No preview available
HomeMy WebLinkAboutWheelabrator - 2022 Air Quality Report Vol 1 - Consultant Review - 285 HOLT ROAD 1/13/2023 i Wheelabrator NORTH ANDOVER BWP — Air Permits Division of Air Quality Massachusetts Department of Environmental Protection 205B Lowell Street Wilmington MA 01887-2941 RE: Wheelabrator North Andover, Inc. Emission Test and Ambient Air Quality Modeling Reports To whom it may concern: Please find enclosed the most recent October 2022 stack test and air quality modeling report prepared by DEECO Inc., based on sampling conducted in October 17-18 & 25-28, 2022 in accordance with MADEP and Title V permit requirements. The corresponding air quality modeling analysis, as approved by Mr. Glenn Pacheco of MassDEP-Boston in an e-mail dated May 23, 2016, was done by a scaling analysis. The scaling analysis is allowable under the MADEP's DAQC Policy 91-001. The modeling results are integrated into this report in lieu of a separate report. All test and modeling results are in compliance with the standards. I certify that I have personally examined the foregoing and am familiar with the information contained in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including possible fines and imprisonment. Sincerely, Erik Lueders Date: / I3113 Plant Manager cc: File North Andover Town Manager (2) North Andover Board of Health (1) T. LoRe- Town of North Andover Consultant (1) EPA Region I Air Compliance Clerk (1) AIR3210 2021- April NAND Annual Stack Test Report AIR3250 2021- April NAND Air Quality Modeling Analysis Report 285 hiol[!load I North Andover,MA 01845 tel 978,688,9011 fax 978.794,8OS8 i www,w#ienergy.com TEST REPORT 2022 COMPLIANCE TEST PROGRAM FOR UNIT NOS. 1 & 2 (Volume 1 of 2) Prepared For: q WHEELABRATOR NORTH ANDOVER, INC 285 Holt Road North Andover, MA 01845 9 Prepared By: ;r Montrose Air Quality Services, LLC 2 New Pasture Road, Unit 5 Newburyport, MA 01950 Document Number: N E01 3AS-021420-RT-1 303 Test Dates: October 17-18, 2022 & October 25-28, 2022 STAO?� "� T[7AytHlaFal6vNlY iv 0 ll4 k aS il. C ER7 uS9}fill 1IIt kiAi t I N' �I RV I ti i Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28,2022 1 TABLE OF CONTENTS SECTION PAGE 1.0 INTRODUCTION AND SUMMARY..................................................................................... 9 1.1 PROGRAM BACKGROUND........................................................................................ 9 1.2 OUTLINE OF TEST PROGRAM.................................................................................. 9 1.3 TEST PARTICIPANTS ................................................................................................ 9 2.0 SUMMARY OF RESULTS ..................................................................................................13 2.1 OVERVIEW................................................................................................................13 2.1.1 Reporting of Non-Detected (ND) Values ............................................................13 2.2 ABORTED AND/OR INVALIDATED RUNS ................................................................13 2.3 PARTICULATE AND METALS BLANK ANALYTICAL RESULTS...............................13 2.4 PCDDIPCDF ANALYTICAL RESULTS.......................................................................14 2,5 CONDENSABLE PARTICULATE BLANK ANALYTICAL RESULTS...........................14 3.0 PROCESS DESCRIPTION AND OPERATION ...................................................................32 3.1 GENERAL.,.................... ....... ............................................ ...... .........................32 3.2 SOURCE AIR FLOW..................................................................................................32 3.3 OPERATION DURING TESTING...............................................................................32 4.0 SAMPLING AND ANALYTICAL PROCEDURES.................................................................35 4.1 EPA METHOD 1, TRAVERSE POINTS......................................................................35 4.2 EPA METHOD 3, FLUE GAS COMPOSITION ...........................................................39 4.3 EPA METHOD 5129, PARTICULATE MATTER AND METALS...................................39 4.4 EPA METHOD 202, CONDENSABLE PARTICULATE MATTER ...............................40 4.5 EPA METHOD 26A (MODIFIED), HYDROGEN CHLORIDE AND AMMONIA EMISSIONS........................................................................................................................42 4.6 EPA METHOD 23, POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS (4-8 PCDDIPCDF) EMISSIONS .......................43 4.7 EPA METHOD 9 AND 22, VISIBLE AND FUGITIVE EMISSIONS..............................44 4.8 ASH COLLECTION ....................................................................................................44 4.9 EQUIPMENT CALIBRATION......................................................................................44 5.0 QUALITY ASSURANCE AND REPORTING .......................................................................45 5.1 SAMPLING AND ANALYTICAL QAIQC .....................................................................45 5.2 SAMPLING EQUIPMENT MAINTENANCE AND CALIBRATION ...............................46 5.2.1 , Equipment Inspection and Maintenance ............................................................46 5.2.2 Equipment Calibrations......................................................................................46 5.3 ANALYTICAL QAIQC RESULTS................................................................................47 I NE01 3AS-021420-RT-1 303 Page 2 of 55 r�; r�� ivl I Itii` i Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28,2022 1 LIST OF TABLES TABLE1-1 TEST LOG..............................................................................................................10 TABLE 1-1 TEST LOG (continued) ...........................................................................................11 TABLE 1-2 TEST PARTICIPANTS............................................................................................12 TABLE 2-1(A) OVERALL SUMMARY OF TEST RESULTS UNIT NUMBERS 1 AND 2............15 TABLE 2-1(B) AERMOD PREDICTED CONCENTRATIONS COMPARED TO MASSACHUSETTS GUIDELINES'OCTOBER 2022 STACK TEST RESULTS ...16 TABLE 2-1(C) STACK PARAMETERS FOR THE NORTH ANDOVER FACILITY JANUARY 2016 VERSUS OCTOBER 2022 ...................................................................................17 TABLE 2-1(D) QUARTERLY ROLLING AVERAGE MERCURY EMISSIONS SUMMARY UNIT NUMBERS1 AND 2 .............................................................................................18 TABLE 2-1(E) FACILITY AIR FLOW DATA....................................... .......................................18 TABLE 2-2 SUMMARY OF TEST RESULTS UNIT NO. 1.........................................................19 TABLE 2-3 SUMMARY OF TEST RESULTS UNIT NO. 2.........................................................20 TABLE 2-4 PERFORMANCE TEST BASED OPERATING REQUIREMENTS..........................21 TABLE 2-5 HYDROGEN CHLORIDE AND AMMONIA EMISSIONS UNIT NO. 1 .....................22 TABLE 2-6 PARTICULATE, METALS AND MERCURY EMISSIONS UNIT NO. I ....................23 TABLE 2-6 CONTINUED ..........................................................................................................24 TABLE 2-6(B) CONDENSABLE PARTICULATE EMISSIONS UNIT NO. 1...............................25 TABLE 2-7 PCDDIPCDF EMISSIONS UNIT NO. 1...................................................................26 TABLE 2-8 HYDROGEN CHLORIDE AND AMMONIA EMISSIONS UNIT NO. 2 .....................27 TABLE 2-9 PARTICULATE, METALS AND MERCURY EMISSIONS UNIT NO. 2—..... ........—28 TABLE 2-9 CONTINUED ..........................................................................................................29 TABLE 2-10 PCDD/PCDF EMISSIONS UNIT NO. 2.................................................................30 TABLE 2-11 UNIT NO. 1 & 2 ASH PCDDIPCDF CONCENTRATIONS-...................................31 TABLE 3-1 UNIT NO. 1 & NO. 2 OPERATING PARAMETERS SUMMARY, TEST INTERVAL AVERAGES..........................................................................................................34 TABLE 5-1 SUMMARY OF ANALYTICAL QAIQC RESULTS ...................................................48 TABLE 5-2 SUMMARY OF DUPLICATE ANALYSIS FOR MERCURY— UNIT NO. 1 ...............49 TABLE 5-3 SUMMARY OF DUPLICATE ANALYSIS FOR MERCURY - UNIT NO. 2--........—50 TABLE 5-4 METALS BLANKS AND DUPLICATE ANALYSES RESULTS ................................51 TABLE 5-5 METALS REAGENT BLANKS CORRECTION RESULTS ......................................51 TABLE 5-6 EPA METHOD 5 BLANK CORRECTION RESULTS ..............................................52 TABLE 5-7 PCDDIPCDF BLANKS ANALYSES RESULTS.......................................................53 TABLE 5-8 PCDDIPCDF FLUE GAS SURROGATE STANDARDS PERCENT RECOVERIES 54 NE01 3AS-021420-RT-1 303 Page 3 of 55 110 0 i`q'i k( )`y I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dales: October 17-18, 2022&October 25-28, 2022 TABLE 5-9 PCDDIPCDF FLUE GAS EXTRACTION STANDARDS PERCENT RECOVERIES54 TABLE 5-10 PCDDIPCDF ASH EXTRACTION STANDARDS PERCENT RECOVERIES.........54 TABLE 5-11 PCDDIPCDF ASH CLEAN UP STANDARDS PERCENT RECOVERIES .............55 LIST OF FIGURES FIGURE 3-1 UNIT NOS. 1 & 2 AIR FLOW SCHEMATIC ..........................................................33 FIGURE 4-1 UNIT NOS. 1 AND 2 SDA INLET TEST LOCATIONS ..........................................37 FIGURE 4-2 UNIT NOS. 1 AND 2 FF OUTLET TEST LOCATION............................................38 ! N E01 3AS-021420-RT-1303 Page 4 of 55 \I1: [S L7:.31IS 1 ll1'IIl1 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022&October 25-28,2022 APPENDICES A - Test Results (Volume 1) Al — Unit No.1 Inlet Hydrogen Chloride A2 — Unit No.1 Inlet Mercury A3 — Unit No.1 Outlet Hydrogen Chloride and Ammonia A4 — Unit No.1 Outlet Particulate, Metals and Mercury A5— Unit No,1 Outlet PCDDIPCDFs A6— Unit No.1 Outlet Condensable Particulate A7 -- Unit No.2 Inlet Hydrogen Chloride A8 — Unit No.2 Inlet Mercury A9 — Unit No.2 Outlet Hydrogen Chloride and Ammonia A10 — Unit No.2 Outlet Particulate, Metals and Mercury All — Unit No.2 PCDDIPCDFs B - Field Data (Volume 2) B1 — Unit No.1 Inlet Hydrogen Chloride B2 -- Unit No.1 Inlet Mercury B3 — Unit No.1 Outlet Hydrogen Chloride and Ammonia B4 — Unit No.1 Outlet Particulate, Metals and Mercury B5 — Unit No.1 Outlet PCDDIPCDFs B6 — Unit No.1 Outlet Condensable Particulate B7 — Unit No.2 Inlet Hydrogen Chloride B8 -- Unit No.2 Inlet Mercury B9 — Unit No. 2 Outlet Hydrogen Chloride and Ammonia B10 — Unit No.2 Outlet Particulate, Metals and Mercury Bl 1 — Unit No.2 PCDDIPCDF Bl2 —Ash Sampling Bl3 — Fugitive Emissions C - Analytical Data (Volume 2) Cl — Hydrogen Chloride, Ammonia, and Condensable Particulate C2 — Particulate, Metals and Mercury C3 — Flue Gas PCDDIPCDFs C4 —Ash PCDDIPCDFs D - Calibration Data (Volume 2) D1 —Calibration Documentation D2 —AETB Documentation E - Process Data (Volume 1) El — Process Parameters` Test interval Averages E2 -- Continuous Opacity Monitoring System (COMS) data NE01 3AS-021420-RT-1 303 Page 5 of 55 1V►(�I`� 1 It �� 4. Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022&October 25-28,2022 STATEMENT OF CERTIFICATION REPORT: 2022 COMPLIANCE TEST PROGRAM FOR UNIT NOS. 1 & 2 All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project. Signature: Date: 12128I22 Name: Michael Bruni Title: Client Project Manager NE013AS-021420-RT-1303 Page 6 of 55 .}If' c111,11111' 11:1'Il+ Wheelabrator Environmental Systems, Inc.—Wheelabrator N, Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28, 2022 TEST REPORT DISTRIBUTION LIST TITLE: 2022 COMPLIANCE TEST PROGRAM FOR UNIT NOS. 'I & 2 Date Number of Paper Delivered To Company/Agency Co ies 113123 1 David Cribbie Wheelabrator Date Number of Delivered To Company/Agency Electronic Copies 1/3/23 S David Cribbie Wheelabrator NE013AS-021420-RT-1303 Page 7 of 55 tvi t N I l E 1,' I + 'i 1 Wheelabrator Environmental Systems, Inc.—Wheelabralor N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28, 2022 REVISION DESCRIPTION TITLE: 2022 COMPLIANCE TEST UNIT NOS. 1 & 2 Revision Revision Date Revision Description Number NE013AS-021420-RT-1303 Page 8 of 55 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022 &October 25-28,2022 1.0 INTRODUCTION AND SUMMARY 1.1 PROGRAM BACKGROUND Wheelabrator North Andover, Inc. contracted Montrose Air Quality Services, LLC (Montrose) of Newburyport, Massachusetts to conduct performance tests to demonstrate compliance with 310 CMR 7.08,the facility's Emission Control Plan MBR-98-ECP-005 and the Title V Operating Permit MBR-95-OPP-012. North Andover operates two (2) 750-ton per day mass-fired municipal refuse combustion furnaces. Each combustor is equipped with a spray dryer absorber (SDA) and fabric filter(FF), a Selective Non-Catalytic Reduction (SNCR) NO,, control system and powdered activated carbon injection system (PACTS). Combustion gases exit the boiler economizer into the SDA and FF. Flue gases exit the FF to an induced draft fan prior to entering separate flues in a common stack. This report presents the test results for particulate, cadmium, lead, mercury, dioxin/furans, hydrochloric acid, ammonia, and visual/fugitive emissions. Upon request by the Massachusetts Department of Environmental Protection, testing for condensable particulate matter was conducted. These tests were performed concurrently with Method 5 particulate matter testing on Unit No. 1 for informational purposes only. Process ash samples were taken concurrently with the dioxin/furans sampling and analyzed for dioxin/furans. Those results are also presented. In accordance with 40 CFR 60.58b(c)(6) and 60.11(e)(5), Wheelabrator North Andover elects to submit continuous opacity monitoring system (COMS) results in lieu of EPA Method 9 observations to establish compliance with the opacity standard. Only COMS data recorded concurrently with particulate matter sampling are provided in Appendix E in reference to 40 CFR 60.11(e)(6) and the facility operating permit. 1.2 OUTLINE OF TEST PROGRAM Stationary source sampling was performed for Wheelabrator North Andover at their facility in North Andover, Massachusetts on October 17-18 2022 & October 25-28, 2022. A test log summarizing sampling locations, sampling objectives, sampling methods, test dates, and test run numbers for the test program is in Table 1-1. 1.3 TEST PARTICIPANTS A list of personnel involved in this test program is provided in Table 1-2. NE01 3AS-021420-RT-1 303 Page 9 of 55 14 {l Wheelabrator Environmental Systems, Inc, —Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18, 2022&October 25-28, 2022 TABLE 1-1 TEST LOG Sampling Location Sampling Parameter Test Method Test Date Test Time Test Run Number Facility Ash Handling! 10118/2022 09:40-10:50 Ash l landler-M22-Rl Metals Lash System Fugitive Emissions EPA Method 22 10127/2022 12:05-13:25 Ash Handler-M22-R2 10128/2022 10:00-11:10 Ash Handler-M22-133 Oxygen and Carbon Dioxide EPA Method 3 10127/2022 09:25-10:25 Unit1-In-M26A-R1 Gas Stream Moisture EPA Method 4 11012712022 12:50-1150 Unil1-In-M26A-R2 HCL EPA Method 26A 10/27/2022 16:50-16:50 Unil1-In-M26A-R3 Unit No.1 SDA Inlet' Volumetric Flow Rate EPA Methods 1 and 2 10/27/2022 09:25-11:35 Untt1-In-M29-R1 Oxygen and Carbon Dioxide EPA Method 3 10/27/2022 12:50-15:13 Units-in-M29-R2 Gas Stream Moisture EPA Method 4 10/27/2022 15:50-18:02 Unitl-In-M29-R3 Mercury EPA Method 29 10/28/2022 08:16-10:20 Unil1-In-M29-R4 Volumetric Flow Rate EPA Methods 1 and 2 10/25/2022 07:50-111:55 UnIt1-Out-M23-R1 Oxygen and Carbon Dioxide EPA Method 3 10/25/2022 12:15-16:50 Unitl-Out M23-R2 Gas Stream Moisture EPA Method 4 10/26/2022 07:35-11:40 Unit1-Out-M23-133 PCDDIPCDFs EPA Method 23 Oxygen and Carbon Dioxide EPA Method 3 10/27/2022 09:25-10:25 Urit1-Out-M26A-RI Gas Stream Moisture EPA Method 4 10/27/2022 12:50-13:50 Unitl-Out-M26A-R2 HCL and NH3 EPA Method 26A 10/27/2022 15:50-16:50 Unit1-Cut-M26A-R3 Unit No. I FF Outlet' Volumetric Flaw Rate EPA Methods 1 and 2 10/27/2022 09:25-11:35 Uniti-Out-M5129-RI Oxygen and Carbon Dioxide EPA Method 3 10/27/2022 12:50-15:13 Unitl-Out-M5129-R2 Gas Stream Moisture EPA Method 4 10/27/2022 15:50-18:02 Unit1-0ut-M5129-R3 Particulate,Cd,Pb,and Hg EPA Method 5/29 10/28/2022 08:15-10:20 Un1t1-Out-M5129-R4 Volumetric Flow Rate EPA Methods 1 and 2 10/27/2022 09:25-11:35 Unitl-Out-M202-RI Oxygen and Carbon Dioxide EPA Method 3 10/27/2022 12:50-15:13 Unit1-Out-M202-R2 Gas Stream Moisture EPA Method 4 10/27/2022 15:50-18:02 Unitl-Out-M202-R3 Condensable Particulate EPA Method 202 'Unit 1 experienced a superheater tube leak during the week of October 17th and was taken off line for repair. Unit 1 Compliance testing was rescheduled for the week of October 24th, based on vendor availability. NE01 3AS-021420-RT-1 303 rage 10 of 55 i I lei 1;;{ � `�► .tl li <11.11 115' ♦I 1l4'I i t V Wheelabrator Environmental Systems, Inc. —Wheetabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28, 2022 TABLE 1-1 TEST LOG (CONTINUED) Sampling Location Sampling Parameter Test Method . Test Date Test Time Test Run Number Oxygen and Carbon Dioxide EPA Method 3 10/18/2022 09:40-10:40 Unit2-In-M26A-R1 Gas Stream Moisture EPA Method 4 10/1812022 12:38-13:38 Unit2-In-M26A-R2 HCL EPA Method 26A 10/19/2022 07:50-08:60 Unit2-ln-W8A-R3 Unit No,2 SDA inlet Volumetrlc Flaw Rate EPA Methods 1 and 2 10/18/2022 W40-11:63 Untt2-ln-M29-R1 Oxygen and Carbon Dioxide EPA Method 3 10/18/2022 12:38-15:50 Unit2-ln-M29-R2 Gas Stream Moisture EPA Method 4 10/19/2022 07:50-10:00 Unit2-ln-M29-R3 Mercury EPA Method 29 10/19/2022 10:22-12:27 Unl(2-In-M29-R4 Volumetric.Flow Rate EPA Methods 1 and 2 10/1812022 09:40-13:43 Un€t2-Out M23-R1 Oxygen and Carbon Dioxide EPA Method 3 10/19/2022 07:50-11:54 LJnit2-Out-M23-R2 Gas Stream Moisture EPA Method 4 10/1912022 12:38-16:42 Un1t2-Out-M23-R3 PCDDIPCDFs EPA Method 23 Oxygen and Carbon Dioxide EPA Method 3 10/18/2022 09:40-%40 Unit2.Out-M26A-R1 Unit No.2 FF Outlet Gas Stream Moisture EPA Method 4 10/18/2022 12:38-13:38 Unit2-Out-M26A-R2 HCL and NH3 EPA Method 26A 10/19/2022 07:50-08:50 Unit2.Out-M26A-R3 Volumetric Flow Rate EPA Methods 1 and 2 10/18/2022 09:40-11:53 Unit2-Out-M5/29-Rl Oxygen and Carbon Dioxide EPA Method 3 10/18/2022 12:38-1 5:50 Unit2-Out-M5129-R2 Gas Stream Moisture EPA Method 4 10/19/2022 07:50-10:00 Unit2-Out-M5129-R3 Particulate,Cdk Pb,and Hg EPA Method 5/29 10/19/2022 10:22-12:27 Unit2-but-M5129-R4 NE01 3AS-021420-RT-1 303 Page 11 of 55 1{ AYIti .VI I' 00,.111i Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18,2022&October 25-28, 2022 TABLE 1-2 TEST PARTICIPANTS Facility Information Source Location: Wheelabrator Technologies Inc. Wheelabrator N. Andover, Inc. 285 Halt Road N. Andover, MA 01845 Project Contact: Mr. David Cribbie Mr. Kevin Beauregard Role: Source/Corporate Contact Source Contact Telephone: 603,393.4973 978.688.9011, ext. 223 Company: Wheelabrator Technologies Inc. Testing Company Information Testing Firm: Montrose Air Quality Services, LLC (Montrose) 2 New Pasture Rd. Unit 5 Newburyport, MA 01950 Contact: Michael Bruni, QSTI Title: Client Project Manager Phone: 978.499.9300 x11306 Email: mbruni@montrose-env.com Dioxin/Furan Laboratory Information Laboratory: SGS North America Wilmington, NC 28403 Contact: Amy Boehm Phone: 910.784.1613 Particulate & Metals Laboratory Information Laboratory: Element One Contact: Ken Smith City, State: Wilmington, NC 28403 Phone: 910.793.0128 Hydrochloric Acid and Ammonia Laboratory Information Laboratory. Enthalpy Analytical, LLC Contact: Ashley Miller City, State: Durham, NC 27713 Phone: 919.850.4392 NE013AS-021420-RT-1303 Page 12 of 55 rA'I .tll: 00,\IIII \I,11'f Iti Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28, 2022 2.0 SUMMARY OF RESULTS 2.1 OVERVIEW Tables 2-1(a), 2-1(d), and 2-2 through 2-4 present the emissions results for compounds having specific emissions stated in the applicable permit limits and/or required process parameters. Testing for condensable particulate was conducted on Unit No. 1 for informational purposes only with the data presented without a limit, along with the conventional particulate emissions results. Tables 2-1(b), 2-1(c), and 2-1(e) present a summary of modeling and stack parameters data. Tables 2-5 through 2-10 present run-by-run and sample-by-sample summaries; refer to the "List of Tables" and the "List of Figures" of the "Table of Contents" for a cross reference. Table 2-11 presents process ash dioxin/furans results. Detailed test results are presented in Volume 1, Appendix A; field and analytical data can be found in Volume 2,Appendices B and C, respectively; pertinent calibration data can be found in Volume 2, Appendix D; and detailed process data can be found in Volume 1, Appendix E. 2.1.1 Reporting of Non-Detected (ND) Values For all ND results for all emissions in all test report summary tables, the following guidelines have been followed: • ND values are reported as "ND (detection Limit)" with the detection limit in parentheses in the reported unit (unless otherwise noted on each summary table). • ND values for single test runs results are equal to zero (0) when calculating test averages (unless otherwise noted on each summary table). • ND values for single fractions (i.e. front-half or back halo are equal to zero (0) when calculating collection totals (unless otherwise noted on each summary table). • When all individual test results are ND, the average is reported as"ND (average detection limit)" (unless otherwise noted on each summary table). • When all individual fractions of a single test run (i.e. front-half and back-half) are ND, the total collection is reported as "ND (sum of detection limits)" (unless otherwise noted on each summary table). 