCST3 mode may be found in the User's Guide for
f.SC',ST3 (EPA, 1995). ISCST3 also incorporates the COMPLEX I screening model algorithms
for receptors above stack top, i.e., complex terrain (receptor elevatio€i above the plurne.
height) and intermedizite terrain (receptor elevation between the release height and plume
height)_ For intermediate terrain rec_ept«rs, the M(KIF1 tfcMts the receptor as both simple
torrain and complex telrrain and r(Aains the highev predic-tud concentration for that receptor
for that hour, Whifc terrain jrt the vicinity of the facility is 5i111P1112, terrain Height does exceed:
stack height appro imatcly 2.25 km from the facility. Both simple and complex tern, in
receptors will be mocle(ed with ISCST3 for these studies.
4.2 Model Options
The regulator} options of the ISCST3 model will be used in the modeling analysis, The EPA
recommended r.�pticros for plume rise, buoyancy induced dispersion, vertical potential
tempPfature gradiefits, treatment of calms, wind profile exponents, and enhanced dispcsrsion
croeffidents will be se€ec.W, The. non-default option of H E>ZI will also be selected for theses
analyses because some of the receptor elevation4 are below the stack base elevation- Based
on the sand use analysis, furaI dispersion c oeffidents will be used in the mode Ii€rg analysis.
I he stack fast data along with five years (1991-1995) of houdy meteorc logicaI data will bo
used in they r&ir}ed modeling analysis- A unit emission rate of I g/s will be used in the
FTiodcl`€F1g to predict rtOrn-iAZCZ d C-Mic-3ntrations. TiW Flormalized ccrrrc(N*ations will thin bo
seated by the appfopriate emission rate for c}ach fAlutant (based can stack last data) to
dcgcfrr'kio the predicted air duality irrrpac_t- The impacts will be c-orripar0d for cornpliar}ce
wiEli the Massachusofts Air Gui del iFle Va1uc!s (i-e- AALs and Tr Ls).
4.3 Receptors
A network of receptors was sc3lcc_tec# for thc- ISCST3 r(AirlUd analysis of thc- facility to crisonr
flat €hf! 11ig4tcst calculated coricAffit ral i o ris will bu captufed by this mat hk�matical modoliFig. A
discrete polar grid With thirty--seven {:{}f c(mtrrc_ ring distances, r-enterud 0F1 thL2 stack acid
combined wrf4i 36 radiais at teri-&%rue iritefvaIs (i-e., I D°, 20', ,.- 360') was dcvclopcd for
.................
.... . .................---------..........-................ -
.............................—
clu rr cx'ull rruvc'udoc- Page !0 Dispers ion MudeAfrgArm 4,6is
Epsilon Assuc-iafes, frrc.
i
the modeling analyses. The refined mcidAng receptors were placed at tFte following
downwind distances. 100, 200, 300, 400, 5W, 600, 700, 800, 900, 1000, 1100, 1200,
1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2200, 2400, 2600, 2800, 3GOO, 3200,
3400, 3600, 3800, 4000, 4500, 5000, 6000, 7000, 8000, 9000, and 10000 Meter� from the
stack. United States Geological Survey (U S) 1:25,000 scale topographic maps were us-Pd
to hard-pick the receptor elevations- The closed landfill to the south of the facility is not
del)ided on the U SG S maps, therefore receptor elevations for tho landfill area were obtainod
from landfill site plans provided by the Massachusetts DER The highest terrain elevation to
each sector (dofined as the area extending from one interval ring to the next downwind r[ng
bounded by tho area extending halfway to each of the adjacent radials} was used to represent
the elevation for thu, rtc_eptor- ID addition, discrete receptors were located along the fence
line of the W A facility. Tha polar grid receptors that are inside the ferxce line were
removed so that only offske impacts will be predicted. A total of 1322 receptors will be
modeled with ISC ST3. The 12levation-9 assigned to each receptor ire the discrete polar grid are
p esented in Table 4-1 and the fenco line receptor locations. WId elevations are presented in
Table 4-2.
4.4 Reporting of Results
A brief repc)rt will be prepared describing the current stack test parameters and pollutaFIL
emission rates used in the dispersion modeling analysis, the model inputs and the results.