2.2 ABORTED AND/OR INVALIDATED RUNS No test runs were aborted or invalidated during this test program. 2.3 PARTICULATE AND METALS BLANK ANALYTICAL RESULTS Particulate matter and metals were measured as part of a combined EPA Method 5/29 sampling train. The acetone reagent blank analytical result was < 0.1 mg residual particulate matter in a 100ml sample. The reagent blank analytical results for the combined front/back half fractions of lead was 0.517 pg. The reagent blank analytical results for the combined front/back half fractions of cadmium was determined to be < 0.2 lag. The reagent blank analytical results for mercury was below analytical detection limits. In accordance with Section 12.8 of EPA Method 5 and Section 12.6 and 12.7 of EPA Method 29, the runs' analytical results were adjusted to account for the reagent blank results for those blanks that were above analytical detection limits, the adjusted NE01 3AS-021420-RT-1 303 Page 13 of 55 .S3 f', ll l,il 111 1F':t'Il Iti Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28,2022 results were used in the concentration and emission rate calculations. Metals and particulate blank corrections are presented in Table 5-5(a) and 5-5(b), respectively. 2.4 PCDD/PCDF ANALYTICAL RESULTS A single symbol is used in the presentation of the analytical results. The symbol indicates results that have special significance and require different procedures in calculations and data interpretation. All symbols surrounded with "ND( )" and "{ }" carry this significance and are addressed as follows: The data reporting procedures outlined in EPA Method 23 are used in presenting all analytical results. For analytical results that were below detection limits, the values are surrounded by "NDQ", and are considered zero for calculating total catch weights per EPA Method 23, Section 9.9. Several results are reported as Estimated Maximum Potential Concentrations (EMPC). EMPC results do not meet all the identification criteria to be positively identified as a dioxin or furan since the integrated ion abundance ratios were not within 15% of the theoretical values specified in Method 23 Section 5.3.2.5, Table 4. For this reason, all EMPC results are enclosed in brackets () and are considered zero when calculating total dioxin/furans. 2.5 CONDENSABLE PARTICULATE BLANK ANALYTICAL RESULTS The field train recovery blank analytical result was 3.6 mg. In reference to section 9.10 of Method 202, the maximum allowable correction is limited to 2.0 mg. 1.3 mg was used for correction of all analytical catch weights. Analytical results, along with field train recovery blank correction calculations, are provide in Appendix C, Section C1. NE01 3AS-021420-RT-1 303 Page 14 of 55 It t J`,I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28,2022 TABLE 2-1(A) OVERALL SUMMARY OF TEST RESULTS UNIT NUMBERS 1 AND 2 310 CMR Test Series' Test Series' Operating 7.08(2) Average for Average for Permit Emission Emission Emission Test Parameter Unit 1 Unit 2 Limit Limits Process Parameters -- -- -- - Steam Flow, Klb/hr' 165.4 165.9 N/A NIA Inlet Temperature, °F2 309 310 NIA N/A Carbon Feed Rate, Ib/hr3 12 12 NIA NIA DioxinslFurans -- -- -- -- FF Outlet ng/dscm @ 7% OZ 6.96 6.62 30 30 Cadmium Emissions -- -- -- -- FF Outlet mg/DSCM @ 7% 02 0.0006 0.0005 0.02 0.02 Hydrogen Chloride Emissions -- -- -- -- SDA Inlet ppmVd @ 7%02 694.6 407.1 NIA NIA FF Outlet ppm d @7% 02 19.2 6.6 294 or 294 or Removal Efficency (concentration basis) 9723.3% 9801.4% z95%4 Z95%4 Lead Emissions -- -- -- -- FF Outlet mg/DSCM @ 7%02 0.006 0.006 0.440 0.400 Mercury Emissions -- -- -- -- SDA Inlet mg/DSCM @ 7%02 0.013 0.022 NIA NIA FF Outlet mg/DSCM @ 7% 02 0.001 0.002 0.080 6 0.050 6 Removal Efficency(concentration basis) 94.0% 92.7% NIA or>85%6 Opacity -- -- -- -- % 0.6 0.8 10% 10% Particulate Matter Emissions -- -- -- -- FF Outlet mg/DSCM @ 7% 02 1.80 1.03 27 25 Ammonia Emissions -- -- -- -- FF Outlet ppmvd @7%02 1.75 1.18 101 NIA Condensable Particulate Matter Emissionss -- -- -- FF Outlet mg/DSCM @ 7% 02 7.58 N/A NIA NIA Fugitive Emissions, % -- - -- -- (Common Sources for Units 1 and 2) 0% 50/0 5% Average stem flow rate during dioxinlfurans testing. 2Average FF Inlet Temperature during dioxinlfcrans testing. 3 Carbon feed rates during mercury or dioxin testing,whichever test series has the higher average. "Hydrogen Chloride permit limits are 29ppm,d @ 7%02 or z95%removal efficiency. s Single quarterly emission limit in accordance with 310CMR 7.08(2)(8)(2)is 0.080 mgldscm @ 7%02 e Mercury limit expressed as 0.050 mgldscm @ 7°1%02or"5%removal efficiency,whichever is less restrictive. 'Ammonia emission limit is 10 ppm d @7%02,state only enforceable limit. 8 Condensable Particulate emissions are provided as additional information at the request of the agency. NE013AS-021420-RT-1303 Page 15 of 55 10 N I I( ),' 1 r�"3' �� /.ikt .i lf,tl I11 ♦I !`'I 1 ' Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18, 2022&October 25-28,2022 TABLE 2-1(B) AERMOD PREDICTED CONCENTRATIONS COMPARED TO MASSACHUSETTS GUIDELINES'OCTOBER 2022 STACK TEST RESULTS AERMOD October 2022 Total(Units 1&2) MA DEP Guidelines Emission Ratesz Modeled Concentrations 24-Hour Annual Unit 1 Unit 2 24-flour Annual TEL AAL Pollutant (9/s) (0) W/O) flag/ml W/m31 hAg/0) Ammonia (NH3) 4.03E-02 3.02E-02 8.87E-02 5.29E-03 1.00E+02 1..00E+02 Cadmium (Cd) 2,10E-05 1.85E-05 4.97E-05 2.97E-06 3.00E-03 1.00E-03 Hydrogen Chloride(HCI) 9.63E-01 3.57E-01 1.66E+00 9,90E-02 7.00E+00 7.00E+00 Lead (Pb) 2.00E-04 2.02E-04 5.05E-04 3.02E-05 1,.40E-01 7.00E-02 Mercury(Hg) 2.31 E-05 5.59E-05 9.93E-05 5.93E-06 1.40E-01 7.00E-02 PCDD/PCDF (MA Toxic Equivalent) 1.56E-09 1.81 E-09 N/A 2.53E-04 N/A 4.50E-02 ;Scaling analysis conducted utilizing normalized emissions(Q=1g/s)as determined by Epsilon Associates Inc.AERMOD Air Quality Modeling Analysis of the Wheelabrator North Andover Facility using the January 2016 Stack Test Data,March 9,2016. 2 Mass emission rates presented from Tables 2-5 through 2-10(ammonia,metals,hydrogen chloride,PCDD/PCDFs). 100% '.. boiler availability assumed in calculations(actual=94%). From March 2016 Epsilon Associates Inc. Modeling Report,Table 2, Maximum Modeled Unit Concentrations (Vg/m3 per g/s) AERMOD(15181)with Lawrence/Gray 2009-2013 met data(AERMET14134) 24-hour: 1.25718 Annual: 0.07503 NE01 3AS-021420-RT-1 303 Page 16 of 55 ��I YP AIR MIAIII !VI, I Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022&October 25-28,2022 TABLE 2-1(C) STACK PARAMETERS FOR THE NORTH ANDOVER FACILITY JANUARY 2016 VERSUS OCTOBER 2022 Unit 1 Unit 2 January October January October 2016* 2022** 2016* 2022** Air flow rate (ACFM) 173,400 183,554 180,200 180,748 Exit temp (°F) 288.9 293.5 297.9 288.8 Exit velocity(m/s), Baseline January 2016* 23.29 Exit velocity(m/s), October 2022** 24.04 Exit Velocity%Variation from Baseline -3.2 Average Exit temp (°K), Baseline January 2016* 418.4 Average Exit Temp(°K), October 2022** 417.1 Average Exit Temp(°K)%Variation from Baseline 0.3R/o *Unit i baseline parameters from the Method 23 testing performed on January 13-14,2016. Unit 2 baseline parameters from the Method 23 testing performed on January 12-13,2016. Unit 1 and Unit 2 October 2022 parameters reflect all isokinetic testing(methods 23 and s/29 testing)performed on October 17-18&25-26,2022. NE013AS-021420-RT-1303 Page 17 of 55 Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dales: October 17-18, 2022 &October 25-28,2022 TABLE 2-1(D) QUARTERLY ROLLING AVERAGE MERCURY EMISSIONS SUMMARY UNIT NUMBERS 1 AND 2 18t 2nd 3rd 4th Operating Quarter Quarter Quarter Quarter Four Permit Average Average Average Average Quarter (4 quarter) Emission Test Parameter (7/2020) (4/2021) (1/2022) (1012022) Average Limit Unit No. 1 SDA Inlet tng/dscm @ 7% 02 0.040 0.039 0,045 0,013 0.034 NIA FF Outlet nig/dscm @ 7% 02 0.002 0.001 0.002 0.001 0.002 0.028 Removal Efficiency 96% 97% 96% 94% 96% NIA Carbon Feed Rate, Ib/hr 12 12 12 12 12 NIA Unit No. 2 SDA Inlet mg/dscm @ 7% 02 0.051 0.080 0.034 0.022 0.047 NIA FF Outlet mg/dscm @ 7% 02 0.002 0.002 0,002 0.002 0.002 0.028 Removal Efficiency 95% 96% 95% 93% 95% N/A Carbon Feed Rate, lb/hr 12 12 12 12 12 NIA TABLE 2-1(E) FACILITY AIR FLOW DATA Steam Air Flow Run Time Flow Flue Gas Air Flaw Air Flow dscfm Run Number Run Date Start stop kibs/hr Temp F acfm 02% CO2% dscfm 7%Oa Unit 1-M23-Run 1 10/25/2022 7:50 11:55 165.5 295.5 181,012 11.0 8.6 100,205 71,369 Unit 1-M23-Run 2 10/25/2022 12:15 16:18 164.7 295.0 184,450 10.9 8.7 101,454 72,989 Unit 1-M23-Run 3 10/26/2022 7:35 11:40 165.8 296.8 182,881 11.0 8.7 99,454 70,834 Unit 1-Out-M5/29-1 10/27/2022 9:25 11:35 165.3 293.1 185,427 11.5 8.1 100,432 67,918 Unit 1-Out-M5/29-2 10/27/2022 12:50 15:13 165 291.2 183,653 11.2 8.4 100,445 70,094 Unit 1-Out-M5/29-3 10/27/2022 15:50 18:02 166.0 293.0 183,865 10.9 8.6 100,274 72,140 Unit 1-Out-M5/29-4 10/28/2022 8:15 10:20 166.6 290.2 183,589 11.6 8 102,537 68,604 Unit 1 Average 165.6 293.6 183,564 11.2 8.4 100,6116 70,564 Unit 2-M23-Run 1 10/18/2022 9:40 13:43 166.7 290.8 179,422 10.4 9,1 97,189 73,416 Unit 2-M23-Run 2 10/19/2022 7:50 11:54 165.5 290.2 181,485 10.9 8.6 101,994 73,377 Unit 2-M23-Run 3 10/19/2022 12:38 16:42 165.4 290.4 176,926 11.1 8A 98,351 69,341 Unit 2-Out-M5/29-1 10/18/2022 9:40 11:53 166A 289.1 181,411 10.4 9.1 98,749 74,595 Unit 2-Out-M5/29-2 10/18/2022 12:38 15:50 166.7 290.3 181,719 10.3 9.3 98,625 75,210 Unit 2-Out-M5/29-3 10/19/2022 7:50 10:00 165.2 289.3 185,021 10.5 9.0 104,123 77,905 Unit 2-Out-M5/29-4 10/19/2022 10:22 12:27 165.9 281.3 179,255 10.9 8.6 102,599 73,812 Unit 2 Average 166.0 288.8 180,748 10.6 8.9 100,233 73,951 Facility Average 166.8 291,2 182,161 10.9 8.7 100,459 72,257 NE01 3AS-021420-RT-1 303 Page 18 of 55 jVl(g I' i I(e ):'i i .[i l 0111. 1115 ,i at•iriti Wheelabrator Environmental Systems, Inc.-Wheeiabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dates: October 17-18,2022&October 25-28, 2022 TABLE 2-2 SUMMARY OF TEST RESULTS UNIT NO, 1 Operating 310 CMR Permit 7.08(2) Second Fourth Emission Emission Emission Test Parameter First Run Run Third Run Run Average Limit Limits Process Parameters -- -- -- Steam Flow, Klbthr' 165.6 164.7 165.8 Not Run 166A NIA NIA Inlet Temperature, °F2 309 309 310 Not Run 309 NIA NIA Carbon Feed Rate, lb/hr9 12 12 12 Not Run 12 NIA NIA Dioxins/Furans -- -- -- -- -- -- FF Outlet ngldscm @ 7%02 6.80 5.49 5.58 Not Run 6,96 30 30 Cadmium Emissions -- -- -- -- -- -- FF Outlet mg/DSCM @ 7%02 0.0006 0.0006 0.0007 Not Run 0.0006 0.02 0.02 Hydrogen Chloride Emissions -- -- -- - -- -- -- SDA lnlet ppn%d @ 7%02 629.1 726.9 727.6 Not Run 694.6 NIA NIA FF Outlet ppm a @7%02 12.9 19.5 25.2 Not Run %2 20 or 29"or Removal Efficency(conc. basis) 97.9 97.3 96.5 Not Run 97.2 arm, z95%4 Lead Emissions -- -- -- -- -- -- FF Outlet mgIDSCM @ 7%02 0.007 0,005 0.006 Not Run 0.006 0.440 0.400 Mercury Emissions -- -- -- -- -- -- -- SDA Inlet mg/DSCM @ 7%02 0.009 0.015 0.011 0.016 0.013 NIA NIA FF Outlet mg1DSCM @ 7%% 0.001 0.001 0.001 0.001 0.001 0.0805 or 0.0506 or Removal Efficency(concentration basis) 92.1% 95.3% 93.3% 95.4% 94.0% NIA 2t850/66 Opacity -- -- -- -- -- -- -- % 0.6 0.6 0.6 0.7 0.6 10% 10% Particulate Matter Emissions -- -- -- -- -- -- -- FF Outlet mgIdscm @ 7%02 2.64 1.95 0.80 Not Run 1,8D 27 25 Ammonia Emissions -- -- -- -- -- FF Outlet pprn d @7%02 1.97 1.45 1.81 Not Run 1.75 101 NIA Condensable Particulate Matter Emissions$ -- -- -- -- -- FF Outlet mg/DSCM @ 7%02 10.23 6.87 5.64 Not Run 7.58 NIA NIA Average stem flow rate during dioxin/furans testing. 2Average FF Inlet Temperature during dioxinlfurans testing. 3 Carbon feed rate during mercury or dioxin testing,whichever test series has the higher average. "Hydrogen Chloride permit limits are 29ppm,d @ 7%02or 295%removal efficiency, s Single quarterly emission limit in accordance with 310CMR 7.08(2)(8)(2)is 0.080 mg/dscm @ 7%02 s Mercury limit expressed as 0.050 mg/dscm @ 7%02 or�t85%removal efficiency,whichever is less restrictive. Ammonia emission limit is 10 ppm,d @7°1%02,state only enforceable limit. NEW 3AS-021420-RT-1 303 Page 19 of 55 � r I I`wi( i`�Illzt i.,). Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022&October 25-28, 2022 TABLE 2-3 SUMMARY OF TEST RESULTS UNIT NO. 2 Operating 310 CMR Permit 7.08(2) First Second Third Fourth Emission Emission Emission Test Parameter Run Run Run Run Average Limit Limits Process Parameters -- -- -- -- - -- Steam Flow, Klb/hr' 166.7 16&5 165.4 Not Run 165.9 NIA NIA Inlet Temperature, °F2 310 310 310 Not Run 310 NIA NIA Carbon Feed Rate, Ib/hr3 12 12 12 Not Run 12 NIA NIA Dioxins/Furans -- -- -- - -- -- -- FF Outlet mgIDSCM @ 7%02 4,85 6.77 8.24 Not Run 6.62 30 30 Cadmium Emissions -- -- -- -- -- -- FF Outlet mg/DSCM @ 7%02 0.0004 0.0008 0,0004 Not Run 0.0005 0.02 0.02 Hydrogen Chloride Emissions -- -- -- - -- -- -- SDA Inlet ppmYd @ 7%Ell 201.6 548.9 470.7 Not Run 407.1 N/A NIA FF Outlet ppm,d@7%02 6.5 3.1 10.1 Not Run 6.6 294 or 295 or Removal Efficency(conc. basis) 96.8 99.4 97.9 Not Run 98.0 z95%4 295%4 Lead Emissions - -- -- -- - - -- FF Outlet mg/DSCM @ 7%02 0.005 0.006 0.006 Not Run 0.006 0.440 0.400 Mercury Emissions -- -- -- -- -- -- -- SDA inlet mg/DSCM @ 7%02 0.022 0,031 0.025 0.012 0,022 NIA NIA FF Outlet mg1DSCM @ 7%02 0.003 0,002 0,001 0,001 0.002 0,0286or 0.050r'or Removal Efficency(concentration basis) 85.9% 94.6% 96.8% 93.6% 92.7% aw" Opacity -- -- -- -- -- -- -- % 0.7 0.8 0.8 0.8 0.8 10% 10% Particulate Matter Emissions -- -- -- -- -- -- -- FF Outlet mg/dscm @ 7%02 1,56 0.57 0.97 Not Run 1.03 27 25 Ammonia Emissions -- -- -- -- -- -- -- FF Outlet ppm,d @7%02 1,43 1.30 0.82 Not Run 1.18 107 NIA 'Average stem flow rate during dioxin/furans testing. 2Average FF Inlet Temperature during dioxin/furans testing. 3 Carbon feed rate during mercury or dioxin testing,whichever test series has the higher average. A Hydrogen Chloride permit limits are 29ppm�d @ 7%02or n5%removal efficiency. 5 Single quarterly emission limit in accordance with 310CMR 7.08(2)(8)(2)is 0.080 mg/dscm @ 7%02 a Mercury limit expressed as 0.050 mg/dscm @ 7%02 or Z85%removal efficiency,whichever is less restrictive. l Ammonia emission limit is 10 ppmyd @7%02,state only enforceable limit, Condensable Particulate emissions are provided as additional Information at the request of the agency. NEW 3AS-021420-RT-1303 Page 20 of 66 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28,2022 TABLE 2-4 PERFORMANCE TEST BASED OPERATING REQUIREMENTS Maximum Demonstrated Maximum Demonstrated Average Carbon Mass MWC Unit No. MWC Unit Load, Klblhr' PMCD Temperature, °F2 Feed Rate, lblhr3 1 165.8 310 12 2 166.7 310 12 'The highest 4-hour arithmetic average load(steam flow)achieved during fourconsecutive hours during the dioxin/furan emission tests. See 310 CMR 7.08(2)(c). Y The highest 4-hour arithmetic average temperature achieved at the particulate matter control device(fabric filter)inlet during four consecutive hours during the dioxinlfuran emission tests. See 310 CMR 7.08(2)(c), 3 The estimated hourly average carbon mass feed rate during the mercury and dioxinlfuran,whichever is greater,emission tests. See 310 CMR 7.08(h)(4)(a)and/or 40 CFR 60.68b(m)(1). NE013AS-021420-RT-1303 age 21 of 55 (CA Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dates: October 17-18,2022&October 25-28,2022 TABLE 2-5 HYDROGEN CHLORIDE AND AMMONIA EMISSIONS UNIT NO. 1 Unit 1 Spray Dryer Absorber Inlet Stack Temp F 521.0 530.2 532.2 '527.8 Stack Moist. % 15.6 15.7 15.5 15.6 Stack 0z % 9.9 9.8 10.0 9.9 Stack CO2 % 9.5 9.6 9.3 9.5 Meter Volume dscf 44.908 45.140 44.769 44.9 Meter Volume dscm 1.272 1.278 1.268 1.3 Hydrogen Chloride -- -- -- -- -- Catch Wt mg 959 1124 1095 -- Concentration mg/dscm 754.0 879.1 864.0 832.4 Concentration mvd 7%02 629.1 726.9 727.6 694.6 Unit 1 Fabric Filter Outlet Stack Temp F 293.1 291.2 293.0 292.4 Stack Moist. % 19.9 17.7 18.9 18.9 Stack O2 % 11.5 11.2 11.4 11.4 Stack CO2 % 8.1 8.4 8.1 8.2 Volumetric Flowrate acfm 185,139 182,732 183,572 183,814 Volumetric Flowrate dscfm 101,190 102,878 101,560 101,876 Meter Volume dscf 45.706 49.277 47.200 47.394 Meter Volume dscm 1.294 1.395 1.337 1.342 Hydrogen Chloride -- -- -- -- -- Catch Wt mg 17.16 28.76 34.91 -- Concentration mg/dscm 13.26 20.61 26.12 20.00 Concentration ppm d@7%0z 12.9 19.5 25.2 19.2 Emission Rate Ib/hr 5.03 7.94 9.94 7.64 Ammonia -- -- -- -- -- Catch Wt, mg M9 1.220 1.000 1.172 -- Conc.,mgldscm mg/dscm 0.94 0.72 0.88 0.85 Concentration ppmvd@7%02 1.97 1.45 1.81 1.75 Emission Rate Iblhr 0.36 0.28 0.33 0.32 HCL Removal Efficiency IN by cone. 97,9 97.3 96.5 97.2 NE013AS-021420-RT-1303 Page 22 of 55 fvi y I� i lit l;;I Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report I Test Dates;October 17-18,2022&October 25-28, 2022 r TABLE 2-6 PARTICULATE, METALS AND MERCURY EMISSIONS UNIT NO. 1 j -Summary of Compliance Parameters- Parameter Units Run 1 Run 2 Run 3 Run 4 Average 'rest date MMIDDIYY 10127/2022 10/27/2022 10127/2022 10128/2022 Start Tlme HH:MM 9:25 12:50 15:50 8:15 End Time HH:MM 11:35 15:13 16:02 10:20 Process Parameters -- -- -- -- -- Steam Flow KitAr 165.3 165.0 166.0 166.6 165,7 Inlot Temperature °F 310 309 309 309 309 Carbon Feed Rate Ib1hr 12 12 13 12 12 Unit 1 Spray Dryer Absorber Inlet Stack Temp F 528.4 531.0 536.2 631.7 531.8 Stack Moist. % 17.2 16.0 46.2 16.6 16.5 Stack 02 % 9.8 10.0 110.2 10.0 10.0 Stack CO2 % 9.6 9.5 9.3 9.5 9.5 Volumetric Flowrate acfm 176024 178656 180994 181594 179542 Volumetric Flowrate dscfm 77788 79417 79871 81766 79711 Meter Volume dsef 80.571 86.543 84.664 85.169 64.237 Meter Volume dscm 2.282 2.451 2.397 2.412 2.385 Isokinetic Rate % 102.3 107.6 104.7 102.9 104.4 Mercury -- -- -- -- -- Total Catch Wt ug 16 28 19.4 30.7 23.5 Concentration ugldscm@7%02 8.56 14.72 10.51 16.33 12.53 Concentration mgldscm@7%0z 0.009 0.015 0.011 0,016 0.013 Emission Rate Iblhr 1.99E-03 3.44E-03 2.42E-03 3,90E-03 2.94E-03 Emission Rate iblMMbtu 8.09E-06 1.38E-05 9.89E-06 1.52E-05 1.18E-05 Unft 1 Fabric Filter Outlet Stack Tamp F 293.1 291.2 293.0 290.2 291.9 Stack Moist. % 20.6 20.1 20.1 20.2 20,3 Stack Oz % 11.6 11.2 10.9 11.6 11.3 Stack CO2 % 8.1 8.4 8.6 8.0 8.3 Volumetric Flowrate acfm 185427 183653 183865 183589 184133 Volumetric Flowrate dscfm 100432 100445 100274 102537 100922 Meter Volume dscf 101.165 1ol.419 100,828 103.906 101.829 Meter Volume dsom 2.865 2.872 2.855 2.942 2.883 Isokinetic Rate % 103.9 104.2 103.7 104.5 104.1 Filterable Particulate -- -- -- -- Total Catch Wt mg 5A 3.9 1.6 Not Run Concentration mgldscm@7%0= 2.64 1.95 0.80 Not Run 1.80 Concentration grldscf@7%OZ 1.15E-03 8.51E-04 3.48E-04 Not Run 7.84E-04 Emission Rate iblhr 0,672 0.513 0.216 Not Run 0.467 Emission Rate Ib1MMBtu 2.51E-03 1.84E-03 7.60E-04 Not Run 1.70E-03 NE01 3AS-021420-RT-1 303 Page 23 of 55 10( r I I It E ;i i Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dales: October W-18, 2022&October 25-28,2022 TABLE 2-6 CONTINUED Parameter Units Run 1 Run 2 Run 3 Run 4 Average Cadmium -- Total Catch W1 ug 1.250 1.170 1.400 Not Run -- Concentration ugldscm@7%02 0.65 0.58 0.68 Not Run 0.64 Concentration mg1dscm@7%0Z 0.0006 0.0006 0.0007 Not Run 0.0006 Emission Rate Iblhr 1.64E-04 1.53E-04 1.84E-04 Not Run 1.67E-04 Emission Rate IblMMbtu 6.12E-07 5.72E-07 6.8BE-07 Not Run 6.24E-07 Lead -- -- -- Total Catch Wt ug 13.1 10.9 12.4 Not Run -- Concentration ugldscm@7%0, 6.75 5,43 6.03 Not Run 6.07 Concentration mgldscm@7%% 0.007 0.005 0.006 Not Run 0,006 Emission Rate lblhr 1.72E-03 1.43E-03 1.63E-03 Not Run 1,59E-03 Emission Rate IbIMMbtu 6.41E-06 5.32E-06 6.08E-06 Not Run 5,94E-06 Mercury -- -- -- Total Catch Wt ug 1.31 1.39 1,45 1.4 -- Concentration ugldscm@7%0, 0.68 0,69 0.71 0.74 0.70 Concentration mgldscm@7%Oz 0.001 0.001 0.001 0.001 0.001 Emission Rate Iblhr 1.72E-04 1.82E-04 1.91E-04 1.85E-04 1.83E-04 Emission Rate IblMMbtu 6.42E-07 6.55E-07 6.71E-07 6.86E-07 6.63E-07 Mercury Removal Efficiency %by conc. 92.1% 95,3% 93.3% 95.4% 94.0% NE01 3AS-021420-RT-1 303 Page 24 of 55 Wheelabrator Environmental Systems, Inc. -Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates:October 17-18, 2022&October 25-28,2022 r TABLE 2-6(B) CONDENSABLE PARTICULATE EMISSIONS UNIT NO. 1 -Summary of Compliance Parameters- Parameter Units Run 1 Run 2 Run 3 Average Test Date MWDD/YY 10/2712022 10/27/2022 10127/2022 Start Time HH:MM 9:25 12:50 15:50 -- End Time HH:MM 11:35 15:13 18:02 - Process Parameters - -- -- -- -- Steam Flow Klblhr 165.3 165.0 166.0 165.4 Inlet Temperature °F 310 309 309 309 Carbon Feed Rate lb/hr 12 12 13 12 Unit 1 Fabric Filter Outlet Stack Temp F 293.1 291.2 293.0 292A Stack Moist. % 20.6 20.0 20A 20.3 Stack Oz % 11.6 11.1 11.1 11.3 Stack COz % 8.0 8.6 8.6 8A Volumetric Flowrate acfm 187043 185123 185527 185898 Volumetric Flowrate dsofm 101310 101323 100824 101152 Meter Volume dscf 91.72 92.14 89.86 91.2 Meter Volume dscm 2.60 2.61 2.54 2.6 Condensable Particulate - -- -- -- -- Total Catch Wt. mg 19.8 14.6 12.1 Blank Wt. correction mg' 2.0 2.0 2.0 Total Net Catch Wt. mg 17.8 12.6 10.1 -- Concentration mg/dscm@7%0Z 10.23 6,87 5.64 7.58 Concentration gr/dscf@7%Oz 0,0045 0.0030 0.0025 0.0033 Emission Rate lb/hr 2.60 1.84 1.50 2.0 Emission Rate Ib/MMBtu 0.0097 0,0064 0.0053 0.0071 Flue gas flowfate for runs 1,2and 3 originates from pitot tube measurements from isokinetic filterable particulate sampling train. z The field train recovery blank weight was 2.0 mg. \ NE013AS-021420-RT-1303 Page 25 of 66 �13'. 1111,\111'i l It\'It L1 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022 &October 25-28,2022 TABLE 2-7 PCDD/PCDF EMISSIONS UNIT NO, 1 -Summary of Compliance Parameters- Parameter Units U1-M23-Run 1 U1-M23-Run 2 U1-M23-Run 3 Average Test Date MWDD/YY 10/26/2022 10126/2022 10/26/2022 Start Time HH:MM 7:50 12:15 7:35 End Time HH:MM 11:55 16:18 11:40 -- Steam Flow Klblhf 165.6 164.7 166A 165.4 Inlet Temperature °F 309 309 310 309 Carbon Feed Rate Ib/hr 12 12 12 12 Stack Temp °F 295.5 295,0 296.8 295.7 Stack Moist. % 19.5 20.1 20.1 19.9 Stack 02 % 11.0 10.9 11.0 10.97 Stack CO2 % 8.6 8.7 8.7 8.67 Stack Flow acfm 181,012 184,460 182,881 182,781 Stack Flow dscfm 100,205 101,454 99,454 100,371 Meter Volume dscf 197.576 197.676 191.787 106.679 Meter Volume dscm 5.595 5,598 5.431 5.541 Isokinetic Rate % 102.6 101.4 100.3 101 A DioxinslFurans-2,3,7,8 PCDDs and PCDFs 2005 WHO I EPA Toxic Equivalent(Tetra•Octa) Total pg (Including NDs&EMPCs) 260 215 198 -- ng/dscm @ 7% % (Including NDs&EMPCs) 0,065 0.053 0.051 0,057 Total pg (Not Including NDs&EMPCs) 231.0 166 152 -- ngldsem @ 7% 0: (Not Including NDs&EMPCs) 0.058 0.041 0A39 0.046 Ibs/hour (Not Including NDs&EMPCs) 1,55.E-08 1.13.E-08 1.04.E-08 1.24.E-08 1991 MA Toxic Equivalent(Tetra-Octa)' Total pg (including NDs&EMPCs) 942 804 747 -- ngfdscm @ 7%02 (Including NDs&EMPCs) 0,236 0.200 0.193 0.210 Total pg (Not Including NDs&EMPCs) 899 739 697 -- ngldscm @ 7%Ox (Not Including NDs&EMPCs) 0.226 0.183 0A80 0.196 lbslhour (Not Including NDs&EMPCs) 6.03.E-08 5.02.E-08 4.78.E-08 5.28.E-08 Dioxins/Furans-Total PCDDs and PCDFs Tetra-Octa PCDDIPCDFs Total pg (including NDs&EMPCs) 27900 23500 22400 -- ngldsom @ 7% % (Including NDs&EMPCs) 7.00 5.83 5.79 6.29 Total pg (Not Including NDs&EMPCs) 27,100 22,100 21,600 -- ngldscm @ 7% % (Not Including NDs&EMPCs) 6,80 6.49 6.58 5.96 lbslhour (Not Including NDs&EMPCs) 1.82E-06 1.50.E-06 1.48.E-06 1.60.E-06 'MA Toxic Equivalents include a factor for trl-CDD and tri-CDI's,but results are not Included.310 CMR 7,08(2)(c)defines ftxin/furans as tetra-octa s NE013AS-021420-RT-1303 Page 26 of 55 Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dates: October 17-18,2022 &October 25-28, 2022 TABLE 2-8 HYDROGEN CHLORIDE AND AMMONIA EMISSIONS UNIT NO. 2 -Summary of Compliance Parameters- Parameter Units Run 1 Run 2 Run 3 Average Test Date MWDD/YY 10/18/2022 10/18/2022 10/19/2022 - Start Time HH:MM 9:40 12:38 7:50 -- End Time HH:MM 10:40 13:38 8:50 -- Process Parameters __ -- .- -. Steam Flow Klb/hr 166.4 167.5 165.6 166.5 Inlet Temperature °F 310 310 310 310 Carbon Feed Rate Ib/hr 13 12 11 12 Unit 2 Spray Dryer Absorber Inlet Stack Temp F 452.7 454.8 451.8 453.1 Stack Moist. % 9.0 19.1 16.1 14.7 Stack 02 % 9.8 9.7 9.8 9.8 Stack CO2 % 9.6 9.7 9.6 9.6 Meter Volume dscf 46.538 43.709 46.735 45.661 Meter Volume dscm 1.318 1.238 1.323 1.29 Hydrogen Chloride -- -- -- -- -- Catch Wt mg 321 829 753 -- Concentration mg/dscm 243.8 669.7 569.3 494.3 Concentration ppmVd@7%02 201.6 548.9 470.7 407.1 Unit 2 Fabric Filter Outlet Stack'Temp F 289A 290.3 289.3 289.5 Stack Moist. % 20.5 21.0 18.2 19.9 Stack 02 % 10.4 10.4 10.6 10.5 Stack CO2 % 9.1 9.1 8.9 9,0 Volumetric Flowrate acfm 181,462 181,999 185,121 182,861 Volumetric Flowrate dscfm 98,615 98,126 103,965 100,235 Meter Volume dscf 46.504 46.755 47.999 47.086 Meter Volume dscm 1.317 1.324 1.359 1.333 Hydrogen Chloride -- -- -- -- Catch Wt mg 9.83 4.75 15.42 -- Concentration mg/dscm 7.46 3.69 11.36 7.47 Concentration ppmvd@7%02 6.5 3.1 10.1 6.6 Emission Rate Ib/hr 2.76 1.32 4.42 2.83 Ammonia -- -- -- -- -- Catch Wt, mg mg 1.007 0.919 0.586 -- Conc.,mgldscm mg/dscm 0,76 0.69 0.43 0.63 Concentration ppn*,d@7%02 1.43 1.30 0.82 1.18 Emission Rate Ib/hr 0.28 0.26 0.17 0.24 CL Removal Efficiency % by cone. 96.8 99.4 97.9 98.0 NE013AS-021420-RT-1303 Page 27 of 55 iV1 t I 1 I Z i J`,I Wheelabrator Environmental Systems, Inc.-Wheelabrator N. Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-1 S,2022&October 25-28, 2022 TABLE 2-9 PARTICULATE, METALS AND MERCURY EMISSIONS UNIT NO. 2 -Summary of Compliance Parameters- Parameter Units Run 1 Run 2 Run 3 Run 4 Average Test Date MWODNY 10/18/2022 10/18/2022 10119/2022 10/19/2022 Start Time HH:MM 9A0 12:38 7:50 10:22 End Time HH:MM 11:53 16:50 10:00 12:27 Process Parameters Steam Flow VJblhr 166.4 166.7 165.2 165,9 166.1 Inlet Temperature °F 310 310 310 310 310 Carbon Feed Rate Iblhr 13 12 13 11 12 Unit 2 Spray Dryer Absorber Inlet Stack Temp F 465.0 473.5 458.8 460.4 464.4 Stack Moist. % 18.6 18.5 17.0 15.3 17.3 Stack 02 % 9.2 8.8 9.6 10.0 9.4 Stack CO2 % 10.1 10.5 9.8 9.3 9.9 Volumetric Flowrate acfm 172679 173134 166257 172492 171140 Volumetric Flowrate dscfm 78942 78528 78374 82774 79655 Meter Volume dsof 81.818 81.980 84.683 82.958 82.835 Meter Volume dscm 2.317 2,321 2.395 2.349 2.346 Isokinetic Rate % 102.4 103.1 106.6 98.98 102.8 Mercury -- -- -- -- -- Total Catch Wt ug 42.6 63.0 48.1 22.7 44.1 Concentration ugldscm@7%02 21.8 31.2 24.7 12.1 22.4 Concentration mg1dscrn@7%02 0.022 0.031 0.025 0.012 0.022 Emission Rate lWhr 5.44E-03 7.98E-03 5.90E-03 3.00E-03 5.58E-03 Emission Rate IblMMbtu 2.07E-05 2.94E-05 2.33E-05 1.18E-05 2.13E-05 Unit 2 Fabric Filter Outlet Stack Temp F 289.1 290.3 289.3 281.3 287.6 Stack Moist. % 20A 20.5 18.0 17.5 19.1 Stack 02 % 10A 10.3 10.5 10.9 10.5 Slack CO2 % 9A 9.3 9.0 8.6 9.0 Volumetric Flowrate acfm 181411 181719 185021 179265 181852 Volumetric Flowrate dscfm 98749 98625 104123 102599 101024 Meter Volume dscf 97.052 98.391 108.475 101.023 101.235 Meter Volume dscm 2.748 2.706 3.072 2.861 2.867 Isokinetic Rate % 101.4 102.9 107.5 101.58 103.3 Filterable Particulate -- -- -- -- Total Catch Wt mg 3.2 1.2 2.2 Not Run -- Concentration mgldscm@7%02 1.56 0.57 0.97 Not Run 1.03 Concentration grldscf@7%a 02 6.80E-04 2.48E-04 4.23E-04 Not Run 4.51E-04 Emission Rate Iblhr 0.436 0.160 0.283 Not Run 0.293 Emission Rate IblMMBlu 1.47E-03 5,29E-04 9.17E-04 Not Run 9.73E-04 NE01 3AS-021420-RT-1 303 Page 28 of 55 .�F7'. tl li,5111i ♦E k,l'It Il Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18,2022&October 25-28,2022 TABLE 2-9 CONTINUED Parameter Units Run 1 Run 2 Run 3 Run 4 Average Cadmium -- -- -- Total Catch Wt ug 0.791 1,610 0.959 Not Run -- Concentration ugldscm@7%02 0.381 0.768 0.417 Not Run 0.519 Concentration mgldscm@7%0z 0.0004 0,0008 0.0004 Not Run 0.0005 Emission Rate Iblhr 1.06E-04 2.14E-04 1.22E-04 Not Run 1.47E-04 Emission Rate Ib/MMbtu 3.59E-07 7,22E-07 3.90E-07 Not Run 4.90E-07 Lead -- -- -- Total Catch Wt ug 9.683 12.083 14,883 Not Run -- Concentration ugldscm@7%02 4.664 5.686 6.475 Not Run 6.608 Concentration mgldscm@7%% 0.005 0.006 0.006 Not Run 0.006 Emission Rate Iblhr 1,30E-03 1.60E-03 1.89E-03 Not Run 1.60E-03 Emission Rate IblMMbtu 4.40E-06 6.42E-06 6.05E-06 Not Run 5.29E-06 Mercury -- -- -- -- Total Catch Wt ug 6.390 3.580 1.800 1.690 -- Concentration ugldscm@7%02 3.078 1.685 0.783 0.772 1.580 Concentration mgldscm@7%0z 0.003 0.002 0.001 0.001 0.002 Emission Rate Ib/hr 8.60E-04 4.75E-04 2,29E-04 2.14E-04 4.44E-04 Emission Rate lblMMbiu 2.90E-06 1.57E-06 7,40E-07 7,34E-07 1.49E-06 Mercury Removal Efficiency %by cone. 85.9% 94.6p/o 96,8% 93.6% 92.7% NE01 3AS-021420-RT-1 303 Page 29 of 55 .tl l< <I ll,ll I11 �I l!1'li'I1 Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18, 2022 &October 25-28,2022 r TABLE 2-10 PCDDIPCDF EMISSIONS UNIT NO. 2 -Summary of Compliance Parameters- Parameter Units U2423-Run 1 U2-M23-Run 2 U2-M23-Runt 3 Average Test Date MNIII)MY 101118/2022 1011912022 10/19/2022 Start Time HH:MM 9:40 7:50 12:38 - End Time HH:MM 13:43 11:54 16:42 -- Steam Flow KIblhr 166.7 165.5 165.4 165.9 Inlet Temperature °F 310 310 310 310 Carbon Feed Rate lblhr 12 12 12 12 Stack Temp °F 290.8 290.2 290.4 290.5 Stack Moist. % 20.6 18.0 18.9 19.2 Stack 02 % 10.4 10.9 11.1 10.8 Stack CO2 % 9.1 8.6 8.4 8.7 Stack Flow acfm 179,422 181,485 176,926 179,277 Stack Flow dscfm 97,189 101,994 98,351 99,178 Meter Volume dscf 196,568 205.844 201.774 201,395 Meter Volume dscm 5,566 5.829 5.714 5,703 Isokinetic Rate % 103.9 103.7 105.4 104.3 DioxinlFurans-2,3,7,8 PCDDs and PCDFs 2005 WHO I EPA Toxic Equivalent(Tetra-Octa) Total pg (Including NDs&EMPCs) 190 315 424 -- ngldscm @ 7%O, (Including NDs&EMPCs) 0.045 0.075 0.105 0.075 Total pg (Not Including NDs&EMPCs) 141 292 232 -- ngldscm @ 7%01 (Not Including NDs&EMPCs) 0.034 0.070 0.058 0.054 lbs/hour (Not Including NDs&EMPCs) 9.22.E-09 1.91.E-08 1.50.E-08 1.44.E-08 1991 MA Toxic Equivalant(Tetra-Octa)' Total pg (including NDs&EMPCs) 713 1020 1220 -- ng/dscm @ 7%Oa (Including NDs&EMPCs) 0,170 0.243 0,303 0,239 Total pg (Not Including NDs&EMPCs) 659 944 1,110 -- ng/dscm @ 7%01 (Not Including NDs&EMPCs) 0.157 0.225 0.276 0,219 lbs/hour (Not Including NDs&EMPCs) 4.31.E-08 6,19.E-08 7.16.E-08 5.88.E-08 DloxlnslFurans-Total PCDDs and PCDFs Tetra-Octa PCDDIPCDFs Total pg (Including NDs&EMPCs) 21300 30000 33800 -- ngldscm @ 7% 02 (including NDs&EMPCs) 5.07 7.15 8.39 6.87 Total pg (Not Including NDs&EMPCs) 20,400 28,400 33,200 -- ng/dscm @ 7% O, (Not Including NDs&EMPCs) 4.85 6.77 8.24 6.62 lbslhour (Not Including NDs&EMPCs) 1.33E-06 1,86.E-06 2.14.E-06 1.78.E-06 'MA Toxic Equivalents Include a factor for tr)-CDD and tri-CDFs,but results are not included.310 CMR 7,08(2)(c)defines dioxin/furans as tetra-octa d NE01 3AS-021420-RT-1 303 Page 30 of 55 lc" I`Vio Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28, 2022 TABLE 2-11 UNIT NO. 1 & 2 ASH PCDDIPCDF CONCENTRATIONS arts» er-trilflon, 1 , dry) Combined Ash Target Anal a Composite Fly Ash Composite 2,3,7,8-TCDD 7.56 33.2 1,2,3,7,8-PeCDD 19.9 85.7 1,2,3,4,7,8-HxCDD 19.5 82.1 1,2,3,6,7,8-HxCDD 33.9 154 1,2,3,7,8,9-HxCD❑ 24.6 118 1,2,3,4,6,7,8-H CDD 240 1170 OCDD 514 2260 Totals -- -- TCDDs 200 803 PeCDDs 303 1300 HxCDDs 460 2180 H CDDs 487 2340 OCDD 514 2260 Total PCDDs 1964 8883 Target Anal a -- -- 2,3,7,8-TC D F 36.9 165 1,2,3,7,8-PeCDF 43.6 200 2,3,4,7,8-PeCDF 56.1 250 1,2,3,4,7,8-HxCDF 48 216 1,2,3,6,7,8-HxCDF 49 237 2,3,4,6,7,8-HxCDF 53.8 251 1,2,3,7,8,9-HxCDF (0.837)' (2,84)' 1,2,3,4,6,7,8-H CDF 153 602 1,2,3,4,7,8,9-H CDF 18.8 82.8 OCDF 74.3 255 Totals -- -- TC DFs 1070 4700 PeCDFs 708 3260 HxCDFs 458 2190 H CDFs 232 944 OCDF 74.3 255 Total PCDFs 2542 11349 Total PCDDs/PCDFs 45002 202002 'Not Detected or EMPC.Refer to Section 2.4 for more information 2As reported in the SGS North Andover report provided In Appendix C. NE01 3AS-021420-RT-1 303 Page 31 of 55 lll; 111'.I it}' 1111}'liil Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022&October 25-28,2022 3.0 PROCESS DESCRIPTION AND OPERATION 3.1 GENERAL Wheelabrator North Andover operates a facility consisting of two identical 750 ton/day mass-fired municipal waste combustion units which produce steam for generation of electricity which is sold to the local utility company. Each combustor is equipped with a spray dryer absorber (SDA) and fabric filter (FF), a Selective Non Catalytic Reduction (SNCR) NOx control system and powdered activated carbon injection system (PACTS). Combustion gases exit the boiler economizer into the SDA and FF. Flue gases exit the FF to an induced draft fan prior to entering separate flues. The locations tested were Unit Nos. 1 and 2 SDA Inlets and FF Outlets. Unit Nos. 1 and 2 are identical. 3.2 SOURCE AIR FLOW Figure 3-1 is an air flow schematic which shows the passage of flue gases exhausted from Unit Nos. 1 and 2 boilers. 3.3 OPERATION DURING TESTING Table 3-1 provides run averages for operational data for all Unit No. 1 and No. 2 emissions sampling intervals. Detailed data supplied by Wheelabrator North Andover is presented in Appendix E. NE01 3AS-021420-RT-1 303 Page 32 of 55 Wheelabrator Environmental Systems, Inc. —Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18,2022&October 25-28,2022 FIGURE 3-1 UNIT NOS. 1 & 2 AIR FLOW SCHEMATIC Atmosphere Stack F- D Fan Test Location Fabric Filter Carbon Spray Dryer Injection Absorber _. Test location Economizer Boiler Unit Nos. 1 and 2 are Identical NE013AS-021420-RT-1303 Page 33 of 55 lVl6i41 i izt ); i ,ill: <311,i11l 1 I i',\'II kl m p o Ejm cn m Cn N rn m N G O o z ID x DAS Data Averaged Over Test Intervals o 71 Wheelabrator North Andover t,'j FR{3NF�DAS FROM DISTRIBUTIVE CONTROL(PLC)SYSTEM z j � W Steam Carbon FF Feed SDA SDA Slurry Diluton Percent Fabric Fabric Urea P O Flow Flow inlet Water Inlet Total Flow H2O Slurry Filter Filter Flow ::3 - Untt nun Time Temp Flow Temp Flow Flow Delta-P Outlet N CSC Test No. No. Date Start Stop klbs/hr Ibs/hr deg F Klb/hr deg F gpm gpm gpm % In.H2O INWC GPH •CD 1 1 10/27/2022 0925 1135 165.3 12 310 163.0 513 43.7 7.4 36.3 16.9 7.6 -10.5 5.4 z O O TSP/Metals 1 2 10/27/2022 1250 15:13 165.0 12 309 132.4 518 43.9 8.8 3S_1 20.1 7.5 -10.3 5.5 n m (MM MS/M291 1 3 10/27/2022 1550 18:02 166.0 12 309 163.5 522 45.0 8.1 86.9 17.8 7.6 -10.4 7.2 N 0 Inlet/Outlet 1 4 10/28/2022 08:15 1020 166.E 12 309 164.4 518 44.3 7.8 36.5 17.5 7.5 -10.3 4.7 O 01 Ro n Average 165.7 12 309 255.8 518 44.2 &0 36.2 1&1 7.6 -3.0.4 5.7 A7 I Condensable PM 1 1 10/27/2022 9:2S 11:35 165.3 12 310 163.0 513 43.7 7.4 36.3 16.9 7.6 -1C.5 5.4 m I (M202) 1 2 10/27/2022 12:50 15:13 16S.0 12 309 132.4 518 43.9 &8 35.1 2D.1 7.5 -10.3 5.5 Xw CD CD Outlet 1 3 10/27/2022 15:50 18:02 166.0 3.2 309 163.5 522 45.0 &1 36.9 17.8 7.6 -iD.4 7.2 n .�.. Averse 165.4 12 309 153-0 518 44.2 &1 36.1 18.3 7.6 -10.4 6.0 n O HCL/NH3 1 1 10/27/2p22 9:25 10:25 165.9 12 310 162.9 511 43.3 7.5 35.8 17.4 7.6 -10.5 5.6 z N D y fD CA) (M26A1 1 2 10/27/2022 12:Sp 13:50 165.5 12 309 1629 519 44.2 8.6 35.7 ]93 7.6 -SO.4 5.1 to O A Inlet/Outlet 1 3 10/27/2022 15:50 16:50 165.5 12 310 1618 S20 44.4 &3 36.2 18.6 7.5 -10.3 7.8 sns�a '0 �, Averager164.7 ZZ 310 i629 517 44.0 &i 359 1&a 7.6 •ltt.4 6.2 1i� n PCDD/PCDF 1 1 10/25/2022 7:50 11:55 12 309 1S3.2 Sol 39.6 7-9 31.7 20.0 6.9 -9.7 6.5 M M CL (M23) 1 2 10/25/2022 =15 16:50 12 309 162.E 508 41.8 7.9 32.4 18.8 7.1 -9.9 5.5DC)OrRlet 1 3 10/26/2022 7:35 11:40 12 310 163.7 508 4L4 7.0 34.3 17.0 7.2 -10.0 5-D CCDD Average 12 309 1632 506 40.9 7.6 33.1 1&6 7.1 -9.8 5.7 MTSP/Metals 2 1 10/18/2022 9AC 11:53 13 310 164.6 471 27_1 &7 1&4 31.7 6.1 -8.5 7.9 m (M29;M5/M29) 2 2 10/18/2022 12:38 15:50 . 12 sic 163.9 478 27.6 6.8 20.8 24.5 6.1 -8.5 8.6 M inlet/Outlet 2 3 10/19/2022 73D SC:OD 165.2 13 310 152.8 476 27.2 8.0 19.2 29.1 61 -8.7 6.8 W 2 4 10/19/2022 1022 12:27 165.9 11 310 163.4 476 27.4 9.5 17.9 34.5 6.1 -&5 6.2 (n Average 166.1 32 910 163.7 475 27-3 1 &3 19.1 1 30.0 6.1 -&6 7.4 C HCL/NH3 2 1 10/18/2C22 9:40 10.40 166.4 13 310 164.1 471 27.9 10.1 17.8 35.9 6-2 -&7 7.3 (M26A) 2 2 10/18/2022 12:38 13.38 1675 12 310 164.3 476 27.4 6.6 2018 24.0 6.1 &6 9.0 K Inlet/Outlet 2 3 10/19/2022 750 8.50 165.6 11 sic 16.4.6 475 26.5 6.6 19.9 25_D 6-2 -8,7 6A Average 1665 12 310 164.0 474 273 7.8 79S 283 6.2 -2.9 7.6 - PCDD/PCDF 2 1 10/18/2022 9.40 13:49 166.7 12 sic 164.5 473 27.2 7-9 19.2 29.D 6.1 -&S 8.2 (M23) 2 2 10/19/2022 7.50 11.