The highos.[ norrnahzed concentrations for the 1-hour, 3-hour, 8-hour, 24-hour and annual
averaging periods for each of the five years modeled will be presented, The rnaxir ium 4-
hoar average and anneal average norrnalized concerrtrations will be used with the current
stag test emission rates to calculate the ambient air quality €rnpacts associated with the
operations at they North Andover MWC facility. The modeled air quality impact for each
paMA,int will be compared with the appropriate Massachusetk LEI' annual average
Allowable Ambiont Limits {ARIA and the 24-hour average Threshold Effects Exposure Limits
(TELs).
.. .... .... f ---
�r�andvs er rotnrr}! mticclip-alv€ f x1 1J)5pei2sivnModclrngAna!}tsrs
Epsdun A wariafn., Inc-
Table 4-1 Receptor EIe=vat€onF, (meters) far the Discrete Polar G H d (continued)
13Q° 1400 1SQ° 1b0° 170° 1801, 1 1900 20011 21011 2200 230" 24011
100 rn 24 4 27 30 32.0 32.0
200 m 27.E 35A 136.6 36.6 Me 36.6 36,6 3 39 30 27
UQ m 24.4 35.1 36-6 36,6 $5-7 35,7 38.3 33 33 33 34 i 2700 rn 24 30 30 30 39 39 39 36 33 33 30 27
500 rn 33 39 39 1 33 39 39 39 36 '. 33 36 $3 30
600 m 39 39 39 39 39 39 39 39 36 36 36 33
700 m 45 42 39 39 42 42 39 39 39 36 36 36
800 mg54
42 36 39 42 42 42 39 42 3fi 3fi 3fi
900 rrt 45 36 39 4 42 42 39 42 36 36 36
48 42 4 45 45 42 39 4 36 33 27
1100 m 48 43 42 45 45 45 �42 39 27 ! 24 24
100 m 54 48 48 45 48 48 45 42 27 21 21 16
1300 m 48 48 48 42 48 4$ 45 42 24 21 18 12
1400 m 51 51 42 39 48 46 ! 45 42 27 21 12 12
1500 m 54 54 39 36 48 48 1 45 42 27 21 .12 12
1600 m 57 57 36 34.5 4B 48 45 42 27 16 12 12
1700 rn 60 57 $4,5 39 48 i 54 46 42 30 9 1* 12
1800rn 63 57 36 54 54 51 45 39 30 21 15 12
1900 m 63 45 1
45 6 83 51 45 39 24 21 15 21
0 rn 54 i 36 i 87 87 7$ 51 45 30 18 18 2T 33
2200 m 45 34.5 102 105 1 75 51 45 30 15 42 42 42
2400 m 57 36 102 105 fig 48 42 1 30 15 42 54 57
2600 m 63 36 84 87 60 45 1 33 30 21 4 54 57
2800 m 63 34,5 63 83 48 39 36 36 24 42 51 48
3000 m TM 63 36 54 54 39 39 42 4, 24 12 18 21
300 m 63 38 60 81 57 45 48 42 24 12 18 24
3400 m 63 38 50 87 72 48 48 42 24 12 18 24
3600 m 63 36 57 90 72 51 48 395 15 15 1$
3800 m 60 I 45 39 93 Be 63 51 36 15 15 15 21
4000 m 84 51 51 87 7 72 51 3 4 1$ 21 21
4500 m_ Q 69 57 63 69 72 67 24 38 24 21 27
5000 m 78 75 114 78 111 90 66 36 48 51 33 75
6000rn 87 96 117 ! 81 ! 120 96 78 36 64 57 45 75
7000 m 81 87 96 96 120 93 75 51 54 63 0 36
8000 m 03 51 84 78 99 °0 84 54 63 66 60 51
9000 m 57 42 51 81 129 9? 84 60 54 69 56 45
10000 m 57 51 48 66 1 78 105 84 69 66 99 93 45
rrando r roltiacollprorocoln.c{�c Page i3 Dispetsvon odoAgAnzlysrs
Epsilon,9ssxI.7res, Inc.
Table ; §r O evations etera r the D i screte Po I ar G Hd (contnued)
2 ° 0` 2 ° 3 ` 310° 32 3301, O` 3 ° O`
1 m } .