-54 1655 12 310 163.0 476 27.1 8.5 1&7 31.0 6A -8.6 6.2 Outlet 2 3 10/19/2022 12:38 16.42 165.4 12 sic 162.8 481 2&0 8.6 19.4 30.5 6.1 -&6 8.1 m =r" Averse 165.9 12 310 163A 477 27.4 &3 19.2 302 6.1 -&6 7S 1 M C - r Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18,2022&October 25-28, 2022 4.0 SAMPLING AND ANALYTICAL PROCEDURES All sampling and analytical procedures were those recommended by the United States Environmental Protection Agency (EPA), and the approved sampling protocol submitted to the Massachusetts Department of Environmental Protection (MassDEP). This section provides brief descriptions of the sampling and analytical procedures used for this test program, TABLE 4-1 TEST PROCEDURES Parameter Measurement Principle Reference Method Volumetric flow rate Pitotltemperature traverse EPA 1, 2 Molecular Weight Orsat EPA 3 Moisture Impinger weight gain EPA 4 Particulate Matter Gravimetric analysis EPA 5 Metals (Cd, Pb & Hg) ICP and CVAA EPA 29 HCI Ion chromatography EPA 26A, modified Ammonia Ion chromatography EPA 26A, modified Condensable Particulate Gravimetric analysis EPA 202, modified PCDDIPCDF high resolution gas chromatography 1 EPA 23 (ALT-052) mass spectroscopy (HRGC/HRMS) Opacity COMS nla Fugitive Emissions Visible reading EPA 22 4.1 EPA METHOD 1, TRAVERSE POINTS Units 1 and 2 are identical. The measurement site for the SDA inlet is located in a vertically- oriented circular duct at the economizer exit. The SDA inlet duct inside diameter is 105 inches. The nearest upstream disturbance is a breaching for a change in duct shape at about 294 inches (2.8 diameters) and the nearest downstream disturbance is a bend at 100 inches (0.95 diameters) from the sampling ports. This sampling location meets the minimum requirements specified by EPA Method 1. Two (2) 4-inch test ports are located at 900 offset on the side of each duct. A schematic of the SDA inlet sampling location is shown in Figure 4-1. The measurement site for the FF outlet is located in the rectangular vertical duct above the induced draft fan. Six (6) 4-inch sampling ports are provided in the 124 inch wide and 76 inch NE013AS-021420-RT-1303 Page 35 of 55 IVI[ 9I'l I ILd l;y I Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18,2022&October 25-28, 2022 deep duct. The duct equivalent diameter is 94.2 inches. The nearest upstream disturbance is a bend at about 204 inches (2.17 equivalent diameters) and the nearest downstream disturbance is the ID Fan at 48 inches (0.51 equivalent diameters form the sampling ports. This sampling traverse points were used to conduct the emission measurements at this location. A schematic of the FF outlet sampling locations is shown in Figure 4-2. Access to the test platform is provided via an outside stairway. For all isokinetic sampling, a 24-point velocity and/or particulate traverse in a total of six parallel directions (4 points per port) was made at the sampling location using a type-S pitot tube and sampling nozzle in accordance with EPA Methods 2 and 5 procedures. Gas temperatures were measured using a calibrated Type K thermocouples and digital readout devices. NE01 3AS-021420-RT-1 303 Page 36 of 55 io t r 1'r I IZ i );'r I Wheelabrator Environmental Systems, Inc, —Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18, 2022&October 25-28,2022 FIGURE 4-1 UNIT NOS. 1 AND 2 SDA INLET TEST LOCATIONS Stack Configuration Description Distance Equivalent Diameters A Upstream (A) 1001, 0.95 0 C --> Downstream (B) 294" 2.8 Diameter(C) 105" NA O Number of Ports 2 NA Port Diameter 4" NA B Port Length loll NA Isokinetic Sampling Traverse Points (per diameter)— not including port sleeve Flow Traverse Points %of diameter Distance (inches) 1 2.1 2.2 2 6.7 TO 3 11.8 12.4 4 17.7 18.6 5 25.0 26.3 6 35.6 37.4 7 64.4 67.6 8 75.0 78.8 9 82.3 86.4 10 88.2 92.6 11 93.3 98.0 12 97.9 102.8 1 —All measurements were verified onsite. A cyclonic flow check was performed to determine the absence of cyclonic prior to testing. e NE013AS-021420-RT-1303 Page 37 of 55 Wheelabralor Environmental Systems, Inc. —Wheelabralor N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18,2022&October 25-28, 2022 FIGURE 4-2 UNIT NOS. 1 AND 2 FF OUTLET TEST LOCATION From Baghouse Stack Configuration Description Distance Equivalent Diameters Flow Upstream (A) 204 inches 2.17 Downstream (B) 48 inches 0.51 A Duct Width (C) 124 inches NA Duct Depth (D) 76 inches NA Number of Ports 4 NA Port Diameter 4 inches NA Port Length 8.5 inches NA 0 0 0 0 0 0 Traverse Points Distance Probe Marking (inches) (inches) B 1 9.5 18.0 2 28.6 37.5 3 47.5 56.0 To ID Fan 4 66.5 75.0 ------------------------------- ------------------------- Traverse Points r r r • • • 6 ports ------- ------------------------------ ------------------ D 4 points/port • • r • • 24 point total ------- --------- --------------------- ------------- ------ F E D C B A NE013AS-021420-RT-1303 Page 38 of 55 1v;f )H i k I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18,2022& October 25-28, 2022 4.2 EPA METHOD 3, FLUE GAS COMPOSITION Dry gas molecular weight was determined concurrently with all sampling trains using the oxygen and carbon dioxide measurements following EPA Method 3 (Orsat Analyzers). Samples were collected according to procedures specified in EPA Method 3 (incorporated by ASTM D 7459-08, by reference). Stack gas moisture was measured in accordance with EPA Method 4 procedures for the condensation option contained with EPA Method 23, EPA Method 29, EPA Method 26A, and EPA Method 5. 4.3 EPA METHOD 5/29, PARTICULATE MATTER AND METALS A combined EPA Method 5/29 was used to collect particulate matter and Metals (Hg, Cd, and Pb) stack gas samples at the FF outlet sampling locations. A concurrent Method 29 sampling train collected mercury only at the SDA inlet sampling locations. A minimum of four 120-minute runs were conducted. A reagent blank was recovered for blank correction and a field blank was taken for contamination and/or recovery problems. The field blank consisted of a complete sampling train which was assembled as though to collect a sample, but flue gas was not pulled through the sampling train. The field blank was leak checked the same number of times as a sampling train used during a run. The train was placed at the sampling location for the duration of one run. The Train was returned to the laboratory and disassembled for recovery using the same procedure used to recover actual samples. The field blank was obtained using a train that was previously used to collect at least one sample. The sampling probe and filter exit were maintained at 248OF (+25°F) throughout testing, while the sample exit temperature was maintained at less than 680F throughout testing. The sampling train consisted of a basic EPA Method 5 train with a glass nozzle, Teflon-coated stainless-steel union, glass probe liner, glass filter holder, tared quartz glass fiber filter, Teflon filter support, and seven impingers. The first impinger (a knockout) was empty while the second and third impingers each contained 100 ml of 5% HNO3/10% H2O2 absorbing solution. The fourth impinger was left empty. The fifth and sixth impingers each contained 100 ml of 4% KMn04/ 10% H2SO4,while the seventh impinger contained a pre-weighed amount of silica gel, approximately 200 grams. Prior to mobilization, all glassware was washed in hot water and detergent, thoroughly rinsed with tap water, soaked for at least 8 hours in a 10% HNO3 bath, rinsed clean with HPLC-grade H2O, rinsed with HPLC-grade acetone, allowed to dry, sealed and labeled. Prior to sampling, a °K-factor" was established for setting the isokinetic sampling rate. The train was assembled and leak checked. After the probe and filter box reached the desired operating temperature, the probe was placed in the stack, and isokinetic sampling commenced at a rate of 0.5 to 1.0 cfm. Sampling consisted of collecting a sample isokinetically for 5 minutes at each of the 24 sample points previously identified in Figures 4-1 and 4-2 for a total of 120 minutes per run. Following each test run, the probe was recovered at the stack test platform level, while the remainder of the sample was recovered in the field laboratory. Each train yielded the seven sample fractions detailed below: • Fraction A: The nozzle, probe, and filter holder front half were first rinsed and brushed (with a Teflon probe brush)with a 100 ml of acetone into a prepared 250ml amber glass bottle. NE013AS-021420-RT-1303 Page 39 of 55 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28,2022 • Fraction B: The nozzle, probe, and filter holder front half were subsequently be rinsed with a 100 ml of 0.1 N HNO3 into a prepared 250ml amber glass bottle. • Fraction C: The filter was carefully removed and placed in a labeled petri dish. • Fraction D: The first, second and third impingers were first measured for net condensate gain. These impingers, filter support, filter holder back half and connecting glassware were subsequently rinsed three times each with a total of 100 ml of 0.1 N HNO3 into a prepared 1000ml amber glass bottle. • Fraction E: The fourth impinger was first measured for net condensate gain, before subsequently being rinsed three times with a total of 100 ml of 0.1 N HNO3 into a prepared 250ml amber glass bottle. • Fraction F: The fifth and sixth impingers were first measured for net condensate gain, before subsequently being rinsed three times with a total of 100 ml of 4% KMn04/ 10% H2SO4; followed by being rinsed three times with a total of 100 ml of DI H2O. • Fraction G: The fifth and sixth impingers were then rinsed with another 100ml of DI H2O, then 25 ml of 8N HCl, followed by a last 100ml rinse of HPLC grade DI H2O all into a separate 250ml glass amber bottle. Particulate samples were analyzed gravimetrically in accordance with EPA Method 5. The acetone rinses were evaporated to dryness in tared beakers. All beakers and filters are subsequently stored in a desiccator for 24 hours then weighed at 6-hour intervals until a constant weight is obtained. The results are reported to the nearest 0.1 mg. Once gravimetric sampling is complete, the particulate from the acetone rinse residue is reconstituted with nitric acid. Then this solution and the filter are analyzed with the remaining sample fractions for cadmium, lead, mercury in accordance with EPA Method 29 via ICP (cadmium, lead)or CVAA(mercury). All analyses were performed by Element One of Wilmington, N.C. 4.4 EPA METHOD 202, CONDENSABLE PARTICULATE MATTER Condensable particulate matter (CPM) was measured using EPA Method 202 (dry impinger method), this sampling train was operated as part of the EPA Method 5 PM sampling. Essentially, the back half of the PM Method 5 train was modified to include the specific requirements of Method 202 (CPM). Sampling was conducted non-isokinetically for a period of 120 minutes per run. The Method 202 components of the sampling train include a vertical water jacketed coil condenser, a dry hybrid impinger (initially containing no water), a dry modified Greenburg-Smith impinger(initially containing no water), a glass filter holder with an untared Teflon filter and Teflon filter support, a thermocouple mounted at the outlet of the filter holder, a modified Greenburg- Smith impinger containing 100 ml water, and a modified Greenburg-Smith containing approximately 200 grams of silica gel., The dry impingers are isolated from the wet/sigel impingers in a divided impinger bucket. The wet/sigel impingers are always kept well iced to maintain the Sigel outlet temperature below 68°F. The dry impingers are immersed in the other half of the impinger bucket which contains water for the water-jacketed coil condenser. Ice is NE01 3AS-021420-RT-1 303 Page 40 of 55 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28,2022 slowly added to the water as required to maintain the dry Teflon filter outlet temperature between 65-85°F. Prior to mobilization, all Method 202 glassware was washed with soapy water, rinsed with tap water, Dl H2O, acetone and finally hexane. All glassware was capped with Teflon tape. The Method 202 portion of the sampling sequence is as follows: the sample exits the Method 5 filter at 248°F + 25"F. The sample is routed through a glass coil condenser which is designed to reduce the sample temperature to 85OF or less through the use of a pump which circulates water through the condenser coil jacket. Upon exiting the condenser coil, the sample is routed in series through an empty knockout (short stem) impinger and modified Greenburg-Smith impinger prior to being routed through an unheated condensable PM filter housing containing an untaxed Teflon filter and Teflon filter support (also equipped with a thermocouple to monitor the filter outlet gas temperature). The outlet of this dry filter is to be regulated between 65-85°F. The remainder of the sampling train consists of a third impinger initially loaded with 100ml of DiH2O and a fourth impinger initially loaded with a known amount of silica gel. The train field blank was collected from a sampling train after the first or second sampling run by assembling the EPA Method 202 train, purging it at 14 liters/minute for 60 minutes, and recovering it in the manner of a test run per Method 202 instructions. These samples were analyzed along with the reagent blank and the emissions test runs. Prior to sampling, the train was carefully assembled and successfully leak checked. After the probe and filter box reach the desired operating temperature of 248°Ft25"F and verification of the proper process conditions, the probe was placed in the stack, and non-isokinetic sampling was initiated. During sampling the temperature of the dry Teflon filter outlet was maintained at 65-85°F by heated or cooling the impinger ice bath as required (in almost all cases, ice is slowly added to the impinger bucket to maintain this temperature). All impingers were weighed before sampling to obtain the initial weight. The first two impingers (hybrid and standard) are initially empty. Following each test run, the sampling train was first leak checked at the highest vacuum observed during the test run prior to being disassembled. Once disassembled, the Method 5 front half portion of the sampling train is recovered following Method 5 procedures. For EPA Method 202, the first two "dry" impingers (prior to the dry Teflon filter) are weighed for moisture net gain. The contents of the last two "wet/sigel" impingers are weighed for condensate gain and discarded. The sampling train components from the water jacketed coil condenser through the dry filter holder were purged with nitrogen for 60 minutes at a rate of at least 14 liters per minute while maintaining the dry filter outlet temperature at 65-85°F. A "purge stem" was added to the hybrid impinger to facilitate bubbling. Following the purge, impinger contents are poured into a sample recovery bottle (Method 202 Fraction A). The dry Teflon filter is transferred to a separate sample jar (Method 202 Fraction C). Subsequently, each of the components in the dry impinger section (condenser coil through front half of the condensable PM filter housing) are rinsed twice with DI water into the water sample jar(Fraction A). Lastly, each of these components is rinsed first with acetone (once) and then hexane (twice) into a separate sample recovery bottle (Method 202 Fraction B). NE013AS-021420-RT-1303 Page 41 of 55 1`Vi H 11( 1 Wheelabrator Environmental Systems, Inc. —Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022&October 25-28,2022 t 4.5 EPA METHOD 26A (MODIFIED), HYDROGEN CHLORIDE AND AMMONIA EMISSIONS Hydrogen chloride emissions (SDA inlet and FF outlet) and Ammonia emissions (FF outlet only) were measured utilizing EPA Method 26A (modified). A minimum of three 60-minute runs were conducted simultaneously at the SDA inlet and the FF Outlet of each unit. A reagent blank was recovered for blank correction. This method utilizes a Method 26A sampling train, with the exceptions that no nozzle was used and it was constant rate sampling, making it "modified". The train consisted of a quartz glass probe liner, a glass filter holder, heated quartz fiber filter with Teflon support frit and five impingers. The first impinger contained 50 ml of 0.1 N sulfuric acid while the second and third impingers were each loaded with 100ml of 0.1 N sulfuric acid (H2SO4). The fifth impinger contained approximately 200 grams of silica gel. The optional cyclone was not be used at either location, since neither gas stream is saturated with moisture. This was confirmed at the end of, and during, sampling by visual inspection. A modified Method 26A has been approved by the EPA and the facility's air permit and used for HCl compliance testing at other MWC facilities. Modified EPA Method 26A is preferable over the Method 26 (midget impinger) train, because it is easier to maintain probe sample temperatures. The probe and filter housing were heated to or above stack temperature up to 320OF at the FF outlets and up to 350°F at the SDA inlet. This can eliminate the potential for moisture condensation which can scrub HCI, and result in low-biased HCI emissions measurements. Prior to mobilization, all glass and Teflon train components were thoroughly cleaned in hot soapy water, thoroughly rinsed with DI water, allowed to dry, and sealed with parafilm. The trains were operated at a constant sampling rate of about 0.75 cubic feet per minute (cfm). Pretest preparations, preliminary determinations and leak check procedures were those outlined in EPA Method 5. The sample was collected through a heated glass probe and a heated filter, followed by a series of chilled impingers where the stack gas HCI, and NH3 where applicable, were absorbed. After completion of sampling, the train was leak checked and transferred to the sample recovery trailer. In accordance with the method, all impingers were weighed before and after sampling and the data recorded. The first, second and third impinger solutions (sulfuric acid impingers) were quantitatively recovered from the train using deionized water, and transferred to separate sample bottles with Teflon-lined lids. These impingers and their connecting glassware (starling at the filter back half) were rinsed three times with deionized water into its designated sample jar. The fourth, fifth and sixth impinger solutions (sodium hydroxide impingers) were weighed and then discarded. The contents of the silica gel impinger were weighed and discarded. HCl and Ammonia samples were analyzed via ion chromatography (IC) by Enthalpy Analytical of Durham, N.C. NE013AS-021420-RT-1303 Page 42 of 55 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022 &October 25-28,2022 4.6 EPA METHOD 23, POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS (4-8 PCDDIPCDF) EMISSIONS Emissions of 4-8 PCDDIPCDFs were measured using an EPA Method 23 sampling train at the Unit No. 1 and Unit No. 2 FF Outlet. The sampling train consisted of a glass nozzle, stainless steel Teflon coated union, glass probe liner, quartz filter, Teflon frit, glass coil condenser, sorbent resin trap placed vertically in-line after the filter and before the first impinger, and a hybrid first impinger. The usual EPA Method 5 condenser impingers followed these components, The sorbent resin trap contained pre-cleaned XAD-2 resin. Prior to mobilization, all sorbent traps, XAD-2 resin, and glass fiber filters were pre-cleaned in accordance with the method. Traps were then packed with the XAD-2 resin and shipped on ice along with the filters just prior to mobilization. Prior to mobilization, all glassware and Teflon train components prior to the XAD trap were soaked in hot soapy water, rinsed three times with tap water, rinsed three times with deionized water, rinsed three times with HPLC-grade acetone, HPLC-grade toluene, and allowed to dry. After drying, all glassware (minus the probe liner) was baked at 450"F for 2 hours. All prepared components were then sealed with hexane-rinsed aluminum foil. All recovery tools, including Teflon-coated spatulas and forceps, Teflon dispenser bottles and Teflon recovery mat were also hexane-rinsed. Cotton gloves were worn during all preparation and recovery procedures. The sampling train was set up in accordance with Method 23 procedures while wearing cotton gloves. The first impinger was empty in order to collect any condensate that may have come through the sorbent trap. The second and third impingers each contained 100 ml of deionized distilled water. The fourth impinger was left empty. The fifth impinger contained a pre-weighed amount of indicating silica gel. The sorbent trap and condenser coil were both jacketed in a recirculating ice water bath designed to maintain the temperature at the trap exit of less than 20°C for maximum organic compound adsorption. The train was operated in the same manner as an EPA Method 5 train during each test run and operated isokinetically for a period of 240-minutes per run. Following sampling, the train was disassembled while wearing cotton gloves, and sealed with hexane-rinsed foil or Teflon. In the field lab, the impingers and XAD-2 trap were weighed for moisture determination. Acetone was used to rinse, in triplicate, all components of the sampling train prior to the XAD-2 trap. This includes the nozzle, probe liner, filter holder, coil condenser and connecting glassware. After these rinses, the coil condenser was filled with acetone and allowed to soak for three separate 5-minute periods. All acetone rinses/soakings were combined into one single sample jar. All rinses/soakings were then repeated using toluene and placed in a separate jar as requested by the laboratory. The acetone and toluene rinses were combined later at the laboratory after the concentrating step to avoid "bumping" the samples due to the different boiling points. The train components were recovered in four separate fractions: 1) filter; 2) XAD- 2 trap; 3) front half through coil condenser acetone rinse; and 4)front half through coil condenser toluene rinse. All rinses were conducted in triplicate. EPA Method 23 also specifies that methylene chloride be used as a rinse, in the same manner as acetone and toluene. EPA has issued an Approved Alternative Method 052 (ALT-052, Approved Method 23 Modifications for Incinerators and Waste Combustors) eliminating the methylene chloride portion of the Method 23 sample recovery. All Method 23 sorbent traps and NE01 3AS-021420-RT-1 303 Page 43 of 55 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18,2022&October 25-28, 2022 particulate filters were refrigerated or kept on ice until they were delivered to the laboratory for analysis. All samples were extracted, combined, and aliquots analyzed for Polychlorinated Dibenzo-p- Dioxins and Dibenzofurans (PCDD/DF) by high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS). All EPA Method 23 analysis was conducted by SGS North America in Wilmington, NC. 4.7 EPA METHOD 9 AND 22, VISIBLE AND FUGITIVE EMISSIONS Wheelabrator North Andover operates and maintains a continuous opacity monitoring system (COMS) on the FF Outlet of all units. In accordance with 40 CFR 60.58b(c)(6) as provided under 40 CFR 60.11(e)(5), opacity data results from the COMS was used in lieu of EPA Method 9 observations to establish compliance with the opacity standard. COMS data recorded concurrently with particulate matter sampling are provided in Appendix E in reference to 40 CFR 60.11(e)(6) and the facility operating permit. EPA Method 22 fugitive emissions were determined by a qualified EPA Method 9 (opacity) observer (although this is not required by Method 22). The observer was in a position where the light source (of suitable intensity) was not directly behind the unit/process being observed. Observations were taken in 20-minute intervals with breaks of at least 5 minutes (but no more than ten minutes) between each interval. After the observer found a suitable observation site (as defined by the Method), a stopwatch was started at time zero. If at any point during the sampling interval, fugitive emissions were observed (water vapor is not considered a fugitive emission), a second stopwatch was run until fugitives were no longer visible. The second stopwatch was started with each subsequent fugitive emission and stopped when fugitives were no longer visible. At the end of each 20-minute interval, the total time (from the second stopwatch) that fugitives were visible during the interval were recorded. Three 1-hour observation periods (consisting of three 20-minute intervals each) were performed at the facility ash handling and storage points. 4.8 ASH COLLECTION Ash sampling was conducted concurrently with EPA Method 23 sampling on April 13th-14th, following Wheelabrator North Andover's Ash Sampling and Analysis Plan. Sampling was conducted by SAK Environmental and final composite samples of combined ash and fly ash were transferred to Montrose in order to deliver to the contract laboratory. Samples were analyzed for tetra- through octa- (4-8) PCDDs/PCDFs, according to EPA Method 8290. Table 2-11 presents the PCDD/PCDF concentrations of the Combined and Fly Ash composite samples. 4.9 EQUIPMENT CALIBRATION Pertinent equipment calibration documentation is reproduced in Appendix D. NE01 3AS-021420-RT-1 303 Page 44 of 66 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18, 2022&October 25-28,2022 5.0 QUALITY ASSURANCE AND REPORTING 5.1 SAMPLING AND ANALYTICAL QAIQC Montrose Air Quality Services (MAQS), its management, and employees are committed to consistently providing the highest quality services to our clients that is delivered with honesty and integrity. These services result in data that are accurate, precise, timely, and legally defensible in support of our clients' environmental compliance, engineering evaluation, and other needs. A corporate culture of quality and continuous improvement is maintained as a positive and desirable aspect of business operations. Both qualitative and quantitative factors contribute to field measurement uncertainty and should be taken into consideration when interpreting test program results. Whenever possible, Montrose personnel reduce the impact of these uncertainty factors through the use of approved and validated test methods. In addition, Montrose personnel perform routine instrument and equipment calibrations and ensure that the calibration standards, instruments, and equipment used during test events meet, at a minimum, test method specifications as well as the specifications of our Quality Manual and ASTM D 7035-04. Limitations of the various methods, instruments, equipment, and materials to be utilized during this test have been reasonably considered, but the ultimate impact of the cumulative uncertainty to the final data may not be quantifiable. All calculations were conducted in strict accordance with the equations found in the individual Methods. Strict QAIQC protocols were followed during all phases of this project. These protocols included: • QA objectives for measurement data; • Data reduction; '.. • Internal QC; • Calibration of equipment; • Corrective action, if necessary; and • Use of standardized field data sheets. These specific procedures in addition to Montrose's usual high standard of quality control aid to validate the results obtained during this test program. As the majority of our emissions testing work are done for compliance purposes, strict QC procedures are incorporated into our everyday work performance. The remainder of this section summarizes specific quality assurance aspects of the test program. NE01 3AS-021420-RT-1 303 Page 45 of 55 °0i i i i I(( 1:,I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates:October 17-18, 2022&October 25-28, 2022 6.2 SAMPLING EQUIPMENT MAINTENANCE AND CALIBRATION Our Quality Assurance Program is in place to ensure consistent standards for our equipment maintenance, calibration schedule, quality control acceptance limits, and any necessary corrective action. Below are specific examples of our control system. 6.2.1 Equipment Inspection and Maintenance • Each critical piece of field equipment is assigned a unique identification number to allow tracking of its calibration history • All field equipment is visually inspected prior to testing and includes pre-test calibration checks • Glassware is visually inspected prior to testing • Preliminary stack flow and temperature measurements will be taken to assure correct isokinetic sampling • Reagents are made fresh daily, when required. A new reagent blank is retained for every new stock of reagent. 5.2.2 Equipment Calibrations Montrose's meter boxes, pitot tubes, thermocouples and barometers are maintained in accordance with specifications set forth in EPA "Quality Assurance Handbook for Air Pollution Measurement Systems - Volume III Stationary Source Specific Methods" Section 3.3.5 dated January 15, 1980 and with manufactures suggested procedures. A summary is presented below: • Dry Gas Meter and Orifice Meter/EPA Method 5-All dry gas meters are calibrated using calibrated critical orifices, according to 40 CFR 60, Appendix A, Method 5, Section 16.2. The orifice meters in the meter control boxes are calibrated against the calibrated critical orifices and checked against the dry gas meters to which they are attached. All isokinetic sampling dry gas meters are post calibrated using Alternative Test Method-009. • Balance -All analytical balances are calibrated in the field against ANSI Class 3 weights. • Thermocouples - All type K thermocouples are calibrated against NIST traceable thermometers at three points. The first point is in an ice bath (01C), the second point is in boiling water (100°C) and the third point is in heated oil (-2201C). Isokinetic sampling probes thermocouples are post calibrated using Alternate Test Method-011, • S-type or Standard Pitot Tubes - All standard and Type "S" stainless steel pitot tubes are designed to meet the dimensional criteria set forth in Method 2, therefore a coefficient of 0.99 (standard) or 0,84 (Type "S") is used. NE01 3AS-021420-RT-1 303 Page 46 of 55 to i`,l I I s I Wheelabrator Environmental Systems, Inc. —Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18,2022 &October 25-28,2022 r 6.3 ANALYTICAL QA/QC RESULTS Analytical measurements of precision and accuracy were made on stack gas samples, and are detailed in each analytical report, In Table 5-1, a summary of the relevant analytical QAIQC results is provided. In Tables 5-2 & 5-3, the results for the duplicate analysis of each mercury sample fraction is provided. In Table 5-4 presents results for metals blanks and duplicate analyses. Table 5-5 presents metals reagent blanks correction results. Table 5-6 presents Method 5 particulate reagent blank correction results. Table 5-7 presents PCDD/PCDFs blanks analytical results. Table 5-8 presents results for flue gas PCDD/PCDFs surrogate standard percent recoveries. Table 5-9 presents results for flue gas PCDDIPCDFs extraction standards percent recoveries. Tables 5-10 and 5-11 presents results for ash PCDDIPCDFs standards percent recoveries. NE01 3AS-021420-RT-1 303 Page 47 of 55 � r�� AW 041%111ti siKiit Wheelabrator Environmental Systems, Inc. —Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates:October 17-18, 2022&October 25-28, 2022 TABLE 5-1 SUMMARY OF ANALYTICAL QA/QC RESULTS Test Method Parameter QA/QC Criteria QA/QC Status 0.5 mg Or 1%of the total Constant Weight weight less the tare 5 0.5 mg EPA Method 5 Paticulate weight;whichever is matter greater /100 ml Acetone Blank 5 0.001% by weight < <0.1 m0.0001%gby weight EPA Method 28A Matrix Spike Recovery NIA 97.3- 111% Hydrogen Chloride Duplicate Analysis S 10% <5.0% Reagent Blank N/A 7.46 ug ND Matrix Spike Recovery 80- 120% 94.0-97.6% EPA Method 26A Ammonia Duplicate Analysis 5 10% 5 5.0% Reagent Blank NIA 2.78 ug ND Matrix Spike Recovery 75- 125% 79 86%(Cd) 107- 123/o(Pb) EPA Method 29 Metals Duplicate Analysis 5 20%from average 5 7.9(Cd) 5 1.1%(Pb) Reagent Blank(front/back- <0.2ug(Cd) half combined) NIA .517ug(Pb) Matrix Spike Recovery 75- 125% 89- 101% EPA Method 29 Mercury Duplicate Analysis 5 10% 5 7.1% Reagent Blank N/A 5 0.5 ug Tetra-hexa extraction 40-130% 63.3- 159% standards recovery Hepta-octa extraction 25- 130% 56.2- 159% EPA Method 23 standards recovery (PCDD/PCDFs)' Surrogate standards 70- 130% 46- 111% recovery Field Blank N/A 38 pg Total Tetra-hexa extraction 40- 130% 78.1 - 130% standards recovery AD S007 Ash Sample Hepta-octa extraction 25- 130% 65.1 - 130% PCDDIPCDFs' standards recovery Clean-Up standards 70- 130% 98-131 % recovery Refer to SGS Laboratory Raport QC Annotations page NE013AS-021420-RT-1303 Page 48 of 55 ivi t i k I i( l'i I Wheelabrator Environmental Systems, Inc. -Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dates: October 17-18, 2022&October 25-28, 2022 TABLE 5-2 SUMMARY OF DUPLICATE ANALYSIS FOR MERCURY- UNIT NO. 1 Fraction Errs pty Front half H202/HNO3 Impinger KMN04 HCI Sample Analysis (1 A) (213) (3A) (3B) (3C) #1, pg 0,140 13.8 0,304 0,649 0.676 U1 Inlet R1 #2, pq 0.142 13.8 0.306 0.656 0.682 RPD 1.4% 0.3% 0.4% N/A 0.8% #1 0.249 2&5 ND 0.2 ND 0.5 0.629 U1 Inlet R2 #2, pg 0.250 26.7 ND 0.2 ND 0.5 0.624 RPD 0.6% 0.5% NIA NIA 0.8% #1 0.246 28.1 ND(U) Nd 0,5 0.643 U1 Inlet R2 Dup #2, pg 0.243 28.4 Nd 0,2 ND 0.5 0.653 RPD 1.1% 1.0% N/A NIA 1.5% #1, pg 0,168 18.4 0.215 N00.5 0.561 U1 Inlet R3 #2, pg 0.170 18.6 0.218 ND 0.5 0.562 RPD 1.0% 0.2% 1.4% NIA 0.3 0 #1, pg 0.333 28.8 0.656 ND 0.5 0.973 U1 Inlet R4 #2, pg. 0.327 28.6 0.662 ND 0.5 0.964 RPD 1.8% 0.7% 0.0% NIA 90.0% #1, pg ND 0.1 1.30 ND 0.2 ND 0.5 ND 0.4 U1 Outlet R1 #2 ND 0.1 1.31 ND 0.2 ND 0,5 ND 0.4 RPD NIA 0.8% NIA NIA N/A #1, pg ND 0,1 1.38 ND 0.2 ND 0.5 ND 0,4 U1 Outlet R2 #2,pg ND 0,1 1.39 ND 0.2 ND 0.5 Nd 0,4 RPD NIA 1.0% N/A NIA NIA #1,pg Nd 0.1 1.39 ND 0.2 ND 0.5 ND 0.4 U1 Outlet R2 Dup #2, pg ND 0.1 1.37 ND 0.2 ND 0.5 Nd 0.4 RPD NIA 1.3% N/A NIA NIA #1, pg Nd 0.1 1.45 ND 0.2 ND 0.5 ND 0.4 U1 Outlet R3 02, pg ND 0.1 1.46 ND 0.2 ND 0.5 ND 0.4 RPD NIA 0.9% N1A NIA NIA #1, pg ND 0.1 1.42 Nd 0,2 ND 0.5 ND 0.4 U1 Outlet R4 #2, pg I Nd 0,1 1.41 ND 0.2 Nd 0,5 ND 0,4 RPD NIA 1.0% NIA N/A NIA N/A-At least one of the analyses were below 5x analytical detection ilmits, RPD is not applicable in this Circumstance NE01 3AS-021420-RT-1 303 Page 49 of 55 1ftd' t111;1111 0 li 5'I f'It Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dates; October 17-18, 2022&October 25-28, 2022 TABLE 5-3 SUMMARY OF DUPLICATE ANALYSIS FOR MERCURY - UNIT NO. 2 Fraction Empty Front half H2O21HN Impinger KMN04 HCI Sample Analysis (1A) 03 (2B) (3A) (3B) (3C) #1, Pg 0.648 31.0 3.29 2.22 5.25 U2 Inlet R1 #2, pg 0.654 31.3 3.33 2.23 5.28 RPD 1.0%0 1.0% 1.4% 0.3% 0.6% #1 0.172 59.7 0.434 0.610 2.29 U2 Inlet R2 #2 0.172 59.5 0,440 0.586 2.29 RPD 40.0% 0.4% 1.4% 4.0% 0.0% #1 0.169 58.7 0.401 0.629 2.31 U2 Inlet R2 Dup #2, Vg 0.172 60.1 0,412 0.615 2,29 RPD 1.4% 2.4% 2.7% 2.2% 0.9% #1, Vg 0.397 45.6 0.785 Nd 0,5 1.31 U2 Inlet R3 #2 Vg 0.397 45.6 0,782 ND 0.5 1.320 RPD 0.1% 0.0% 0.4% NIA 0.7% #11, Pg 0,181 20.1 0.319 Nd0.5 2.12 U2 Inlet R4 #2 0.178 20.0 0.312 Nd 0.5 2.13 RPD 1.6% 0A% 2.5% WA 50.0% #1, Vg 0.116 5.83 ND 0.2 ND 0.5 0.481 U2 Outlet R1 #2 pq 0A17 5.75 ND 0.2 ND 0.5 0.485 RPD 0.8% 1.4% WA NIA 0.8%a #1, Pg ND 0.1 3.56 ND 0.2 ND 0,5 ND 0.4 U2 Outlet R2 #2 ND 0.1 3.60 ND 0.2 ND 0.5 ND 0,4 RPD N/A 1.3% 1 WA NIA NIA #1,Pg ND 0.1 3.56 ND 0.2 ND(0.5 ND 0.4 U2 Outlet R2 Dup #2,pg ND 0.1 3,59 ND 0.2 ND 0.5 ND 0.4 RPD WA 0.8% N/A NIA NIA #1, pg ND 0,1 1.79 ND 0.2 ND 0.5 ND 0.4 U2 Outlet R3 #2, pq Nd 0.1 1.80 ND 0,2 ND 0.5 ND 0.4 RPD NIA 0.3% NIA NIA NIA #1 ND 0.1 1.59 ND 0.2 ND 0.5 ND 0,4 U2 Outlet R4 #2, pg ND 0.1 1.59 ND 0,2 ND 0.5 ND 0.4 RPD NIA 0.2% NIA WA NIA #1 ND 0,1 ND 0,3 ND 0.2 ND 0.5 ND 0.4 Field Blank #2, jig ND 0,1 ND 0.3 Nd 0.2 ND 0.5 ND(GA) RPD NIA NIA NIA WA NIA #1, 0 .2 D .2 D 0.4 Reagent Blank #2 D 0, ,2 D 0.5 0.4 RPD NIA T'JIA NIA WA NIA-At least one of the analyses were below 5x analytical detection limits. RPD is not applicable In this Circumstance NE=013AS-021420-RT-1303 Page 50 of 55 if-; r Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates:October 17-18, 2022&October 25-28,2022 TABLE 5-4 METALS BLANKS AND DUPLICATE ANALYSES RESULTS Analyte Matrix and Spike Rec, uniti-Out-M29-R2 Un1t2-0ut-M29-R2 Analytical % Catch,ug Catch,ug Method Reagent Field Unit Unit First Second Relative% First Second Relative% (FH/BH) Fraction Blank,ug Blank,ug 1 2 1 Analysis Analysis Difference Analysis Analysis Difference Cadmium Front/ <0.2 <0.2 79% 86% 1.18 1,15 2.5% 1.54 1.67 8.4% (lCP-MS) Back l Lead Front/ 0.52 0.319 123% 107% 11.3 11.4 0.9% 12,6 12.5 0.8% (lCP-MS) Back 'The Front and back half fractions were analyzed together. TABLE 5-5 METALS REAGENT BLANKS CORRECTION RESULTS FH/BH Catch Filter Corrected Run#and Weight, ug Blank Catch, ug Dlam., 1.4*Area 51/6 of Calculated Calculated Result to use Target Analyte (mFh19h(A1tual)) (mthb-bhb(actual)) inches and 1 ug '/2Xn1(h1bh(,,1,,1) mfb(ass um ed) m8b(assumed) ugI Unit1-Out-M29-1 125 0 3.22835 11.46+1 0.0313 0.63 0.63 1,250 Cadrnlum Unit1-Out-M29-2 1.17 0 3.22835 11.46+1 0.0293 0.59 0.59 1.170 Cadmium Unitl-Out-M29-3 1A 0 3.22835 11.46+1 0.0350 0.70 0.70 1.400 Cadmium Unit2-0ut-M29-1 0.791 0 3,22835 11.46+ 1 0.0198 0.40 0.40 0.791 Cadmium Uut-M29 2 Cadmium 1.610 0 3.22835 11.46+ 1 0.0403 0.81 0.81 1.610 Unit2-Out-M29-3 0.959 0 3.22835 11.46+ 1 0.0240 0.48 0.48 0.959 Cadmlum Unitl-Out-M29-1 13.6 0.517 3.22835 11.46+ 1 0.3400 6.54 6.54 13.08 Lead Unll1-Out-M29-2 11.4 0.517 3.22835 11.46+ 1 0,2850 5.44 5.44 10.88 Lead Unitl-Out-M29-3 12.9 0.517 3.22835 11,46+1 0.3225 6.19 6.19 12.38 Lead Unit2-Glut-M29-1 10.2 0,517 3.22835 11.46+1 0.2550 4.84 4.84 9.68 Lead Unit2-Out-M29-2 12.6 0.517 3.22635 11,46+ 1 0.3150 6.04 6.04 12.08 Lead Unit2-Out-M29-3 15 4 0.517 3.22835 11.46+1 0.3850 7.44 7.44 14.88 Lead ' For the combined Front-half/Back half blank correction we deduct mmbbhb(Combjned), Which is equal to:)nfhh(mumed)+nlbhh(assumed) To Calculate mfhh(ascumed)we use the following guidelines: If 0 5(1/2 x mrho-bhb(aauap)5 11,46,then mrhb(assumed)^ (Y2 X mlhb-bhb(acluei)),otherwise use the greater of the I or 11: Where: I= 11.46pg(derived by multiplying the filter area by 1A) 11=the lesser of(a)(%x mrhb-bhb(adual)),or(b)5%of(Y2 x rrtrhtrbhb(adual)) To Calculate mbhb(assumad)we use the following guidelines: If 0 s('/2 x mfhlrbhb(eduap)511,46,then m111b(assumed)_ (%2 X mlhb-bhb(aduel)),otherwise use the greater of the I or 11: Where: I= 1 ug(derived by multiplying the filter area by 1.4) 11=the lesser of(a)(%2 X Mfhb bhb,or(b)5%of(%2 x mfhabhb) NE013AS-021420-RT-1303 Page 51 of 65 I Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2-Test Report Test Dates: October 17-18, 2022&October 25-28,2022 TABLE 5-6 EPA METHOD 5 BLANK CORRECTION RESULTS RB RB M5 Reagent Fraction Fraction Catch Vol. Blank Conc. Blank Corrected Run#and Target Catch Wt. Volume Wt(m,b) (Vrb) (C.x pe) Correction Result to Analyte Fraction (WJ,2) mg (V2,3) ml mg ml mglml (We) rngi use M92 Unit1-Out M5129-1 FHAce 5.2 86 0.1 102 -- 0.084 5.1 Filter ND(0.1) -- ND(0.0) -- -- -- NO(0.1) Unit1-Out-M5129-2 FHAce 4 90 0.1 102 - 0,084 3.9 Filter ND(0.1) -- ND(0.1) -- -- -- 0.1 Unit1-Out-M5129-3 FHAce 1.7 60 0.1 102 -- 0.084 1.6 Filter ND(0.1) -- ND(0.1) -- -- -- ND(0.1) UO2-0ut-M5129-1 FHAce 3.3 62 0.1 102 -- 0.084 3.2 Filter ND(0.1) -- ND(0.1) -- -- ND(0.1) Unit2-Out-M5129-2 FHAce 1.3 95 0.1 102 -- 0.084 1.216 Filter ND(0.1) -- ND(0.1) -- -- -- ND(0.1) Unit2-Out-M5129-3 FHAce 2.3 70 0.1 102 -- 0.084 2.2 Filter i ND(0.1) -- ND(0.1) -- -- -- ND(0,1) ' For Method 5 Fractions,W,=C.x p,,x V,„,not to exceed 0.001%of the weight of acetone used during recovery 2 For Method 5 fractions,W,+W2-W.=Catch weight,mg a Analyte in sample is less that analytical detection limits. NE01 3AS-021420-RT-1 303 Page 52 of 55 Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18, 2022 &October 25-28, 2022 TABLE 5-7 PCDDTPCDF BLANKS ANALYSES RESULTS Compound Method Blank, pg Field Blank, pg 2,3,7,8-TCD❑ ND' (7.89) ND' (7.41) 1 2,3 7,8-PeCDD _ ND 8.26 ND 6.73 1,2,3,4,7.8-HxCDD_ ND^ 1,2,3,6,7,8-HxCDD ND _8.83 _ ND (8.6) 1,2,3,7,8,9-HxCDD ND 9 _ND 8.78 1,2,3,4,6,7,8-H CDD ND 8.38 ND 7.62 ND _ __17.6�- J - 38_ 2,3,7,8-TCDF ND 3.66 ---ND 3.69 .. 1,2,3,7,8-PeCDF ND 2.96 ND 2.77 2,3,4,7,8-PeCDF ND 3.62 ND 3.5 1,2,3,4,7,8-HxCDF ND 4.14 ND 3.8 1,2,3,6,7,8-HxCDF ND 3.71 ND 3.44 2,3,4,6,7,8-HxCQF ND 6.37 ND 5.07 1,2,3,7,8,9-HxCDF ND 6.69 ND 5.18 1,2,314,6,7,8-H CDF ND 2.96 ND 2.44 1,2,3,4,7,8,9-H CDF ND 8 ND 5.61 OCDF ND 18.5 ND 14.8 Total TCDD ND 7.89 ND 7.41 Total PeCDD ND 8.26 ND 6.73 Total HxCDD ND 9.02 ND 8.24 Total H CDD ND 8.38 ND 7.62 Total TCDF ND -._._�3.66 - .ND (3.69)_ Total PeCDF (3_ Total HxCDF ND 4.96 ND 4.23 Total H CDF ND 4.47 ND 3.51 Total PCDDs _ND__--. �.-._._ �.p._ _. 38m.w Total PCDFs ND fl ND 0.0 Total PCDDIPCDF's ND 02 382 ' Not Detected or EMPC.Refer to Section 2.4 For more information. z As reported in the SGS Laboratory Report provided In Appendix C. NEW 3AS-021420-RT-1303 Page 53 of 55 r��yr 1 .tl l' nl. 1111 r t SIr I ti Wheelabrator Environmental Systems, Inc.-Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2--Test Report Test Dates: October 17-18, 2022&October 25-28, 2022 TABLE 5-8 PCDDIPCDF FLUE GAS SURROGATE STANDARDS PERCENT RECOVERIES 4DL._ 11L._ 1!0 _ C. IOC. 11C. Is, %- I'C_ Isc_ Is`._ 1d`.- ISC. Is, Ilc. 13C. UC. 'I Sample Description TOMP4CDD H%COD HxCDD ..COD HpCDO OCDD TCDF PeCDF PaCOF HxCDF HxCDF HKCOF HxCOF HpCDF HpCDF OCDF Method Blank 87286_19028 85 65.7 80.3 83.1 80.4 842 78.6 68 88.5 74.6 1 91.7 100 81.5 67.1 142 68.2 58.9 M23-M-RI 76.4 70.7 64.3 83.0 70.7 88.5 88.5 68 88.1 69.2 1 87.7 104 77.6 $0.1 130 67.6 638 M23-UFR2 60.7 93.3 90 94.2 02.6 92.7 102 73.8 95.2 75.2 98.6 114 80.6 73.7 154 76 72.9 M23-Ul-RS 85.2 00.3 91.3 89.6 82.1 06.1 102 69 92.B 74.6 102 113 90.0 73.3 159 78.8 77 M23-U2-FB 86.4 80.0 91 80.7 60.0 02.7 80.5 75.3 04.1 75.2 96.1 111 08 1 74.6 134 70.8 06.5 M23-U2-111 81.0 90.7 1 85.9 87.7 75.8 87.4 74.5 70.3 81.7 72.6 87 103 81.0 1 63.3 142 68 58.2 M23-U2-n2. 92.