\ O m 2 �a �5 �s �2 § 12 12 i 12 I 12
300 mm 24 21 18 12 § 9 § § 12 12 i 12 12
0 m , @ is 15 § 9 , § g § § § 12
500 m [ 24 la 12 § 9 I § 9 6 § @ 12 12
0 m [ 12 12 12 § e §
-700 m _ an § : 5 15 15 12 12 15 1 15 i 9 6 9
e m 27 12 I 15 12 15 15 I3 e e
9 m !2 15 27 15 15 12 15 S 12 3
] 0 m 12 !S 2 18 i5 I 12 I 45 15 12 S
] ] m 12 21 2 18 12 45 i 15 12 12
]2 m 15 2 21 12 45 15 24 27
] O m 15 21 33 33 i 30 27 21 15 15 16 30 33
]4 m 15 2 30 3D 30 3D 21 15 15 15
]3 o mm 18 2 30 27 30 30 2415 15 15
1600 m_ 1e 2 30 ao 33 3; 24 13 18
1700 m 11 2 30 30 33 33 2 13 18
% 1 § m 15 24 27
30 35 39 30 !oa 21 57 g
�90 m : 3 § 2 1 45 33 15 1e 2e 63 es _
m 33 227 51 4 1e ' 1e q
77 as 4227 : 33 45 S! 42 2
, 2400 m m 4627 27 27 45 42 2 18 21 15
2600 m k FF 3 !e 16 27�
2eo-Om 36 36 36 36
33 224 60 45 15 ! 33
l000 m 24 24 39 46 45 27 27 75 75 15 533
32 m p A q �55 33
3400 m 5 I S ' A 22 2
3600 m B§ 4 48 15 27
380
m 6 54 3 �S m
0 m 1 105 as
45 m so 24 57 1 60 6108 1 60 @ 78 27
30 _m 2 @ 0!987 @ 39
m ( 45 542 51 60 @
7000 m @ ' B§ 60 6 72 42 6D 869 09 es 75
8000 m sa ee60 66 45 00 DR 1 111 A
9000 m se 69 45 q " @ 81 q
] OO m 34 . �47 ! ' @ i96 !
p4e Oh�fsicn Modeling &ysf!
f£Z A--&xfates, Inc.
Table 4-2 Fence Lire Receptor Locations and Elevations
-.....................- -.............._
Receptor Y Elevation
1 -1.57.1 145.9 9-
-_..........- ....................
-
2 -105-0 136.6 3-
3 -57-6 120.7 9.
4 -9.2 114.0 9.
.................. --
5 39.3 101.5 12.
6 88.1 90-3 12,
-- ........................ _
.........._
7 136.8 79.0 9,
8 147.7 51 A 12,
--._............... _.
9 147.5 3.6 15,
.....--...---
10 113-7 -26.4 21,
11 76-9 -60.2 24,
............ - --
12 3.6.0 - 1,2 24.
_....... ..... --.....................
13 -13.1 -101-7 27.
...............
_.--
14 -63.0 -99.€t 24,
5 -110.2 -96.0 24,
- ..............1 -
-160.1 -9 .9 24-
............ --....................
17 -163.G -50.3 24-
18 -158-0 A4 21,
1 -157-7 45,6 18.
......... -
20 -157.4 5,6 12
21 -157.2 13.5,E 9.
............ - -
�rrarrdavcr�nmfirxnl �rn�oc c fvc' l age 15 OiVvaion Mcx fife,Afydfysis
F,0511017 Assrxmles, Inc.
REFERENCES
Auier, A.11 , 1977. "Correlation of Land Use and Cover with Meteorological Aniomalies'. Journal of
Apphod Mute€>rology, 17,636-643.
DEECO, 2003: -5(ationafy Sotrxc.Sampling Re-port- Wheelabraeor Nort)) .4r)[r+ovC.*r, Re-fiNence o.03-
2016, Test Dates: April 14 —April 16, 2003, DEl=CO, Cary, NC.