€ 93 1 00.3 $1.4 80.1 01.3 94.0 70.8 90.6 79.3 93.5 100 82 71.3 137 79.9 74.5 M23-U2-n3 84.9 $7.9 00.1 93.7 83.4 96.3 83.7 72.8 95.7 78.4 93,1 108 60.3 1 74.8 136 81.8 69.9 TABLE 5-9 PCDDIPCDF FLUE GAS EXTRACTION STANDARDS PERCENT RECOVERIES Surrogate Sample Description 37CI, 3Cy C- 3C- 13C- TCDD PeCDD PeCDF HxCDF H CDF Method Blank B7268 19628 98.8 ill 87.3 78.3 51 M23-U1-Rl 88.8 103 80.4 71.4 1 52 M23-U1-R2 89.9 95.9 78.2 72.8 47.8 M23-U1-R3 93.5 109 84 79.2 52.8 M23-U2-FB 893 98.6 79.6 80.1 58.5 M23-U2-R1 85.5 97.7 80.2 75.9 45.6 M23-U2-R2 90.3 100 84,9 80.7 57.7 M23-W-R3 1 91.2 105 82.5 77 60 TABLE 5-10 PCDDIPCDF ASH EXTRACTION STANDARDS PERCENT RECOVERIES uC, +aa. C. +1C_ seC- uc, €or, 1fC C. _ C. uC- C. IE4. aF +sG Sample Deserlption TCDD PeCDD HxCDD HxCDD HxCDD HpCDD OCDD TCOF PeCDF PeCDF HxCDF HxCOF HxCDF HxCDF HpCOF HpCDF OCOF Method Blank B7260_19622 92.1 98.2 82.0 1 78.4 1 83.9 102 77A 02.8 95,8 881 86,6 B8,8 89.8 87.3 120 101 68.3 Combined Ash Sample 94.4 104 93.4 65.8 92.6 IQ93.9 0 €Ot 04.7 98.2 9e,3 98.3 1€Y2 130 116 67.6 Fly Ash Sample 89.7 1 94.2 65.6 1 80.0 1 84 95.8 73.2 83.8 02.3 65 86.4 87.2 80.2 86,6 118 033 05.1 1 NE013AS-021420-RT-1303 Page 54 of 55 tll' i1ll.li I I1 '.I 1�1'Ic I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2—Test Report Test Dates: October 17-18,2022&October 25-28, 2022 TABLE 5-11 PCDDIPCDF ASH CLEAN UP STANDARDS PERCENT RECOVERIES CS1SS Percent Recoveries, % 37C1- 13C- 13C- 13C- 13C- Sample Number TCDD PeCDD PeCDF HxCDF HpCDF Method Blank B7250_19622 98.2 116 101 101 118 Combined Ash Sample 102 118 106 108 131 Fly Ash Sample 98.6 109 102 99.9 118 l NE01 3AS-021420-RT-1 303 Page 55 of 55 �; Yf I 1 I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. j Compliance Test Program on Unit Nos. 1 &2 Test Dates: October 18-19,2022&October 25-28,2022 P APPENDIX A Test Results Al - Unit No. 1 Inlet Hydrogen Chloride A2 - Unit No. 1 Inlet Mercury A3 - Unit No. 1 Outlet Hydrogen Chloride and Ammonia A4 - Unit No. 1 Outlet Particulate, Metals and Mercury A5 - Unit No. 1 Outlet PCDDIPCDFs A6 — Unit No. l Outlet Condensable Particulate A7 - Unit No. 2 Inlet Hydrogen Chloride A8 - Unit No. 2 Inlet Mercury A9 - Unit No. 2 Outlet Hydrogen Chloride and Ammonia A10 - Unit No. 2 Outlet Particulate, Metals and Mercury All - Unit No. 2 Outlet PCDDIPCDFs r ay MON TROSE NE013AS-021420-RT-1303 Appendix A-Page 1 of 135 Wheelabrator Environmental Systems, Ino.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test bates; October 18-19,2022&October 25-28,2022 Al Unit No. 1 inlet Hydrogen Chloride .MO_ t`CRO5E NE013AS-021420-RT-1303 Appendix A- Page 2 of 136 f HCL Emission Calculations Facility/Site: Wheelabrator l North Andover Date: 10/27/22 Source: Unit No. 1 SDA Inlet Start Time: 9:26 Run No.: U1-SDA In-M26A-Run 1 Stop Time: 10:25 Laboratory,Results: 02 = 9.90 %vd HCL(µg)= 958,777 CO2 = 9.50 %vd HCL(mg), M„= 958.8 As = 60.13 If V.std= 1.27 dscm MW Of HCL(glmol): 36.46 V,n std= 44.908 dscf ppmvd = (lbldscf)1(MW of HCL/3.856E08) 497.87 ppmvd ppmvd @7%02 = ppmvd(13.91(20.9-%02)) = 629.13 ppmvd@7%02 mgldscm — mg 1 dscm = 763.96 mgldscm NE013AS-021420-RT-1303 Appendix A-Page 3 of 135 r HCL Emission Calculations FacilitylSite: Wheelabrator I North Andover date: 10/27/22 Source: Emit No. 1 SDA Inlet Start Time: 12:50 Run No.: U1-8DA In-M26A-Run 2 Stop Time: 13:50 Laboratory Results: 02 = 9.80 %vd HCL(ug)= 1,123,663 CO2 = 9.60 %vd HCL(mg), M„= 1123.7 As = 60.13 fe V,,,std= 1.28 dscm MW of HCL(glmol): 36.46 Vm std= 45.140 dscf ppmvd = (IbldscO1(MW of HCL13.856E08) -- 680.61 ppmvd ppmvd(d7%02 = ppmvd(13.9/(20,9-%02)) 726.94 ppmvd@7%02 mgldscm = mg!dscm 879.09 mgldscm NEW 3AS-021420-RT-1303 Appendix A-Page 4 of 135 HCL Emission Calculations FacllitylSite: Wheelabrator 1 north Andover Date: 10127/22 Source: Unit No. 1 SDA Inlet Start Time: 15:50 Run No.: U1-SDA In-M26A-Run 3 Stop Time. 16:50 Laboratory Results: 02 - 10.00 %vd HCL(µg)= 1,095,330 CO2 = 9.30 %vd HCL(mg), Mn W 1095.3 As = 60.13 f V,,std 1.27 dscm MW of HCL(glmol): 36.46 Vrt,std= 44.769 dscf ppmvd = (Ibldscf)1(MW of HCU3.856F08) - 570.55 ppmvd ppmvd @7%02 ppmvd (13.91(20.9-%02)) - 727.58 ppmvd@7%02 mg/dscm = mg!dscm -- 864.01 mg/dscm ti NE013AS-021420-RT-1303 Appendix A-Rage 5 of 135 I J Non-Isokinetic Calculations FacllitylSite: Wheelebrator/North Andover Date: 10/27/22 Source: Unit No. 1 SDA Inlet Start Time: 9:25 Run No.: U1-SDA In-M26A-Run 1 Stop Time: 10:26 T.(OF) = 621.0 02(%Vd) = 9.9 V.(dcf) = 45.213 TB(OR) = 981.0 CO2(%vd) = 9.6 OH (Abs) ("Hg) = 29.94 T.(OF) = 81.0 CO(%vd) = 0 Ps("Hg) = 29.73 T,(OR) = 541.0 N2(%vd) : 80.6 SQRT A P Vt (Total gain) = 176.6 CQ = 0.84 Y = 1.017 Vt(adj.for sat.) = NA Run Time(min.) = 60 V,,,std = (T$td)(V,)(Y)(A H Abs) - 44.908 dscf (Pstd)(T,) V,y std = 0.04706(VI Total gain) = 8.311 sef B. = VW(std) / Vm(std)t VW(std) = 0.156 1 -B, = 1 -13w, = 0.844 Md = 0.440 N00O2) 0.320 M02) 0.280 (%N2*%CO) W 29.916 Iblib-mo[e Ms = Md(1-13.)+ 18(Bws) = 28.066 Ibllb-mole G = SQRT(Ts(abs)/Ps Ms) - 1.085 NE013AS-021420-RT-1303 Appendix A-Page 6 of 135 y Non-Isokinetic Calculations FacilityfSite: Wheelabrator/North Andover Date: 10/27/22 Source: Unit No. 1 -SDA Inlet Start Time: 12:50 Run No.: U1-SDA In-M26A-Run 2 Stop Time: 13:50 T.ff) = 530.2 02(%vd) = 9.8 V,(dcf) = 44.865 T.(OR) = 990.2 CO2(%vd) = 9.6 AH (Abs)("Hg) = 29.94 T,,,(OF) = 74.1 CO(%vd) = 0 P.("Hg) = 29.73 Tm (OR) = 534.1 N2(%vd) = 80.6 SQRT A P V, (Total gain) = 178.3 Cp = 0.84 Y = 1.017 V, (ad).for sat.) = NA Run Time(min.) = 60 A,(ft) — V,std — (TBjd)(V,)(Y)(o H Abs) = 45.140 dscf (Patd)(T,) V,v std = 0,04706(V,Total gain) — 8.391 scf Bm = VW(.td) / Vm(std)`'VW(atd) = 0.157 1 -B s = 1 -B" = 0.843 Md = 0.440 MCO2) 0.320 (%02) 0.280 (%N2 d-%CO) = 29.928 lb/lb-mole M. = Md(1-B.) + 18(B,,.) = 28.058 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 1.090 NE01 3AS-021420-RT-1 303 Appendix A-Page 7 of 135 f Non-Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover ©ate: 10/27/22 Source: Unit No. 1 SDA Inlet Start Time: 15:50 Run No.: U1-SDA In-M26A-Run 3 Stop Time: 16:60 Ts(°F) = 632.2 02(%vd) = 10.0 V,,,(dcf) =44.706 T.(OR) = 992.2 CO2(%vd) = 9.3 AH (Abs) ("Hg) = 29.94 T.(OF) = 76.6 CO(%vd) = 0 P.("Hg) = 29.73 Tm(OR) = 536.6 N2(%vd) = 80.7 SQRT A P - Vi(Total gain) = 175.0 CP = 0.84 Y = 1,017 IV, (adj.for sat,) = NA I Run Time(min.) = 60 IA.(ft) _ V,std — (T.td)(Vm)(Y)(A H Abs) - 44.769 dscf (P6td)(Tm) Vw std = 0.04706(Vt Total gain) = 8,236 scf BM = Vw(std) / Vm(std)+VW(sld) = 0.155 1 -B" = 1 -Bvis — 0.846 Md = 0.440 (%CO2) 0.320 M02) 0.280 (%N2+%CO) - 29.888 lb/lb-mole M, = Md(1-8,,,,$) + 18(13m) = 28.041 Ibllb-mole G = SQRT(Ts(abs)/Ps Ms) = 1.091 S NE O13AS-021420-RT-1303 Appendix A-Page 8 of 135 Input Data r FacllltylSite; Wheelabrator I North Andover Bate: 10/27/22 Source: unit No. 1 SDA Inlet Start Time; 9:25 Run No.: tJ1-SDA In-M26A-Run 1 Stop Time; 10:25 Traysrsa Delta P Square Root Delta H Dry age Meter Temps. Stack Stack Diameter("): 105.0 Pa ("H,o) Delta P ("H2O) Inlet(F) outlat iFi Temp. F) Stack Area(W) 60.1 Nozzle Diameter CT. 1 1.95 78 77 621 Pitot Coefficient: 0.84 1.95 78 78 520 1.95 80 78 518 Initial Impinger VolumelWe ht : 1.95 80 79 619 Impinger 1 (ml) 662.1 1.95 82 80 520 Impinger 2(ml) 691.6 1.95 83 80 521 Impinger 3(ml) 692.6 1.95 84 80 522 Impinger 4(ml) 615.0 1.95 84 80 521 Impinger 6(mi) 826.4 1.95 85 81 524 Impinger 6(ml) 1.95 85 81 524 Impinger 7(9) 1.05 85 82 522 1.95 85 80 620 Final Im In er V lumeMei hts: Impinger 1 (ml) 738.1 Impinger 2(ml) 760.8 Impinger 3(ml) 714.6 Impinger 4(ml) 618.9 Impinger 5(ml) 841.9 Impinger 6(ml) Impinger 7(9) a/o OZ (Outset) : 9.9 *CO2(Outlet): 9.5 %CO (Outlet): 0 Bar.Pressure("tfg): 29,80 Static Pressure("#iz0): -1.0 No.of Traverse Points: Run Duration(minutes): 60 Meter Vol.Final(dct : 1041.813 Leak Check Volume(dcf): Meter Vol.Initial(dct): 996.600 Start Time: 9:25 End Time: 10,25 AVERAGE: 1.95 82.4 79.7 621.0 i NEW 3AS-021420-RT-1303 Appendix A- Page 9 of 135 p Input Data Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 SDA Inlet Start Time: 12:50 Run No.: U1-SDA In-M26A-Run 2 Stop Time: 13:50 Traverse Delta P Square Root polta H pry Gas Motor Tempa. Stack Stack Diameter(��): 106.❑ Point Delta P ("H20) wow) Oultet(F) Temp.(F) Stack Area(ft) : 60A Nozzle Diameter CT 1 1.95 72 70 528 Pitot Coefficient: 0.84 1.95 72 71 532 1.95 74 71 532 InitiallmpinnerVoiumeMei ihts: 1.95 75 72 532 Impinger 1 (ml) 646.0 1.95 76 72 530 Impinger 2(ml) 696.1 1.95 75 73 532 Impinger 3(ml) 687.1 1.95 77 73 531 I mpinger 4(ml) 615.2 1.95 77 73 530 Impinger 6(ml) 846.4 1.95 78 73 627 Impinger 6(ml) 1.95 78 73 528 Impinger 7(g) 1.95 79 73 529 1.95 79 73 531 Final Im In er Volume[Wel is; Impinger 1 (ml) 714.0 Impinger 2(ml) 764.6 Impinger 3(ml) 706.2 Impinger 4(ml) 621.1 Impinger 6(ml) 862.2 Impinger 6(ml) Impinger 7(g) *02 (Outlet): 9.8 *CO2(Outlet): 9.6 %CO (Outlet) Bar.Pressure("Hg): 29,80 Static Pressure("H2O): -1.0 No.of Traverse Points: 0 Run Duration(minutes): 60 Meter Vol.Final(dcQ: 88.865 Leak Check Volume(dcfi: Meter Vol.Initial(dcq: 44.000 Start Time: 12:50 End Time: 13;50 AVERAGE: 1.95 76.0 72.3 530.2 NE01 3AS-021420-RT-1 303 Appendix A- Page 10 of 135 i i' Input Data Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 SDA Inlet Start Time: 15:50 Run No.: U1-SDA In-M26A-Run 3 Stop Time: 16:50 Traveraa Delta P Square Root delta H Dry Gas Meter Tramps. Stack Stack Diameter("�: 105,0 Point ("H2o) t)aita P ("N�CS) Inlet(F) outlet(F) Temp.{Fi Stack Area(fe) 60.1 Nozzle Diameter CT 1 1.95 75 74 528 Pitot Coefficient: 0.84 1.95 77 74 531 1.95 79 74 531 Initial Impinger VotumeMel ts: 1.95 79 74 532 Impinger 1 (ml) 662.1 1.95 79 74 531 Impinger 2(ml) 696.4 1.95 80 75 532 Impinger 3(ml) 695.2 1.95 80 75 533 Impinger 4(ml) 614.8 1.95 80 75 532 Impinger 5(ml) 867.7 1.95 80 74 536 Impinger 6(ml) 1.95 79 74 535 Impinger 7(g) 1.95 80 74 532 1.95 80 74 533 Final Impinner Volume/Wei hts: Impinger 1 (ml) 724.8 Impinger 2(ml) 767.5 Impinger 3(ml) 7%8 Impinger 4(ml) 620.4 Impinger 5(ml) 882.7 Impinger 6(ml) Impinger 7(g) *O, (Outlet) : 10.0 %COg(Outlet): 9,3 *CO (Outlet) : Bar.Pressure("Hg); 29.80 Static Pressure("H70): -1.0 No.of Traverse Points: 0 Run Duration(minutes): 60 Meter Vol.Final(dcQ,. 134,205 Leak Check Volume(dcf): Meter Vol.Initial(dcf): bENd Start Time: 15:50 End Time: 16;50 AVERAGE: 1.95 79.0 74.3 532.2 NE013AS-021420-RT-1303 Appendix A- Page 11 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Vest mates;October 18-1 S,2022&October 25-28,2022 i A2 Unit No. 1 Inlet Mercury (,kv�1 NE013AS-021420-RT-1303 Appendix A-Page 12 of 135 Mercury Emission Calculations FaclQjAlte: Wheelabrator 1 North Andover ©ate; 10/27/22 Source: Unit No.1 SDA Inlet Start Time: 9:26 Run No.,. U1-8DA IN-M29-Run 1 Stop Time: 11:35 Total lReagert! Biank _ _ _Concentration_�$) _ _ _ ._ Emission Rate_, Mgr Blank' Cor,Total (ugldscm ib/MMBtu Anal a (ug) (ug) (ug) (tbldscty (ugldscm) @70A02) (F.) (Iblhr) Mercu 16.6 1 0,00 15.6 4.269E-10 1 6.84 1 B.66 I 8.094E-08 1.993E-03 Run Data V.(dacf) 00.67 Q. (dscih) = 4,667,300 Weighted Fuel Factor(F.) m 1,820 02(%) 9.80 CO2(%) 9.60 E uallons Q. (dscth) =3600(1-13.)(V.)(A.)(17X4)(P.)1(T.) C. (ibldsco =(ug`0.4638E09)!V,.Std C. (ugldscm @7%02) =ugldscm•13.81(20.9-'Yn02) E (lb1MMBtu)-using F. _ (C,,Ibldsct)(F.)(1001G021%) £ (lblhr) _ (C„Ibldscf)(Q.,dscfh) Conversions to obtain dsam; multiply dscl by 0,02832 to obtain u ; multiply Ib by 0.4636E09 to obtain mg: divide ug by 1000 to obtain It): mutil I u b 2.206E-09 NE013A5-021420-RT-1303 Appendix A-Page 13 of 135 Mercury Emission Calculations lFarility/Site: Whealabratorl North Andover Date: 1 0/2712 0 22 Source: Unit No.1 SDA Inlet Start Time: 12:60 Run No.: Ui-SDA IN-M29-Run 2 Sto Tlme: 16:13 Total Reagan It Blank _ _Iconcentration_(CsL_... _ misslan RaWe L Hg' Blanle Car.Total (ugldscm Ib1MMl3tu Anal ye (ug) (ug) [ug) (IbldscfJ (ugrdscm) (�7%02) (Fa) (Iblhr) Mercury 28.3 1 0,00 1 28.3 1 7.21E-10 1 11.66 1 14.72 1.381E-05 3.438E-03 Run Data V.(daeo F 86,64 Q. (dscth) c 4,766,031 Fuel Factor(F.) - 1,820 02(%) 10,00 C62(9) 9,60 E uations Q, (dscfh) R 3600(1'8wo)(Ve)(Q(17.64)(Ps)1(Tj C. (lbrdscQ = (ug'0.4636E09)1 Vm Std C` (ugldscm®7%02) - ugldscm"13.91(20.9-%02) E (1151MM81u)-using Fa m(C„IbldscQ(F,)(10o1CO2,%) E (lb/hr) =(C„Ibldsco(Q,,dscfh) Conversions to obtain dscm: multiply dscf by OM832 to obtain u : muffiRly lb by 0.4638i 09 to obtain mg: divide ug by 1000 to obtain lb: multi i u b 2.206E-08 NEW 3AS-021420-RT-1 303 Appendix A-Page 14 of 135 Mercury Emission Calculations FaatlltylSlte. Wheelabralorl North Andover Date: 10127122 source: Unit No,1 SDA Inlet Start Time: 15:50 Run No.: U1-SDA IN-M29-Run 3 Stop Time: 16:02 Total Reagent Blank Concentration[Cs _ _ Emfsaton Rata�E) Mg' Wants` Cor,Total — ----- [tlglitscm Anal vie (ug) lug) (ug) (Ibldso}) (ugldacm) �7%Q�) (Fd) (iblhr) Mercury 19.4 1 0.00 19.4 1 6.053E-10 8.09 10.61 8.8 aE-ou 2.421E-03 Run Data V.(dsat) = 64.68 Q. (dscfih) = 4,792,276 Fuel Factor(F.) - 1,820 02(%) = 10.20 CO2(%) - 9.30 Equations Q. (dacth) = 3600(1-B,)(V,j(A,)(17,64)(P.)1(T.) C. (Ibldsct) = (Ug'0.4636E09)1 Vm S1d C. (ug/deem 07%02) = ugldscmI13,91(20.9-%02) E (lb1MMBiu)-using F. _(C„IbldsCO(F°)(100ICO21%) E (iblhr) =(C„Ibldscl)(Q„dscth) Conversions to obtain dscm: muttiply dsct by 0.02832 to obtain u : muttIply Ib by OASME09 to obtain ma: divide ug b 1000 to obtain lb; mulll i u b 2.205E-09 i NE01 3AS-021420-RT-1 303 Appendix A- Page 15 of 135 J Mercury Emission Calculations FactlltylSlte: WheelebratorI North Andover Date: 1 0/2 8120 22 Source: Unit No.1 SDA Inlet Start Time: 0:16 Run No.: U1-SDA IN-M29-Run 4 Stop Time: 10:20 Total Reagent Blank _ _- __ Concentratlon_(Cs� _ __�m_Iaslon Rate_( Hgi elanlc2 Car.Total _ (ugldscm IbIMMBtu Anal a (u0) (ua) (ug) (Ibldsoq (ugldscm) @7%02) (F.,) (lblhr) mercury 30.7 0,00 1 30.7 1 7.948E-10 1 12.60 1 16,33 1.623E-06 3.898E-03 Run Data V.(daco - 86,17 Q, (dsc(h) = 4,906,946 Fuel Factor(F.) 1,820 02(%) = 10.00 CO2(%) 9.60 Equallons Q. (dsofh) = 3600(1-8,,)(V.)(A.)(17.04)(Pn)1(Ta) C. (Ibldscf) _(ug`0.4636Ea9)I Vm Sid C. (ugldscm®7%02) =ugldscm"13.91(20.9-%02) E (IbIMMOtu)-using Fu =(C.,lbldscl)(F,)(10OICO2,%) E (lblhr) _ Ib/dkO(Q.,dscfh) Conversions to obtain dscm: multiply mulffply dscf by 0.02032 to obtain u : multiply mulUply ib b 0.4636E09 to obtain mg: divide u b 1000 to obtain lb: multi I u b 2,206E-OB NE013AS-021420-RT-1303 Appendix A-Page 16 of 135 r Isokinetic Calculations FacltlWSlte: Wheelabrator 1 North Andover Date: 10127/22 Source: Unit No. 1 SDA Inlet Start Time: 9:25 Run No.: U1-SDA IN-M29-Run 1 Stop Time: 11:35 Tr,(OF) = 628.4 02(%vd) = 9.8 Vm (daf) = 82.068 T.(OR) = 988.4 CO2(%vd) = 9.6 ©H (Abs) ("Fig) = 29.92 T.(OF) = 86A CO(%vd) = 0 P.("Hg) = 29.73 Tstd(°R) = 546.4 N2(%vd) = 80.6 SQRT A P = 0.6253 V,(Total gain) = 354.6 CP = 0.84 Y = 1.016 V, (adj.for sat.) = NA Run Time(min.) = 120 A„(ft2) = 0.000507 V.std _ (Ts1d)(Vm)(Y)(6 Fi Abs) - 80.571 dscf (Pstd)(Tm) V,y std = 0.04706(V,Total gain) - 16.687 scf B,,,B = Vw(std) / Vm(std)+VW(std) � 0.172 B,,,s = by steam tables - NA 1 -B„s = 1 -BWj = 0.828 Md = 0.440 (%CO2) 0.320 (%02) 0,280 (%N2 +%CO) - 29.928 lb/lb-mole Ms = Md(1-B.) + 18(B,ys) = 27,861 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 1.092 V. = 85.49(C,,)(G)(SQRTA P) = 49.038 fps Q. = 3600(1-Bwe)(V.)(A)(Tstd Ps/Pstd TB(abs)) = 4,667,300 dscfh = 3600(Vs)(As) = 10,616,452 acfh = acfh/60 = 176,924 acfm 1 = (T.) (Vm std) TWO 100 -- 102.3 %isoldnetic (Tstd)(Vs)(A„) (Ps)60(1-13.) (Run Time) NF013AS-021420-RT-1303 Appendix A-Page 17 of 135 Isokinetic Calculations FacilltylSite: Wheelabrator 1 North Andover Date: 10/27/2022 Source: Unit No. 1 SDA Inlet Start Time: 12:50 Run No.: U1-SDA IN-M29-Run 2 Stop Time: 15:13 T.(OF) = 531.0 02(%vd) = 10.0 V,,,(dcf) = 86.763 T.(OR) = 991.0 CO2(%vd) = 9,5 AH (Abs)("Hg) = 29.92 T.,(OF) = 77.8 CO(%vd) = 0 P.("Hg) = 29.73 Tstd(OR) = 537.8 Nz(%vd) = 80.5 SQRT A P = 0.6321 Vt(Total gain) = 351.0 CP = 0.84 Y = 1.016 IV,(adj. for sat,) = NA Run Time(min.) = 120 An(ft) = 0,000507 V,,,std = (TMAVm)(Y)(A H Abs) = 86.543 dscf (Patd)(T.) Vw std 0.04706(VI Total gain) = 16.518 scf Bw, = Vw(std) I Vm(std)"'VW(std) - 0.160 Bvds = by steam tables - NA 1 -B" = 1 - 0.840 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2*%CO) - 29,920 lb/lb-mole M$ = Md 0-B,,J * 18(BWJ = 28.010 lb/lb-mole G = SQRT(Ts(abs)1Ps Ms) - 1.091 V. = 86.49(CP) (G) (SQRTA P) - 49.518 fps Qe = 3600 (1-B.)(Vj(A)(T$td P&/P�jjTs(abs)) = 4,766,031 dscfh 3600(Vs) (As) = 10,719,348 acfh acfh 160 - 178,656 acfm — (T,)(V,,std)(P$td) 100 — 107.6 %isokinetic (Tatd)(Vs) (Aj (P.)60(1-B„,)(Run Time) NE013AS-021420-RT-1303 Appendix A-Page 18 of 135 r Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. I SDA Inlet Start Time: 15:60 Run No.: U1-80A IN-M29-Run 3 Sto� Time: 18:02 Ts(OF) = 536.2 02(%vd) = 10.2 Vm(dcf) = 84.590 T.(°R) = 996.2 Cox(%vd) = 9.3 OH (Abs) ("Hg) = 29.92 T.(OF) = 76.0 CO(%vd) = 0 Ps("Mg) = 2913 Tstd(OR) = 536.0 Nz(%vd) = 80.5 SQRT A P = 0.6382 Vt (Total gain) = 347.8 CP = 0.84 Y = 1.016 Vt(ad]. for sat.) = NA Run Time(min.) = 120 A.(ft2) = 0.000507 Vm std — (Tstd)(Vm)(Y)(A H Abs) = 84.664 dscf (Pstd)(Tro) VW std = 0.04706(Vt Total gain) — 16.367 scf Bm = VW(std) / Vm(sid)+VW(std) = 0.162 BM = by steam tables = NA 1 -B„, = 1 -B,,,s = 0.838 Md = 0.440 (%CO2) 0.320 (%Oz) 0.280 (%N2*%C0) w 29.896 lb/lb-mole M$ = Md(I-BM) + 18(B,,) = 27.969 Iblib-mole G = SQRT(Ts(abs)/Ps Ms) - 1.095 V& = 86.49(CP) (G) (SQRTA P) = 60.166 fps Q. = 3600(1-B,,,$)(Vs)(A)(Tstd Ps/Pgtd T.(abs)) = 4,792,275 dscfh = 3600(Vs) (As) = 10,859,653 acfh acfh/60 — 180,994 acfm I // (TB) (Vm std) (Pstd) 100 = 104.7 %isokinetic (Tstd) 1 Vs) (An) (Ps)60(1-B,,,$) (Run Time) NE013AS-021420-RT-1303 Appendix A-Page 19 of 135 I Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/28/2022 Source: Unit No. 1 SDA inlet Start Time: 8:15 Run No,: U1-SDA IN-M29-Run 4 Stop Time: 10:20 T.(T) = 531.7 02(%vd) = 10.0 Vm(dcf) = 81.753 T.(OR) = 991.7 CO2(%vd) = 9.5 OH (Abs) ("Hg) = 30.55 Tm(OF) = 65.8 CO(%vd) = 0 Pe("Hg) = 30.36 T6sd(OR) = 526.8 N2(%vd) = 80.5 SQRT A P = 0.6481 V, (Total gain) = 361.4 CQ = 0.84 Y = 1.016 V,(adj.for sat.) = NA Run Time(min.) = 120 A„(ft2) = 0.000507 V,,std — (Tsjd)(Vm)(Y)(A H Abs) — 85.169 dscf (P6td)(Tm) VW std = 0.04706 (VI Total gain) - 17.007 scf Bw6 = V.(6td) / Vm(6td)+VW(61d) = 0.166 8w. = by steam tables - NA 1 -B,, = 1 -B„, = 0.834 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2 f%CO) - 29.920 lb/lb-mole M$ = Md 0-B.)+ 18(B.) = 27.936 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) - 1.081 V. = 85A9(Cp) (G) (SQRTA P) - 60.332 fps Q8 = 3600 (1-Bw6)(V6)(A)(T6ld Ps/P6td T6(abs)) = 4,905,945 dscfh = 3600(Vs) (As) = 10,895,630 acfh = acfh 160 - 181,594 acfm l = (T6) (Vm std) (13610) 100 - 102.9 %isoklnetic Mid) (V. (A,,) (P.)60(1-B,,,) (Run Time) NE013AS-021420-RT-1303 Appendix A- Page 20 of 135 Input Data Facility/Site: Whee labrator I North Andover Date: 10127/22 Source., Unit No. 1 SDA Inlet Start Time: 9;25 Run No.: U1-SDA IN-M29-Run 1 Stop Time: 11:35 Traverse Delta P squara Root Delta H Dry Gan MotorTempa. Stack Stack Diameter CT 105.0 Paint ("H10) Delta P ("H2O) Not(r) Out[oE(F) Tamp.(r.) Stack Area(te) : 60.1 Nozzle Diameter VT 0.305 Al 0.29 0.54 1.2 85 82 523 Pitot Coefficient: 0.84 2 0.30 0.55 1.2 86 83 621 3 0.30 0.55 1.2 87 83 522 Initial Impinger VolumeMel hts: 4 0.38 0.62 1.6 88 84 523 Impinger 1 (ml) 661.9 5 0.40 0.63 1.6 90 84 523 Impinger 2(ml) 617.3 6 0.45 0.67 1.8 90 85 525 Impinger 3(ml) 695.9 7 0.49 0.70 2.0 91 85 525 Impinger 4(ml) 620.7 8 0.50 0.71 2.1 91 86 525 Impinger 5(ml) 711.9 9 0.47 0.69 1.9 91 86 527 Impinger 6(ml) 1 629.3 1 10 0.42 0.65 1.7 91 86 528 Impinger 7(g) 857.4 11 0.39 0.62 1.6 91 86 528 12 0.40 0.63 1.6 90 86 530 Final im in erV I melWei hts: B1 0.37 0.61 1.5 90 86 533 Impinger 1 (ml) 666.5 2 0.28 0.63 1.6 87 85 531 Impinger 2(ml) 783.6 3 0.34 0.58 1.4 87 85 534 Impinger 3(ml) 736.3 4 0.40 0.63 1.6 88 85 532 Impinger 4(ml) 628.8 5 0.49 0.70 2.0 88 84 531 Impinger 5(ml) 1 718.0 1 6 0.50 0.71 2.1 88 84 530 Impinger 6(ml) 631.1 7 0.47 0.69 1.9 88 84 532 Impinger 7(g) 876.8 8 0.43 0.66 1.8 88 84 531 9 0.40 0.63 1.6 88 83 533 %02 (Outlet): 9.8 10 0.36 0.60 1.5 87 83 631 11 0.33 0.67 1 A 87 83 532 a/o COz(Outlet): 12 0.30 0.55 1.2 87 82 532 *CO (Outlet): Bar.Pressure("H& 29.80 Static Pressure("H2O): -100 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 398.376 Leak Check Volume(dcf): 0.185 Meter Vol.Initial(dcf): 316.123 Start Time: 9:25 End Time: 11;35 AVERAGE: 0.39 0.63 1.63 88.5 84.3 528.4 NEW 3AS-021420-RT-1303 Appendix A-Page 21 of 135 j Input Data FacilitylSite: Wheelabrator 1 North Andover Date: 10127/2022 Source: Unit No. 1 SDA Inlet Start Time: 12:50 Run NO.: U1-SDA IN-M29-Run 2 Stop Time: 15:13 Traverse Chita P Square Rant Delta H pry Gas Motor Temps. Stack Stack Diameter CT 105.0 Feint I11HAo) Delta P i^H,ol tnmt IFl MOW)W) Temp.(F) Stack Area(fe) : 60.1 Nozzle Diameter("): 0.305 Al 0,31 0,56 1.3 75 75 530 Pilot Coefficient: 0.84 2 0,35 0.59 1.4 76 75 534 3 0.38 0.62 1.6 78 75 534 Initial Ira in er VolumelWel hts: 4 0.40 0.63 1.6 78 75 534 Impinger 1 (ml) 568.2 5 0.44 0.66 1.8 79 75 535 Impinger 2(ml) 710.5 6 0.49 0.70 2.0 80 75 533 Impinger 3(ml) 693.1 7 0.51 0.71 2.1 81 75 534 Impinger 4(ml) 596.1 8 0.48 0.69 2.0 81 75 532 Impinger 5(ml) 721.0 9 0.45 0.67 1.8 82 76 531 Impinger 6(ml) 733.3 10 0.42 0.65 1.7 81 76 530 Impinger 7(g) 858.8 11 0.39 0.62 1.6 81 76 529 12 0.34 0.58 1.4 81 76 529 Final Im In er VolumelWeI his: 1331 0,33 0.57 1.4 81 77 528 Impinger 1 (ml) 767.6 2 0.30 0.65 1,2 78 76 533 Impinger 2(ml) 818.3 3 0.33 0.57 1 A 78 75 533 Impinger 3(ml) 708.7 4 0.37 0.61 1.5 79, 75 533 Impinger 4(ml) 599.8 5 0.42 0.65 1.7 81 75 530 Impinger 6(ml) 723.0 6 0.48 0.69 2.0 82 75 529 Impinger 6(ml) 736.3 7 0.47 0.69 1.9 82 75 529 Impinger 7(g) 878.3 8 0.44 0.66 1.8 82 76 529 9 0.41 0.64 1.7 82 76 529 %OZ (Outlet) : 10.0 10 0.40 0.63 1.6 82 76 528 11 0.38 0.62 1.6 82 76 529 %CO2(Outlet): 9.5 12 0.35 0.69 1.4 82 76 528 %CO (Outlet): Gar.Pressure("Hg): 29,80 Static Pressure("H20): No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 485.888 Leak Check Volume(dcf): 0.413 Meter Vol.Initial(dcf): 398.712 Start Time: 12:50 End Time: 15;13 AVERAGE: 0.40 0.63 1.65 80.2 76.6 531.0 NE013AS-021420-RT-1303 Appendix A-Page 22 of 135 Input Data Facility/Site: Wheelabrator/North Andover Date: 10127/22 Source: Unit No. 1 SDA Inlet Start Time: 15:50 Run No.: I!1-SDA IN-M29-Run 3 Stop Time: 18:02 Travaraa Dolts P Squom Root Dolta H dry Geis Motor Tamps. Stock Stuck Diameter("): 105.0 Paint ("H20( oalta P ("H20) Inlet(F) outlet(F) Temp.(F) Stack Area(tt) 60.1 Nozzle Diameter("): 0,305 Al 0.32 0.57 1.3 73 73 530 Pitot Coefficient: 0.84 2 0.34 0.58 1.4 73 72 531 3 0,38 0.62 1.6 75 72 530 Initial ImpInner Vol umeANel hts: 4 0.43 0.66 1.8 77 72 532 Impinger 1 (ml) 563.7 5 0.49 0.70 2.0 78 73 534 Impinger 2(ml) 625.5 6 0.52 0.72 2.1 79 73 532 Impinger 3(ml) 693.4 7 0.50 0.71 2.1 80 73 533 Impinger4(ml) 622.0 8 0.47 0.69 1.9 81 73 534 Impinger 5(ml) 706.7 9 0.42 0.65 1.7 80 73 533 Impinger 6(ml) 629.1 1 10 0.39 0.62 1.6 79 74 538 Impinger 7(g) 856.4 11 0.37 0.61 1.6 80 74 537 12 0.34 0.58 1.4 80 74 537 Final Im in er Volume/Wei hts: 81 0.31 0.56 1.3 76 73 534 Impinger 1 (ml) 722.5 2 0.33 0.67 1.4 78 73 535 Impinger 2(ml) 75B.5 3 0.36 0.60 1.5 7B 73 535 Impinger 3(ml) 714.2 4 0,41 0.64 1.7 79 73 535 Impinger 4(ml) 626.0 5 0.45 0.67 1.8 80 73 538 Impinger 5(ml) 710.0 6 0.49 0.70 2.0 81 74 539 Impinger 6(ml) 629,3 7 0.48 0.69 2.0 81 74 538 Impinger 7(g) 875.1 8 0.46 0.68 1,9 81 74 640 9 0.43 0.66 1.8 81 74 545 %02 (Outlet): 10.2 10 0.40 0.63 1.6 81 74 643 11 0.38 0.62 1.6 80 74 543 %CO2(Outl8t): 12 0.36 0.60 1.5 80 74 542 %CO (Outlet) Bar.Pressure("Hg): 29.80 Static Pressure("H20): -1.00 No.of Traverse Points; 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 571,015 Leak Check Volume(dcf): 0.257 Meter Vol.Initial(dcf): 486.168 Start Time: 15:50 End Time: 18:02 AVERAGE: 1 0.41 0.64 1.68 78.8 73.3 536.2 NE013AS-021420-RT-1303 Appendix A-Page 23 of 135 Input Data r Facility/Site: Wheelabrator 1 North Andover Date: 10128/2022 Source: Unit No. 1 SDA Inlet Start Tlma: 8:15 Run No.: U1-SDA IN-M29-Run 4 Stop Time: 10:20 Traverse Delta P Square Raat Delta HI Dry teas Meter Temps. Stark Stack Diameter("): 105.0 Point i°tt20y Delta t°N2oy tmatip) Dutletll'y Tamp,f) Stack Area{ff2) 60.1 Nozzle Diameter("): 0.305 Al 0.32 0.57 1.2 55 51 529 Pitot Coefficient: 0.84 2 0.35 0.59 1.4 61 53 529 3 0.37 0.61 1.4 65 54 530 Initial Impinger Volu etWei hts: 4 0.41 0.64 1.6 66 55 529 Impinger 1 (mi) 568.9 5 0.46 0.68 1.8 70 57 532 Impinger 2(mi) 714.7 6 0.49 0.70 1.9 70 58 531 Impinger 3(ml) 697.2 7 0,50 0.71 2.0 72 60 532 Impinger 4(ml) 698.4 8 0.48 0.69 1.9 73 61 532 Impinger 5(ml) 1 728.0 1 9 0,44 0.66 1.7 73 62 532 Impinger 6(ml) 722.5 10 0.42 0.65 1.6 74 63 533 Impinger 7(g) 861.8 11 0.39 0.62 1.5 74 63 532 12 0.35 0.59 1.4 75 65 533 Final Im In er VolumefWel ht : 131 ' 0.33 0.57 1.3 73 66 535 Impinger 1 (mi) 684.6 2 0.36 0.60 1A 73 66 533 Impinger 2(mi) 860.4 3 0.40 0.63 1.6 72 66 531 Impinger 3(mi) 749.0 4 0.44 0.66 1.7 73 65 531 Impinger4(mi) 613.6 5 0.49 0.70 1.9 72 65 530 Impinger 6(mi) 737.8 6 0.52 0.72 2.0 72 65 532 Impinger 6(ml) 728.0 7 0,50 0.71 2.0 71 65 530 Impinger 7(g) 879.5 8 0.47 0.69 1.8 70 64 532 9 0.45 0.67 1.8 70 64 532 %02 (Outlet): 10A 10 0.42 0.65 1.6 69 64 533 11 0.40 0.63 1.6 69 63 532 *CO2(Outlet): 7-9,77 12 0.37 0.61 1.4 68 63 536 *CO (Outlet): Bar.Pressure("Fig): 30,43 Static Pressure("H20): No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 661.715 Leak Check Volume(dcf): 0.540 Meter Vol.Initial(dcf): 579.422 Start Time: 8:15 End Time: 1Q:20 AVERAGE: 0.42 0.65 1.66 70.0 61.6 531.7 NE013AS-021420-RT-1303 Appendix A-Page 24 of 135 I Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test Dates:October 18-19,2022&October 25-28, 2022 A3 Unit No. I Outlet Hydrogen Chloride and Ammonia MONTROSE .kilt QUA01Y LLI:V kCiti NE013AS-021420-RT-1303 Appendix A- Page 25 of 135 HCL Emission Calculations FaciiitylSite: Wheelabrator!North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 0:25 Run No,: U1-FF Out-M26AlCTM027-Run 1 Stop Time: 10:25 Laboratory Results: 02 = 11.60 %vd HCL(µg)^ 17,161 CO2 = 8.10 %vd HCL(mg), M„= 17.2 V. - 47.65 ftlsec As - 64.89 it2 Vm std= 1.29 dscm MW of HCL(glmol): 36.46 V,std= 45.706 dscf Qe = 3600{1-Ei ){Vg)(A)(T��d P.lPsid T,,(abs)) - 6,071,372 dscfh Ce = (2.205 E-6)(M„)!(V Btd) - 8.28E-07 Ibldsef mgldscm = mg 1 dscm = 13.26 mgldscm ppmvd = (Ibldsaf)!(MW of HCU3.856E08) 8.76 ppmvd ppmvd @7%02 = ppmvd*(13.9/(20.9-%02)) - 12.95 ppmvd@7%a02 Elbm,= Q. x CB - 5.03 lblhr NE013AS-021420-RT-1303 Appendix A-Page 26 of 136 ` HCL Emission Calculations FacllitylSlte: Wheels brator 1 North Andover late: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 12:50 Run No.: U1-FF Out-M26AICTM027-Run 2 Stop Time: 13:50 Laboratory Results: 02 - 11.20 %vd HCL(µg)= 28,760 CO2 = 8.40 %vd HCL(mg), M„= 28.8 V. 46.93 Mac As - 64.89 fe VR,std= 1.40 dscm MW of HCL(glmol): 36.46 VR,std = 49.277 dscf Q$ = 3600(1-l3.)(VB)(A)(T.td PB/PBid TB(abs)) - 6,172,702 dscih C. » (2.205 E-6) (Mn)I(V,,sld) - 1.29E-06 lbldsof mgldscm = mg 1 dscm -- 20.61 mgldscm ppmvd = (Ibldscf)I(MW of HCLl3.856E08) 13.61 ppmvd ppmvd @7%02 = ppmvd'(13.91(20.9-%02)) - 19.50 ppmvd@7%02 EEbmr= Q. x Ca - 7.94 Iblhr NE013AS-021420-RT-1303 Appendix A-Page 27 of 135 HCL Emission Calculations Facility/Site: Wheelabretor 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15.60 Run No.: U1-FF Out-M26A/CTM027-Run 3 Stop Time: 16:50 Laboratory Results: 02 - 11.40 %vd HCt_(µg)= 34,909 CO2 = 8.10 %vd HCL(mg), Mn= 34.9 V. - 47.15 Mee As = 64.89If V,sid= 1.34 dscm MW of HCL(glmol): 36.40 V,,sid= 47.200 dscf QB = 3600(1-B.)(V.)(A)(Trtd P,,/PgId TS(abs)) - 6,093,595 dscfh Cg = (2.205 E-6)(M„)1(Vmstd) 1.63E-06 Ibldscf mgldscm = mg 1 dscm = 26.12 mgldscm ppmvd = (IbldscW(MW of HOU3.85BE08) 17.25 ppmvd ppmvd @7%02 = ppmvd*(13.9/(20,9-%02)) = 25.24 ppmvd@7%02 E,bft= Q. x CB - 9.94 iblhr NEW 3AS-021420-RT-1303 Appendix A- Page 28 of 135 ! I Ammonia Emission Calculations Facility/Site: Wheelabrator 1 North Andover mate: 10127122 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-FF Out-M26A/CTMo27-Run 1 Stop Time: 10:26 Laboratory Resuita: 02 = 11.50 %vd NH3(Vg)= 1,220 CO2 = 8.10 %ovd NI-13(mg), M„= 1.220 Vs - 47,55 ftlsec As 64.89 fe V,std= 1.29 dscm MW of NH3(g/mol): 17.031 V,,,std= 45.706 dscf Q, = 3600(1-S„s)(VB)(A)(T.Id P,IP,id T&(abs)) = 6,071,372 dscfh C, _ (2.205 E-6) (M„)1(V, std) = 5.89E-08 Ibldscf mg/dscm = mg 1 dscm = 0.94 mg/dscm ppmvd = (Ibldscf)1(MW of NH313.856E08) 1.33 ppmvd ppmvd G70%02 = ppmvd*(13.9/(20.9-%02)) - 1.97 ppmvd@7%02 Eiar W Qa x Ce - 0.36 Iblhr , NE013AS-021420-RT-1303 Appendix A-Page 29 of 135 Ammonia Emission Calculations Facility/Site: Wheelabrator/North Andover Bate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 12:50 Run No.: U1-FF Out-M26A/CTM027-Run 2 Stop Time: 13:50 Laboratory Results: 02 = 11.20 %vd NH3(jig)= 1,000 CO2 = 8.40 %vd NH3(mg), Mn= 1.000 V. - 46.93 ft/sec As - 64.89 fe Vn,std= 1.40 dscm MW of NH3(g/mol): 17.031 V,,,std= 49.277 dsof Q. = 3600(1-B,,,)(Vj(A)(Tetd P6/Pstd T.(abs)) = 6,172,702 dscfh C. = (2.205 E-6)(Mn)/(V,nstd) - 4.47E-08 Ib/dscf mg/dscm = mg/dscm - 0.72 mg/dscm ppmvd = (lb/dscf)/(MW of NH3/3.856E08) 1.01 ppmvd ppmvd @7%02 ppmvd*(13.9/(20.9-%02)) -- 1.45 ppmvd@7%02 Ejbm,- Q. x C. ^ 0.28 Ib/hr s NE013AS-021420-RT-1303 Appendix A-Page 30 of 136 i Ammonia Emission Calculations FacititylSite: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:50 Run No.: U1-FF Out-M26A/CTM027-Run 3 Stop Time: 16:50 Laboratory Results: 02 — 11.40 %vd NH3(µg)= 1,172 CO2 = 8.10 %vd NH3(mg),M„= 1.172 V. — 47.16 ft/sec As — 84.89 fe VR,std= 1.34 dscm MW of NH3(glmol): 17.031 Vm aid= 47.200 dscf Qg = 3600 (1-B.)(V.)(A)(T.Id P.M.,,,TS(abs)) 6,093,695 dscfh Ca = (2.205 E-6)(M,,)1(V,,,std) = 5.48E-08 Ib/dscf mg/dscm = mg/dscm = 0.88 mg/dscm ppmvd = (Ibldscf)/(MW of NH3/3.856E08) 1.24 ppmvd ppmvd @7%02 = ppmvd*(13.91(20.9%02)) = 1.81 ppmvd@7%02 Elb = Q. x Cs — 0.33 lb/hr NE013AS-021420-RT-1303 Appendix A- Page 31 of 135 Non-Isokinetic Calculations Facility/Site: Wheelabrator/North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-FF Out-M26A/CTM027-Run 1 Stop Time: 10:25 TB(OF) = 293.1 02(%vd) = 11.6 Vm (dcf) =44.943 T.(OR) = 753.1 CO2(%vd) = 8.1 AH (Abs)("Hg) = 30.05 Tfo(OF) = 77.1 CO(%vd) = 0 PS("Hg) = 29.13 Tatd(OR) = 537.1 N2(%vd) = 80.40 SQRT A P = 0.682 Vt (Total gain) = 241.6 Cp = 0.84 Y = 1.0301 Vt (adj.for sat.) = NA Run Time(min.) = 60 A.(ft2) _ V,,,std - (T.1d)(V.)(Y)(A H Abs) = 45.706 dscf (Petd)(Tm) Vw std = 0.04706 (VI Total gain) - 11.370 scf Bm = Vw(atd) / Vm(atd)+VW(std) - 0.199 1 -Bw" 1 -BM - 0.801 Md = 0.440 MCO2) 0.320 (%02) 0.280 (%N2+%CO) - 29.756 Ibllb-mole MS = Md(1-Bw.)+ 18(B.) - 27.414 Ibllb-mole G = SQRT(Ts(abs)/Ps Ms) = 0.971 V. = 85.49(Cp)(G) (SQRTA P) - 47.652 fps Q. = 3600 (1-13w$)(VS)(A)(T6td Ps/Pgtd Tjabs)) = 6,071,372 dscfh = 3600(Vs)(As) = 11,108,361 acfh = acfh/60 -- 185,139 acfm NE013AS-021420-RT-1303 Appendix A- Page 32 of 135 Non-isokinetic Calculations Facility/Site: Wheelabrator/North Andover ©ate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 12:60 Run No.: U1-FF Out-M26A/CTM 027-Ru n 2 Stop Time: 13:50 T.(OF) = 291.2 02(°laud) 11.2 V.(dcf) =� 47.928 T.(°R) = 751.2 CO2(%vd) = 8.4 AH (Abs) ("Hg) = 30.05 T,(OF) = 71.3 CO(%vd) = 0 Pe("Hg) = 29.13 TStd(°R) = 531.3 N2(%vd) = 80.4 SQRT A P = 0.677 Vt (Total gain) = 225.6 Cp = 0.84 Y = 1.0301 Vt(adj. for sat.) = NA Run Time(min.) = 60 A,(ft) - VR,std - (Tetd)(V.)(Y)(A H Abs) = 49.277 dscf (P6id)(T.) V,std = 0.04706(VI Total gain) 10.617 scf Bm = VW(std) I Vm(std)+VW(std) = 0.177 0.823 Md = 0.440 (%CO2) 0.320 MOO 0.280 (%N2+%CO) - 29.792 lb/lb-mole M. = Md ('I-B.)+ 18 (B.) 27.702 Ib/lb-mo[e G = SQRT(Ts(abs)/Ps Ms) - 0.965 Vs = 86.49(Cp) (G) (SQRTA P) - 46.934 fps Q. = 3600(1-B.)(V.)(A)(Tgtd P.IPatdTjabs)) = 6,172,702 dscfh 3600(Vs)(As) = 10,963,940 acfh acfh/60 - 162,732 acfm NE013AS-021420-RT-1303 Appendix A-Page 33 of 135 Non-Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10127J22 Source: Unit No. 1 FF Outlet Start Time: 15:50 Run No.: U1-FF Out-M26A1CTM027-Run 3 Stop Time: 16:50 T.(OF) = 293.0 02(%vd) = 11.4 V,(dcf) = 45.982 T.(°R) = 753.0 CO2(%vd) = 8.1 AH (Abs) (°Hg) = 30.06 T,(OF) = 72.3 CO(%vd) = 0 P.("Hg) = 29.13 T6jd(°R) = 532.3 N2(%vd) = 80.5 SQRT A P = 0.677 Vi(Total gain) = 234.5 CP = 0.84 Y = 1.0301 V,(ad).for sat.) = NA Run Time(min.) = 60 A.(ft) — Vm std (Tetd)(VM)(Y)(A H Abs) = 47,200 dscf (PS1d)(Tm) VV,std = 0.04706 (VI Total gain) = 11,036 scf BM = Vw(std) / Vm(ald)+VW(sad) = 0.189 1 -B. = 1 -BWS M, 0,811 Md = 0.440 MCO2) 0.320 MOO 0.280 (%N2*%CO) = 29.752 lb/lb-mole Mg = Md 0-B,,,,S) * 18(B.) — 27.525 lbllb-mole G = SQRT(Ts(abs)IPs Ms) = 0.969 Vs = 85.49 (CP)(G) (SQRTA P) = 47.149 fps Qs = 3600(1-Bwg)(Ve)(A)(Tgtd PslPsId T.(abs)) = 6,093,595 dscfh = 3600(Vs) (As) = 11,014,304 acfh = acfh 160 — 183,572 acfm NE013AS-021420-RT-1303 Appendix A-Rage 34 of 135 Input Data FacilitylSlte: Wheetabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-FF Out-M26AICTM027-Run 1 Stop Time: 10:25 Traverse Delta P Square hoot Delta H Dry,Gas Motor Temps. Stank Stack Diameter 0 Point CH:O) Delta p 1 {"HIO) Inlet(F) Outlet iF) Temp.(F) Stack Area ye) 64.9 Nozzle Diameter("): 1 0.60 0.77 2.00 69 67 300 Pitot Coefficient: 0.84 0.60 0.77 2.00 71 67 298 0.52 0.72 2.00 75 67 298 Initial lm inaerValumelWei hts: 0.46 0.68 2.00 79 69 293 Impinger 1 (ml) 650.E 0.66 0.74 2.00 82 69 301 Impinger 2(ml) 698.5 0.60 0.71 2.00 84 70 302 Impinger 3(ml) 714.4 0.48 0.69 2.00 86 71 302 Impinger 4(ml) 614.9 0.62 0.72 2.00 88 72 292 Impinger 6(ml) 783.8 0.43 0.66 2.00 89 73 297 Impinger 6(ml) 0.45 0.67 2.00 92 74 302 Impinger 7(g) 0.46 0.68 2.00 92 75 301 0.50 0.71 2.00 93 76 294 Final Im in er VolumeMel hts: 0.53 0.73 29B Impinger 9 (ml) 781.3 0.49 0.70 300 Impinger 2(m1) 770.7 0.43 0.66 291 Impinger 3(ml) 735.0 OA6 OZ8 280 Impinger 4(ml) 621.3 0.46 0.68 290 Impinger 5(ml) 795.6 0.42 0.65 295 Impinger 6(ml) 0.38 0.62 281 Impinger 7(g) 0.39 0.62 280 0.35 0.59 284 %02 (Outlet): 11.5 0.38 0.62 286 0.42 0.65 284 %CO2(Outlet): 8.1 0.43 0.66 286 *CO (Outlet) : Gar.Pressure("Hg): 29.30 Static Pressure("H20): No.of Traverse Points: Run Duration(minutes): 60 Meter Vol.Final(dcf): 875.143 Leak Check Volume(dcf): Meter Vol.Initial(dcf); 830.200 Start Time: 9:2& End Time: 1Q:25 AVERAGE: 0.47 0.68 2.00 83.3 70.8 293.1 F NE013AS-021420-RT-1303 Appendix A- Page 36 of 135 Input Data Facility/Site: Whee€abratorl North Andover Date: 10127/22 Source: Unit No. 1 FF Outlet Start Time: 12:50 Run No.: U1-FF Out-M26A/CTMo27-Run 2 Stop Time: 13:50 Traverse Dolts P Square Rant polls H Dry Gas Meter Temps, Stack Stack Diameter("): 0 Point {"Ha0) Delta P (1-11a0) Intel(F) 00101 IF Temp.IF) Stack Area(fe) 64.9 Nozzle Diameter("): 1 0.46 0.68 2.00 66 66 291 Pilot Coefficient: 0.84 0.37 0.61 2.00 64 68 288 0.40 0.63 2.00 72 65 284 Initial Impinger VolumeNVel Me: 0,51 0.71 2.00 75 65 282 Impinger 1 (ml) 674.9 0.47 0.69 2.00 77 66 291 Impinger 2(mi) 706.9 0.47 0.69 2.00 78 66 299 Impinger 3(ml) 699.8 0.44 0.66 2.00 79 66 295 Impinger 4(ml) 583.8 0.40 0.63 2.00 80 67 279 Impinger 6(ml) 790.9 0.49 0.70 2.00 81 67 281 Impinger 6(ml) 0.46 0.68 2,00 81 67 294 Impinger 7(g) 0.42 0.66 2,00 81 67 293 0.39 0.62 2.00 78 68 282. Final Impinger Volum 1Wel hts: 0.57 0.75 300 Impinger 1 (ml) 798.6 0.50 0.71 300 Impinger 2(ml) 768.9 0.49 0.70 289 Impinger 3(m1) 720.1 0.48 0.69 287 Impinger 4(m1) 591.5 0.48 0.69 289 Impinger 5(ml) 802,8 0.47 0.69 290 Impinger 6(MI) 0.47 0.69 297 Impinger 7(g) 0.52 0.72 301 0.41 0.64 298 %02 (Outlet): 11.2 0.42 0.65 299 0.45 0.87 296 %CO2(Outlet): 8,4 0.60 0.71 283 CO (Outlet) Bar.Pressure("Hg): 29,90 Static Pressure("H20): -10.5 No.of Traverse Points: 0 Run Duration(minutes): 60 Meter Vol.Final(dco: 923.350 Leak Check Volume(dco: Meter Vol.Initial(dcf): 875.422 Start Time: 12:50 End Time: 13;50 AVERAGE: 0.46 0.68 2.00 76.0 66.6 291.2 NE013AS-021420-RT-1303 Appendix A- Page 36 of 136 Input Data Facility/Site: Wheelebrator 1 North Andover Cate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:50 , Run No.: U1-FF Out-M26A/CTM027-Run 3 Stop Time: 16:50 Traverse Delta P Square Root Dolt*H Dry Gas Motor Temps. Stank Stack Diameter "): 0 Point ("H101 Delta P ('W70) Inlet(F) Outlet(F) Temp.(F) Stack Area(ft) 64.9 Nozzle Diameter 1 0.43 0.66 2.14 68 63 300 Pltot Coefficient: 0.84 0.43 0.66 2.14 72 64 300 0.44 0.66 2.14 74 64 297 Initial Imoinner Volu e/Wel e: 0.43 0.66 2.14 83 65 298 Impinger 1 (ml) 658.4 0.54 0.73 2.14 78 65 296 Impinger 2(ml) 719.9 0.50 0.71 2.14 80 66 302 Impinger 3(ml) 701.9 0.40 0,63 2.14 80 67 299 Impinger 4(ml) 615.6 0.46 0.68 2.14 81 67 284 Impinger 5(ml) 779.7 0.60 0.77 2.14 81 67 294 Impinger 6(ml) 0.60 0.77 2.14 81 68 300 Impinger 7(9) 0.55 0.74 2.14 82 68 301 0.52 0.72 2.14 83 68 295 Final IMPInaerVolumeMel his: 0.49 0.70 298 Impinger 1 (ml) 794.2 0.46 0.68 300 Impinger 2(ml) 792.1 0.41 0.64 297 Impinger 3(ml) 713.7 0.41 0.64 283 Impinger 4(ml) 617.E 0.45 0.67 299 Impinger 5(ml) 792.4 0.43 0.66 296 Impinger 6(ml) 0.37 0.61 281 Impinger 7(g) 0.44 0.66 275 0.44 0.66 287 %Oz (Outlet) r 11.4 1 0.40 0.63 285 0.42 0.65 286 %CO2(Outlet): 8.1 0.44 0.66 280 *CO (Outlet): Bar. Pressure("Hg): 29.90 Static Pressure("H2O): -10.5 No.of Traverse Points: Run Duration(minutes): 60 Meter Vol. Final(dcf): 969.082 Leak Check Volume(dot): Meter Vol. Initial(dcf): 923.100 Start Time: 15:50 End Time: 16;50 AVERAGE: 0.46 0.68 2.14 78.6 66.0 293.0 NE013AS-021420-RT-1303 Appendix A-Page 37 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program an Unit Nos. 1 &2 Test Dates; October 18-19,2022&October 25-28,2022 A4 Unit No. 1 Outlet Particulate, Metals and Mercury MONTROSE NE013AS-021420-RT-1303 Appendix A- Page 38 of 135 r' Metals Emission Calculations FacilityiSitb. WheelabratorI North Andover Date: 10/27/22 Source: Unit No.1 FF Outlet Start Time: 0:26 Run No.: U1-FF Out-M5129-Run 1 Stop Time: M36 Total Reagent Blank Concentration(Cal Emission mate H91 HlenV Cor.Total Wildscm lb1MMBtu Ansl a (ug) (ug) (ug) (Ibldscl) (ugldscm) @7%02) (uglAcm) (F.) (Ibthr) Cadlum 1.25 0.000 1.260 2,726£-11 0.44 0.65 0.24 6,122E-07 1.842E-04 Lead 13.6 0.617 13.08 2,852E-10 4.67 6,76 2.47 8.407E-08 1.718E-03 Mercury 1.31 0,000 1.31 2.866E-11 0.46 0.08 0.26 6.416E-07 1.721E-04 Run Data V.,(dscf) - 101.16 V.,(Ncm) = 2.67 V.(Acm) = 6.29 0. (dscfh) = 6,025,921 Welghted Fuel Factor(Fj 1,820 02(%) =1 11.60 CO2(%) = 0.10 E uatlons 0. OWN =3600(1-B.)(V.)(A.)(17.64)(P.)!(T.) C. (Ibldscl) =(Ug'0.4636E09)I Vm Sid C. (ugldscm @7%02) =1jgldscm"13.91(20.9%02) E (lbfMMBtu)-using F. _(C.,Ibldacf)(F.)(1001CO2,%a) E (Ibfir) =(C.,ibldsct)(Q.,dscfh) Conversions to obleln dacm: multiply dsol by 0.02832 to obtain Ncm: mullIply dace b 460+321460+88 `0.02832 to obtain Am mulliply Ncm b 460+Ts!460+32 1 1-Bws"29.921Pa to obtaln ug: multiply multIply lb by 0.4636E09 to obtaln mg: divide by 1000 to obtain Ib; multiply multIply ug by 2,205E-09 NEOI3AS-021420-RT-1303 Appendix A-Page 39 of 135 Metals Emission Calculations Facility/Site: Whaelabrator I North Andover Date: 10/27122 Source: Unit No.1 FF Outlet Start Time: 12:60 Run No., U1-FF Out-M5/29-Run 2 Stop Time: 15;13 Total Reagent Blank Concentration(Cal Emisslon Rate LE)__ HgI Blenka Cor.Total (ugldscm Ib1MMBtu- Anal a NO) (ug) (u9) Ilbldactj (ugldscm) 07%02) (uglAcrn) (Fo) (lbihr) Cadium 1.11 0.000 1.170 2.544E-11 1 0.41 0.68 0.22 6.716 -07 1.533E-04 Lead 11A 0,517 10.88 2,366E-10 3.79 6.43 2.07 5.318E-06 1.428E-03 Mercury 1.39 0,000 1.39 3.022E:-11 1 0,48 0,69 0.28 6.548E-07 1.821E-04 Run Data m(dso = 101,42 V.(Ncm) - 2.68 Vm(Acm) - 6.25 Q. (dsolh) = 6,026,670 Fuel Factor(F,) = 1,820 V 11.20 CO2(%) - 8.40 Equations 0. (dsdh) =3600(1'B,,)(V,)(A,)(17.64)(P.)l(r,) Ca (IbldscO =(ug'0.4636E;09)1 Vm 5td C. (ugldscm®7%02) =ug/dscm'13.9/(20.9-%O2) E (Eb1MMBtu)-using Fa =(C,,lbldscl)(F,)(1001CO2,%) E (Iblhr) =(C"IbfdscQ(Qe,dsafh) Conversions t0 obtain dscm: mullIply dsct by 0.02032 to obtain Ncm: multiply dscl b 460+321460+88 '0.02832 to obtain Acm: multiply Nam b 460+Ts!460+32 1 1-Bws"29,921Ps to obtain u : multiply lb by 0.4536E09 to obtain mg: divide by 1000 io obtain lb: multiply u2 by 2.205E=-09 NEW 3AS-021420-RT-1303 Appendix A-Page 40 of 135 Metals Emission Calculations racllitylsite: Wheelabrator 1 North Andover Date: 10/27122 Source: Unit No.1 FF Outlet Start Time: 16:60 Run No.: U1-FF Out-M6f29-Run 3 Stop Time: 18:02 Total Reagent Blank Concentration Cs Emission R_ate_�8)�_ Hg' Blank` Car.Total (ugldscm Ib1MMStu Anal a (ug) NO) (ug) (IbldsaQ (ugldsom) @7%02) (uglAcm) (Fa) (tblhr) a um 1. .400 3,062 - 0.60 0. -07 1.842 -09 Lead 12.9 0.517 12.38 2.706E-10 4.34 6.03 2.37 0.006E-06 1.629:03 Mercury1,48 0.000 1,45 3.171E-11 0.61 0.71 0.26 B.711E-07 1.908E-04 Run Data V.Waco m 100.83 V.(Ncm) - 2.66 Vm(Acm) 5.24 Q. (dscth) = 6,016,456 FuelFactOr(F°) = 1,620 02(°A) 10.80 CO2(%) F 8.60 Equations Q. (dsclh) =3600(1-B o)Ne)(A,)(17.64)(P■)1Ct.1 C. (ibldsct) _(ug'0A538E09)1 Vm Std C$ (ugldscm(M7%02) =ugldscm`13,01(20.8-"/.00 E (IbfMMBtu)-using Fa -(C.,Ibldsct)(FQ)(1001CO2,%) pbmr) W(c.,Ib1 sat)Q„dscth) Conversions to obtain dscm: mulls I dacf by 0,02832 to obtain Ncm; mulliply dscf b 400+32 f 460+68 *0.02832 to obtain Acm; multiply Ncm by 480+Ta 1460+321 1-Bws•29.921Ps to obtain ug: multiply lb by 0.483BE09 to obtain m : divide by 1000 to obtain Ib: multiply ug hy 2.206E-09 NE01 3AS-021420-RT-1 303 Appendix A-Page 41 of 135 Mercury Emission Calculations Facility/Site: Wheelabmlor I North Andover Date: 10/28/22 Source; Unit No.1 FF Outlet Start Time: 8:16 Run No.; U1-FF Out-M5129-Run 4 Stop Time: 10:20 Total Reagent Blank Concentration Cs _Emission RatelE)_ Ng WSW Gor.Total (ugldacm Ih1MMBtu- Anal a (ugl NO) (ug1 (lhldacti] (ugldacm) 07%D2) (uglAcm) (F.) ({bJttr) MgMIFY 1.42 0.000 L 1.42 3.013E-1i 0.60 0.74 0,27 8,865E-07 1.864E-04 Run Data m(dscf) 103.91 Vm(Nam) 2.74 V.