0i Cristofaro D., 199 : Air Quo AtyModelrng Protocol far tho I hcwlabratt�rEnvilonn7enlal,S slems,
lrrc. Notch Ar)dover Resource Recovery F,idl'ty Mas-5;a ha5etts REF1JSETFOf, bf c. Deport N o.
A 70-1. Sigma Research Corporation, Concord, MA-
EPA, 1985. "Guideline for Determination of Good Engineering Practice Stack Height', EPA-45014-
80-023€2, U-S- E nvi ron men(al Protection Agency, Research Triangle Park, NC,
EFIA, 1995. "11s(-r's Guicue for the I rid ustrial Source Com1)lex OSC3) Dispersioix o&-!fs — VoIUme II
— Description of Model Algorithms"- FPA-45416-95-003b, U.S. Lnvimnmental Protectlon
Agency, Research Triangle Park, NC,
EPA, 1997: Gui&?Anp oa Air- Quality A4odek tRevised). Ef' -4501 -7"271 R. U.S. ErWir«rtmental
Protection Agency, Research Triangle Park, NC.
- - ..........
Irr r�clavr�r�nrofornl r rtocx Jr,cfvc !'age lc) peferenc'es
psflon Assocfoles; Inc.
APPENDIX
Figure -2 199,2,Amvual 'Wind Brew from Boston, Mlassachusetts
Figure - . 1993 Annual Wand Bose dram Roston, MassadikiseM
Figure AA. 1994 AnnuallWind Rose from Bbsto , Massachusetts
Figure -, , 1995 Annual ' kd"in)d Rase from Rostont Massachusetts
i
t
I
Tlao PS I LON ASSOCIATES INC.
Engineers gill Environmental CIS result nt
G
1
;
I
.................
o I"�
III I
II �
I
Calm Winds 0.41%
Legend
1 .1 ��,.� Annual Wind Rose
.� 1991
„/'
Wind Spiced Logan International Airport
Boston,
Notes:
Dirlll.gM.M of thefrequency of occurivnce of cacti,, inn duaeefion,,
Wind dhv tion is the dire tion fi-ouni which [lie wind i' bh.9ww iI'kg.
FMI URE -1
1991 Annual Wind Rose from Boston, Mas,sachuisetts,
I
M Engineers EmIronmental Consultants
M' PSILOINASSOCIATIES INC.
4
i
129,16
wt
.I� Calm, Wind 0 3%
Legend
3.5 Annual Wi�nd Rose
11992
Win(I Speed Logan International Airport,
Bostan, MA
Notes,
Diagram of the fte(juency Of O1Ce t.].C'�JC fL each wind direction,
Wind dircclion is the direction from which. the wind, is, blowing
FIGl IRE
19912 Annuall Wind Rose from Boston, Massachusetts
1
IroroPSILONASSOCIATES INC
v.
i
i
w X'
,psi ✓u�ll�
Galin Winds 0.111
S
Legend
end
.� Annu.0 l Wind Rose
f 1993
WindSpecd (mcfers second) Logan International Airport
Boston,t n, M
Nol.c :
➢ iagrain of the frequency of Occurrerwe of each wind dire;lio11,
Wind dirt° clion :i. the direction fn,)Tn NVI 4ch due, wind is I)Io inn,
FIGURE,
1993 Annuai Wind Rose from Boston, Massachusetts
i
PS I LO N
As , zs INS,.
u
P
d
...............
..................
rl
i
1
9
����;'�
w
i
i I
�lyl
Calm Winds . %
S
Legiend
n iut l Wind IR
1994
WiFid Speed,Ma tte /second), Logan International Airport
Boston, MIA
Notes:
,a
Diagram of the fi-equency of occurrence,air acll wind direction.
Wind, dinecticni is the a'liu-ectio n famom which the wind is blowing.
FIGURE A-4
MPSILON
ASSOCIATES I .
I
N
W—— +E
�i
II�I I
6 i
i il'Ir� ti ,
PI d 4'
Calm Winds, 0. 16%
S
Legend .� &2 ULU Annual Wind Rose
1995
Wind Speed (nieters/seerand) Logan International Airport
Boston, MA
Notes:
Wind dirvction is ih du ef.(i n rrofrt which ire wind is bhrwin ,
FIRE -fir
1995 Annual Wind Hose from Boston, Massachusetts