(Acm) = 6.27 Q, (dacth) = 8,162,228 Fuel Factor(F.) 1,820 02(%) 11.60 CO2(°/a) = 8,00 E9uatlon9 Q, (dscih) =384D(1•B,,,,)(V,)(A,)(17.84)(P,)/(T,) C. (Ibldsc$ =(ug'0.4638E09)/Vm Sid Co (ugldacm 07%02) =ugldscm'13.91(20,9-%02) E (€bIMMBtu)-using F. =(C„Wdscf}(Fj(100/COx,%) E (Iblhr) _(C„Ib/dscf}(q„dscth) Conversions to obtain dacm: mutt) 1 dscf h 0,02832 to obtain Ncm: multiply dscf b 460+32!480+68 '0.02832 to obtain Am muffiply Ncm by 460+Te 1460+32!1-Suva"29.92/PS to obtain u ; multiply lb by 0.4638E09 to obtain Ib: multiply ug by 2.206E-09 } NE01 3AS-021420-RT-1 303 Appendix A•-Page 42 of 135 r Particulate Emission Calculations Facility/Site: Wheelabrator/North Andover pate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-FF Out-M5129-Run 1 Stop Time: 11:35 BLANKS FILTER BEAKER FILTER ACETONE NUMBER: e39621-6 e39621 6 e36565-18 e36565-18 NET (g) : 0.0000 0.0052 0.0000 0.0001 Volume of Blank Rinse(ml): 102 Volume of Rinse(ml): 86 Mn-Af = Mn Oz = 11.50 %vd CO2 = 8.10 %vd Mn(mg) = 5.200 VS = 47.63 ft/sec A, (mg)= 0.084 A = 64.89 W V,,,std= 101.16 dscf Vn,aid= 2.86 dscm Mn (mg) = 5,116 Ffactor(F,) = 1,820 Q. — 3600(1-Bm)(Vg)(A)(Teta Ps1P$td T.(abs)) = 6,025,921 dscfh mgldscm = mg/dscm = 1.79 mg/dscm mg/dscm @7%0, =mgldscm*13.9/(20.9-%02) — 2,64 mg/dscm @7%02 C. — (2.205 E-6) (Mn)/(V,nstd) - 1.12E-07 lb/sof Cs' — 0.0154(Mn)/(VmStd) = 0.0008 gr/dscf Cs'@ 7%02 = 0.0154 Mn 1 VmStd = 1.15E-03 grldscf @7%02 E _ (Q& x Cs = 0.672 lblhr E = Cs x F FACTOR(Fc)x (1001 CO2) -- 2,51E-03 Ib/MMBtu E _ (lb/hr)/Heat input = 0.0058 Ib/MMBtu NE013AS-021420-RT-1303 Appendix A-Page 43 of 135 Particulate Emission Calculations FacilitylSite: Wheelabrator I North Andover Date: 10/27/22 Source: Unit No. 1 FF Outiet Start Time: 12:50 Run No.: U1-FF Out-M5/29-Run 2 Stop Time: 15:13 BLANKS FITE BEAKER FILTER ACETONE NUMBER: e39621-7 e39621-7 e36565-18 e36565-18 NET (g): 0.0000 0.0040 0.0000 0.0001 Volume of Blank Rinse(ml): 102 Volume of Rinse ml : 90 Mn-A, = M. 02 = 11.20 %vd CO2 = 8.40 %vd Mn(mg) = 4.000 Vs = 47.17 ft/sec Ar (mg)= 0.0138 A - 64.89 fe V,n std= 101.42 dscf V,std= 2.87 dscm M„ (mg)= 3.912 Ffactor(F,) = 1,820 Q8 - 3600(1-B,,,,$)(V,)(A)(Tstd Ps/Pgtd TS(abs)) - 6,026,679 dscfh mgldscm = mg/dscm 1.36 mgldscm mgldscm @7%0, = mgldscm*13.91(20.9-°/a02) - 1.95 mgldscm @7%02 C6 = (2,206 E-6) (M„)/(V.std) = 8.50E-08 iblscf Cs' -» 0.0154(Mn)/(VmStd) - 0.0006 grldscf Cs'@ 7%02 = 0.0154 Mn I VmStd = 8.51E-04 grldscf @7%02 E - (QS x Ce = 0.513 Iblhr E Cs x F FACTOR(Fc)x (1001 CO2) - 1.84E-03 Ib/MMBtu E - (lblhr)IHeat input = 0.0044 IbIMMBtu 5, NE013AS-021420-RT-1303 Appendix A- Page 44 of 135 Particulate Emission Calculations Facility/Site: Wheelabrator 1 North Andover ©ate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:50 Run No.: U1-FF Out-M5129-Run 3 Stop Time: 18:02 BLANKS FILTER BEAKER FILTER ACETONE NUMBER: e39621-8 e39621-8 e36565-18 e36565-18 NET (9) : 0.0000 0.0017 0.0000 0.0001 Volume of Blank Rinse(ml): 102 Volume of Rinse (ml): 60 M„-Af =Mn 02 = 10.90 %vd CO2 8.60 %vd M„(mg) = 1.700 V. — 47.22 ft/sec A, (mg)= 0.059 A — 64.89 ft2 V,,,std W 100.83 dscf V,,std= 2.86 dscm M„ (mg)= 1.641 Ffactor(F,) = 1,820 Qs = 3600 (I-B.)(VJ(A)(T.Id P.IPrld T&(abs)) = 6,016,455 dscfh mg/dscm = mg 1 dscm 0.57 mgldscm mg/dscm @7%0, =mgldscm*13.91(20.9-%02) — 0.80 mg/dscm @7%02 Ce = (2105 E-6) (M„)I(Vmstd) — 3.59E-08 Iblscf Cs' — 0.0154(Mn)1(VmStd) - 0.0003 grldscg Cs'@ 7%02 = 0.0154 Mn 1 VmStd — 3.48E-04 grldscf @7%02 E -- (Q, x Cg - 0.216 Iblhr E — Cs x F FACTOR(Fc)x (100/CO2) = 7.60E-04 Ib/MMBtu E — (lb/hr)IHeat input = 0.0019 1b/MMBtu S NEW 3AS-021420-RT-1 303 Appendix A-Page 45 of 135 i Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-FF Out-M5/29-Run 1 Sto Time: 11:35 T.(IF) = 293.1 02(%Vd) = 11.5 V.(dcf) = 99.494 T6(°R) = 763.1 CO2(%vd) = 8.1 AH (Abs) ("Hg) = 30.07 Tm(OF) = 76.2 CO(%vd) = 0 P.("Hg) = 29.13 Told CR) = 636.2 N2(%vd) = 80.4 SQRT A P = 0.6818 VI(Total gain) = 559.2 Cp = 0.84 Y = 1.0272 VI(adj.for sat.) = NA Run Time(mini.) = 120 An(ft) = 0.000524 V,,,std = (Tetd)(V.)(Y)(n H Abs) - 101.165 dscf (Potd)(Tm) Vw std = 0.04706(Vt Total gain) - 26.316 scf Bws = Vw(std) / Vm(std)+VW(std) - 0.206 B. = by steam tables NA 1 -B, 1 -B,,,, = 0.794 Md = 0.440 (%CO2) 0.320 MOD 0.280 (%N2+%CO) -- 29.756 lb/lb-mole Mg = Ma(1-B,,,,a) + 18(13,,,6) - 27.329 lbllb-male G = SQRT(Ts(abs)/Ps Ms) - 0.973 V. = 85.49 (Cp)(G) (SQRTA P) - 47.626 fps Q$ = 3600 (1-B.)(Vs)(A)(Tatd P./Petd T.(abs)) = 6,025,921 dscfh = 3600(Vs)(As) = 11,126,605 acfh = acfh 160 - 185,427 acfm l - (To)(V.std) (Pstd) 100 - 103.9 %Isokinetic (Told) (V. (AA)(P.)60(1-8,ys) (Run Time) NE013AS-021420-RT-1303 Appendix A- Page 46 of 135 Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 12:50 Run No.: U1-FF Out-M5129-Run 2 Stop Time: 16:13 To(OF) = 291.2 02(%vd) = 11.2 V.(dcf) = 99.191 T.(OR) = 751.2 CO2(%vd) = 8.4 AH (Abs) (°Hg) = 30.08 Tm (OF) = 73.2 CO(%vd) = 0 P.("Hg) = 29.13 Tstd(OR) = 533.2 N2(%vd) = 80.4 SQRT A P = 0.6774 Vi (Total gain) = 641.3 CP = 0.84 Y = 1.0272 Vi (adj.for sat.) = NA Run Time(min.) = 120 An(ft) = 0.000624 Vm std — (Tstd)(V.)(y)(A H Abs) = 101.419 dscf (Petd)(Tm) Vw std = 0.04706(VI Total gain) = 25.474 sof Bws = Vw(std) / Vm(std)+VW(std) — 0.201 Bws = by steam fables — NA 1 -Bws = 1 -Bw = 0.799 Md = 0.440 MCO2) 0.320 (%02) 0.280 (%N2+%CO) = 29.792 lb/lb-mole Ms = Md(1-13w8) + 18(Bws) — 27,425 lb/lb-mole, G = SQRT(Ts(abs)/Ps Ms) — 0.970 Vs = 86.49(CP) (0) (SQRTA P) = 47.170 fps Qs = 3600(1-B,,,B)(Vj(A)(TMd P,/Pstd Ts(abs)) = 6,026,679 dscfh = 3600(Vs) (As) = 11,019,167 acfh = acfh/60 - 183,663 acfm = (T.)(Vm std) (Petd) 100 - 104.2 %isokinetic (Yard)(V.)(A„) (Ps)60(1-Bws) (Run Time) 4 NP013AS-021420-RT-1303 Appendix A- Page 47 of 136 Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover ©ate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:60 Run No.: U1-FF Out-M5/29-Run 3 Stop Time: 18:02 Ts(OF) = 293.0 02(%vd) = 10.9 Vm (dcf) = 97.540 Ts(OR) = 753.0 CO2(%vd) = 8.6 AH (Abs) ("Hg) = 30.08 T.(OF) = 67.4 CO(%vd) = 0 Ps("Hg) = 29.13 T$td(OR) = 527.4 N2(%vd) : 80.5 SQRT 0 P = 0.6776 V,(Total gain) = 639.1 Cp = 0.84 Y = 1.0272 V, (adj.for sat.) = NA Run Time(min.) = 120 An(ft) = 0.000524 Vm std - (Tstd)(Vm)(Y)(A H Abs) = 100.828 dscf (Pstd)(Tm) V,std = 0,04706(VI Total gain) = 26.370 scf Bws = Vw(eld) / VM(std)+VW(std) - 0.201 B,s = by steam tables = NA 1 -B„, = 1 -B. = 0.799 Md = 0.440 (%CO2) 0.320 (%02) &280 (%N2+%CO) - 29.812 Ibllb-mole Ms = Md(I-B.)+ 18 (B,,,,S) 27.437 Ibllb-mole G = SQRT(Ts(abs)/Ps Ms) = 0.971 Vs = 85A9 (Cp)(G) (SQRTo P) = 47.225 fps Qs = 3600 (1-B,,,$)(V.)(A)(T,,td Ps/Pstd Tjabs)) = 6,016,455 dscfh = 3600(Vs) (As) = 11,031,877 acfh = acfh 160 - 183,865 acfm 1 - (Ts) (Vm std)(Pstd) 100 - 103.7 %isokinetic (Tstd) (V6) (An) (Ps)60(1-Bwe)(Run Time) NE013AS-021420-RT-1303 Appendix A- Page 48 of 136 Isokinetic Calculations Facility/Site: Wheelabrator!North Andover Date: 10/28/22 Source: Unit No. 1 FF Outlet Start Time: 8:15 Run No.: U1-FF Out-M6129-Run 4 Stop Time: 10:20 T.(OF) d 290.2 02(%vd) = 11.6 V.(dcf) = 96.169 T.(OR) = 750.2 CO2(%vd) = 8.0 AH (Abs) ("Hg) = 30.71 T.(OF) = 55.2 CO(%vd) = 0 P9("Hg) = 29.76 Tetd(OR) = 515,2 N2(%vd) = 80.4 SQRT A P = 0.6842 Vt(Total gain) = 559.3 CP = 0.84 Y = 1.0272 IV, (adj.for sat.) = NA Run Tlme(min.) = 120 IA,(fe) = 0.000524 Vm std = (T,,td)(Vm)(Y)(A H Abs) — 103.906 dscf (Pstd)(T.) Vw std = 0.04706 (VI Total gain) = 26.321 scf gws = Vw(std) / Vm(std)+VW(std) = 0.202 Bwa = by steam tables = NA 1 -B. = 1 -B,� = 0.798 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) = 29.744 lb/lb-mole Mg = Md 0-B,,,,$) + 18(B.) — 27.370 lb/lb-mole G = SQRT(Ts(abs)!Ps Ms) -- 0.960 VS = 85.49(CP) (G) (SQRTA P) = 47.164 fps Qg = 3600(1-B„.)(V6)(A)(Tstd P./Patd T.(abs)) = 6,162,228 dscfh = 3600(Vs) (As) = 11,015,348 acfh = acfh!60 = 183,689 acfm I = (Ts) (V,,,std) (Pstd) 100 — 104.6 %Isokinetic (Tstd) (V.)(A„) (P.)60(1-B„,.) (Run Tima) NE013AS-021420-RT-1303 Appendix A-Page 49 of 135 Input Data } Facility/Site: Wh eelabrator I North Andover Bate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-FF Out-M5129-Run 1 Stop Time: 11:35 Traveree Dnika P Square Raot Delta H Dry Gas Motor Temps. Stank Stack Diameter CT n/a Point ("►t,o) Delta P "H=O) lnletlF) outlatm Temp.iFi Stack Area(fe) 64.9 Noxzle Diameter 0.310 Al 0.60 0.77 3.1 66 66 300 Pilot Coefficient: 0.84 2 0.60 0.77 3.1 66 66 298 3 0.52 0.72 2.7 68 68 298 Initial Impinger Volu m e[Welt hts: _ 4 0.46 0.68 2.4 69 69 293 Impinger 1 (ml) 564.6 131 0.55 0,74 2.9 71 71 301 Impinger 2(ml) 699.9 2 0.50 0.71 2.6 72 72 302 Impinger 3(ml) 693.9 3 0.48 0.69 2.5 74 74 302 Impinger4(ml) 620.1 4 0.52 0.72 2.7 75 75 292 1 mpinger 6(m 1) 708.8 C1 0.43 0.66 2.2 77 77 297 Impinger 6(ml) 718.8 2 0.45 0.67 2.3 78 78 302 Impinger 7(g) 851.8 3 0.46 0.68 2.4 79 79 301 4 0.50 0.71 2.6 79 79 294 Final Im in er Volume[Wei hts: D1 0.53 0.73 2.8 79 79 298 Impinger 1 (ml) 749.0 2 0.49 0.70 2.5 79 79 300 Impinger 2(ml) 898.6 3 0.43 0.66 2.2 75 75 291 Impinger 3(ml) 806.3 4 0.46 0.68 2.4 80 80 280 ImpInger 4(ml) 647.7 E1 0.46 0.68 1.2 80 80 290 Impinger 6(ml) 717.1 2 0.42 0.65 2.2 80 80 295 Impinger 6(ml) 719.5 3 0.38 0.62 2.0 80 80 281 Impinger 7(g) 878.9 4 0.39 0.62 2.0 80 80 280 F1 0.35 0.59 1.8 80 80 284 *Os (Outlet): 11.5 2 0.38 0.62 2.0 81 81 286 3 0.42 0.65 2.2 80 80 284 %CO2(Outlet): 8.1 4 0.43 0.66 2.2 80 80 286 %CO (Outlet) Bar.Pressure("Hg): 28.90 Static Pressure("H2O): -10.5 No.of Traverse Pointe: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 752.145 Leak Check Volume(dcf): 0.000 Meter Vol,initial (dcf): 662.651 Start Time: 9:25 End Time: 11:35 AVERAGE: 0.47 0.68 2.379 76.2 76.2 293.1 NE013AS-021420-RT-1303 Appendix A-Page 50 of 135 E I } Innut Data Facility/Site: Wheelabrator 1 North Andover Date: 10127122 Source: Unit No. 1 FF Outlet Start Time: 12;50 Run No.: 111-FF Oul:45129-Run 2 Stop Time: 15:13 Traverse Vella P Square Root Delta H Dry Gas Motor Tompa. Stack Stack Diameter("): n1a Point ("H2O) Delta P ('H20) Inlet(F) Temp.(F) Stack Area(fe) 64.9 Nozzle Diameter("): 0.310 Al 0,46 0,68 2.4 71 71 291 Pitot Coefficient: 0.04 2 0.37 0,61 1.9 71 71 288 3 0.40 0.63 2.1 72 72 284 Initial lm in erVolumelWel his: 4 0.51 0.71 2.7 73 73 282 Impinger 1 (ml) 669.2 131 0.47 0.69 2.4 73 73 291 Impinger 2(ml) 701.4 2 0.47 0.69 2.4 74 74 299 Impinger 3(ml) 700.9 3 0.44 0.66 2.3 77 77 295 Impinger 4(ml) 618.4 4 0.40 0.63 2.1 75 75 279 Impinger 6(ml) 712.4 C1 0.49 0.70 2.5 74 74 281 Impinger 6(ml) 713.9 2 0.46 0.68 2.4 74 74 294 Impinger 7(g) 839.6 3 0.42 0.65 2.2 75 75 293 4 0.39 0.62 2.0 75 75 282 Final Impinger Volume[Wel hts: D1 0.57 0.75 3.0 71 71 300 Impinger 1 (ml) 742.2 2 0.50 0.71 2.6 72 72 300 Impinger 2(ml) 884.2 3 0.49 0.70 2.5 72 72 289 Impinger 3(ml) 812,5 4 0,48 0.69 2.5 72 72 287 Impinger4(ml) 641,6 E1 0.48 0A9 2.5 72 72 289 Impinger 5(ml) 723.5 2 0.47 0A9 2.4 72 72 290 Impinger 6(ml) 720.1 3 0.47 0.69 2A 73 73 297 Impinger 7(g) 883.0 4 0.52 0.72 2.7 73 73 301 F1 0.41 0.64 2A 74 74 298 *Oz (Outlet): 11.2 2 0,42 0.65 2.2 74 74 299 3 0.45 0.67 2.3 74 74 296 *CO,(Outlet): 8.4 4 0.50 0.71 2,6 74 74 283 *CO (Outlet) : Bar.Pressure("Hg): 29.90 Static Pressure("H20): 70,5 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter VOI. Final(dcf): 852.208 Leak Check Volume(dcf): 0.000 Meter Vol. Initial(dcq,. 763.017 Start Time: 12;50 End Time: 15;13 AVERAGE: 0.46 0.68 2.39 73.2 73.2 291.2 NE013AS-021420-RT-1303 Appendix A-Page 51 of 136 r Input Data FacilitylSlte: Wheelabrator/North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:50 Run No.: U1-FF Out-M5129-Run 3 Stop Time: 18:02 Traveraa Dalta P Square Rod Delta tt Div Gas motor Tomps, Stack Stack Diameter("): nla Pant ('-820) fletta P (IIrt2o) Inlet(F) outj (Fi Temp.(F) Stack Area(fe) 64.9 Nozzle Dlameter("): 0,310 Al 0.43 0.66 2.2 66 66 300 Pitot Coefficient: 0.84 2 0.43 0.66 2.2 66 66 300 3 0.44 0,66 2.3 68 68 297 Initial Im in er Volume/Wei hts: 4 0.43 0,66 2.2 69 69 298 Impinger 1 (ml) 566.7 131 0.54 0.73 2.8 69 69 296 Impinger 2(ml) 699.6 2 0.50 0.71 2.6 68 68 302 Impinger 3(ml) 695.2 3 0.40 0.63 2.1 68 68 299 Impinger 4(ml) 622.1 4 0,46 0.68 2.4 68 68 284 Impinger 5(ml) 711.7 C1 0.60 0.77 3.1 68 68 294 Impinger 6(ml) 715.0 2 0.60 0.77 3.1 67 67 300 Impinger 7(g) 867.8 3 0,55 0.74 2.9 67 67 301 4 0.52 0.72 2.7 68 68 295 Final impinae_rVolum eMel his: D1 0.49 0.70 2.6 65 65 298 Impinger 1 (ml) 688.9 2 0.46 0.68 2.4 66 66 300 Impinger 2(ml) 904.8 3 0,41 0.64 2.1 66 66 297 Impinger 3(ml) 838.0 4 0.41 0.64 2.1 66 66 283 lmpinger4(ml) 648.3 E1 0.45 0.67 2.3 67 67 299 Impinger 5(ml) 7233 2 0.43 0.66 2.2 67 67 296 Impinger 6(ml) 720.1 3 0.37 0.61 1.9 67 67 281 Impinger 7(g) 803.8 4 0.44 0.66 2.3 68 68 275 F1 0.44 0.66 2.3 68 68 287 %02 (OUiiet): 10.9 2 0.40 0.63 2.1 68 68 285 3 OA2 0.65 2.2 68 68 286 %CO2(Outlet): 8.6 4 0.44 0.66 2.3 70 70 280 %CO (Outlet): Bar.Pressure("Hq): 29.90 Static Pressure("H20): 710.5 No.of Traverse Paints: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 950.129 Leak Check Volume(dcf): 0.000 Meter Vol.Initial(dcf): 852.589 Start Time: 15;50 End Time: 18:02 AVERAGE: 0.46 0.68 2.40 67.4 67.4 293.0 l NEW 3AS-021420-RT-1303 Appendix A-Page 52 of 135 Input Data FacilltylSite: Wheelabrator!North Andover pate: 10/28122 Source: Unit No. 1 FF Outlet Start Time: 8:15 Run No.: U1-FF Out-M5129-Run 4 Stop Time: 10:20 Traverse Delta P Square Ftoot Delta H Dry Gas Motor Tomps. Stack Stack Diameter n!a Aolnt ("H20) Delta P ("H201 Inlaw) outlet ) Temp.(F) Stack Area(ft) 64.9 Nozzle Diameter("): 0.310 Al 0.45 0.67 2.3 42 42 285 Pltot Coefficient; 0.84 2 0.36 0.60 1.8 43 43 283 3 0.40 0.63 2.0 44 44 283 Initial Impinger VolumeMek ihts, 4 0.48 0.69 2.4 45 45 280 Impinger 1 (ml) 560.9 131 0.48 0.69 2.4 46 46 283 fmpinger 2(ml) 707.7 2 0.45 0.67 2.3 47 47 289 Impinger 3(ml) 712.9 3 0.38 0.62 1.9 47 47 276 Impinger4(ml) 619.3 4 0.44 0.66 2,2 48 48 278 Impinger 6(ml) 710.2 C1 0.43 0.66 2.2 49 49 285 Impinger 6(ml) 725.0 2 0.41 0.64 2.1 50 50 293 Impinger 7(g) 829.5 3 0.44 0.66 2.2 58 58 291 4 0.43 0.66 2.2 60 60 281 Final Im IFt er VolumetWel to: D1 0.44 0.66 2.2 60 60 290 Impinger 1 (ml) 705.3 2 0.44 0.66 2.2 60 60 300 Impinger 2(ml) 873.1 3 0.45 0.67 2.3 60 60 297 Impinger 3(ml) 872,0 4 0.50 0.71 2.6 61 61 292 Impinger 4(ml) 669.0 E1 0.64 0.73 2.8 61 61 295 Impinger 5(ml) 721.3 2 0.51 0.71 2.6 63 63 300 Impinger 6(ml) ±8 .8 2.3 3 0.48 0.69 2.4 63 63 298 Impinger 7(g) 4 0.50 0.71 2.6 63 63 298 F1 0.69 0.77 3.0 63 63 293 %Ox (Outtet); 11.6 2 0.60 0.77 3.1 63 63 297 3 0.56 0.74 2.8 64 64 303 %CO2(Outlet): 8.0 4 0.63 0.73 2.7 64 64 295 %CO (Outlet): Bar.Pressure("Hft 30.53 Static Pressure("H20): -10.5 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.FInal(dcf): 1047.736 Leak Check Volume(def): 0.407 Meter Vol.initial(dcf); 951.169 Start Time: B:15 End Time: 10:20 AVERAGE: 0.47 0.68 2.40 66.2 55.2 290.2 NE013AS-021420-RT-1303 Appendix A-Page 63 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program an Unit Nos. 1 &2 Test Dates:October 18-19,2022&October 25-28,2022 A5 Unit No. 1 Outlet PCDDIPCDFs 5 MO,NTROSE NE01 3AS-021420-RT-1 303 Appendix A- Page 64 of 135 PCDDIDF EMISSION CALCULATION SHEET Facility/Site: Wheelabral6T 1 North Andover Date: 10/25/22 Source: Unit No. 1 FF 0utlet Start Time: 7,60 '-,dun No.: U1-M23-Run 1 Stop Time: 11:56 Emission rates Analytical Results C. Mn C, ng1DSC1111 PMR Analyte pg 1 ng ngloscm @7%02 Ib1hr 2006 WHO Toxic Equivalent Tetra-Octa Total Includin NDs&EMPCs 260 2.6E-01 4.65E-02 I 6.521=-02 1.74E-08 Total pg(Not Including We&EMPCs) 231 2.3E-01 4.13E-02 5.80E-02 1.55E-08 1991 MA Toxic Equivalent(Tetra-Octa Total (including NO &EMPCs 942 9.4E-01 1.68E-01 2.36£-01 6.32E-08 Total pg Not Including We&EMPCs) 899 9.0E-01 1.61E-01 2.26E-01 6.03E-08 Dioxin and Furans-Total PCDDs and PCDFs Total (including NDs&EMPCs 27900 2.8£+01 4.99E+00 7.00E+00 1.87E-06 Total pg(Not Including NDs&EMPCs) 27100 2.7E+01 4.84E+00 6,80E+00 1.82E-06 -Blank values are not subalraded from the emission results Input Values: Equations; V,,,Standard(DSCF) - 197.58 G.(ng1DSCM) _(Mn(ng))1(Vm Std 136.3146) Q. (DSCFH) - 6,012,276 c,(ng1DSCM)@7%02 =Ca 03.91(20.9°/a02)) Corrected to%02 = 7,00 Q,(DSCPH) =36D0(1-B„o)(V,)(A,)(628129.92)(P,)1(T,) °t°02 = 11.00 a,(DSCFMI Q.(DSCFH)(0.02832) CO2 = 8.61) PMR(Ib1111) =C,(ngldscm)*2.204622E-12*Q,(dsclh)*0.02832 NEW 3AS-021420-RT-1303 Appendix A- Page 55 of 135 f 1 PCDD/DF EMISSION CALCULATION SHEET FacilltylSite: Wheelahrator 1 North Andover Date: 10/26122 Source: Unit No. 1 FF Quilst Start Time: 12:15 Run No.: U1-M23-Run 2 Stop Time: 18:18 Emission rates Analytical Results C. Mn C, nglDSCM PMR Anaiyte pg ng nglDSCM @7°J60= Whr 2005 WHQ Toxto Equivalent Tetra-Octa Total (including NDs&EMPC91 216 2,2E-01 3.84E-02 5,34E-02 1.46E-08 Total pg(Not Including We s 166 E 01 2. 7 - E 2 -08 1991 MA Toxic E uivalent Tetra-Octa Total (including NDs&EMPCs 804 8.0E-01 I 1.44(=-01 2.00i=-01 6.46E-0B Total pg(Not Including NDs&EMPCs) 739 7.4E-01 1.32E-01 1.83E-01 5.02E-08 Dioxin and Furans-Total PCDDs and PCDFs Total (including NDs&EMPCs 23600 1 2.4E+01 I ,4.20E+00 I 5.83E+00 1.60E-06 Total pU(Not Including NDs&EMPCs) 22100 1 2.2E+01 3.95E+00 6.49E+00 1.50E-06 Blank values are not substreded from the emission results Input Values: Squatlons: V.Standard(DSCF) — 197.68 C.(nglDSCM) =(Mn(ng))I(Vm Std 136.3146) 0. (DSCFH) 6.087,269 C,(ng1DSCMj@?%Oz =C.(13.91(20.9-%02)) Corrected to%02 = 7.00 Q,(DSCFH) =3600(1-B,D)(Vj(A,)(628/29.92)(P.)1(Tj %0, n 10.90 Q,(DSCFM) =Q.(DSCFH)(0.02832) CO, 8.70 IPMR(Whr) =C.(ngldsem)`2.204622E-12"Q,(dacfh)•0.02832 l NE013AS-021420-RT-1303 Appendix A-Page 56 of 135 i PCDD/DF EMISSION CALCULATION SHEET FacilitylSite: WheelabratorI North Andover Rate: 10/26/22 Source: Unit No. 1 FF Outlet Start Time: 7:36 Run No.: U1-M23-Run 3 Stop Time; 11:40 Emission rates Analytical Results C, Mn C. nglosCM PMR Analyte pg no nofDSCM @7%0, Whr 2006 WHO Toxic Equivalent(Tetra-Octa Total (Including NDs&EMPCs 198 I 2.0E-01 I 3.65E-02 5.12E-02 1.38E-06 Total pg(Not Including NOs&EMPCs) 162 1.6E-01 I 2.80E-02 3.93E-02 1.04E-06 1991 MA Toxic Equivalent Tetra-Octa Total (including NDs&EMPCs 747 7.6E-01 I 1.38E-01 I 1.93E-01 5.12E-08 Total pg(Not Including NDs&EMPCs) 697 7.0E-01 1.28E-01 1.80E-01 4.78E-08 Dioxin and Furans-Total PCDDs and PCDFs Total (including NDa&EMPCs 22400 2.2E+01 4.12E+00 5.79E+00 1.54E-06 Total pg(Not Including NDs&EMPCs) 21600 2,2E+01 3.98E+00 5.68E+00 1.48E-06 Blank values ere not subalracted from the emisslon results Input Values; Equations: Vm Standard(DSCF) - 191.79 C.(ng1DSCM) =(Mn(ng))/(Vm Sid!36.3146) 0. (DSCFH) = 6,987,249 Qng1DSCM)@7%% =CS(13.91(20.9AA0.,)) Corrected to%02 = 7.00 Q.(DSCFH) d 3600(1-B.)(Va)(A,)(528129.92)(Pe)/(Te) %Or 11.00 Q■(DSCFM) =0.(OSCFH)(0.02832) "/n CO. = 8.70 IPMF((lblhr) =C8(ngldscm)'2,204622E-12.0,(dscfh)"0.02832 i NE.013AS-021420-RT-1303 Appendix A- Page 57 of 135 Isokinetic Calculations FacilitylSite: Wheelabrator 1 North Andover Date: 10/25/22 Source: Unit No. 1 FF Outlet Start Time: 7:50 Run No.: U1-M23-Run 1 Stop Time: 11:55 Ts(OF) = 295.5 02(%vd) = 11.0 Vm (dof) = 193.618 Ts(OR) = 755.5 CO2(%vd) = 8.6 AH (Abs) ("Hg) = 30.35 T.(OF) = 77.4 CO(°lovd) = 0 Pg C'Hg) = 29.45 Tstd(OR) = 537A N2(%vd) = 80.40 SQRT A P = 0.6648 V,(Total gain) = 1019.8 CP = 0.84 Y = 1.024 V,(adJ, for sat.) = NA Run Time(min.) = 240 A„(ft) = 0,000524 Vm std - (Tstd)(Vm)(Y)(o H Abs) = 197.576 dscf (Pstd)(Tm) V,y std = 0.04706(V,Total gain) - 47.992 scf B" = Vw(M) / Vm(std)+w(std) - 0.195 BWO = by steam tables -- NA 1 -13" = 0.805 Md = 0.440 MCO2) 0.320 MOO 0.280 (%N2+%CO) = 29.816 lb/lb-mole Ms = Md 0-BM)+ 18(B„-) - 27.507 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 0.966 V& = 85.49(Cp)(G) (SQRT©P) = 46.098 fps Q$ = 3600 (1-113ws)(VOW(Tatd Ps/Pstd T.(abs)) - 6,012,276 dscfh = 3600(Vs) (As) = 10,860,746 acfh = acfh 160 - 181,012 acfm I - (T&)(Vm std) (pstd) 100 - 102.6 %isokinetic (Tstd) (Vs) (An) (Ps)60 (1-B„,) (Run Time) NE013AS-021420-RT-1303 Appendix A-Page 58 of 135 Y Isokinetic Calculations FacltitylSite: Wheelabrator 1 North Andover Date: 10/25/22 Source: Unit No. 1 FF Outlet Start Time: 12:16 Run No.: U1-M23-Run 2 Stop Time: 16:18 Ts(OF) W 295.0 02(%vd) = 10.9 V. (dct = 195.649 Ts(OR) = 755.0 CO2(%vd) = 8.7 AH (Abs) ("Hg) = 30.35 T.(OF) = 82.9 CO(%vd) = 0 Ps("Hg) = 29.45 Tstd(°R) = 542.9 N2(%vd) = 80.40 SQRT❑ P = 0.6769 V,(Total gain) = 1057.4 Ct, = 0.84 Y = 1.024 V, (adj.for sat,) = NA lRun Time(min.) = 240 lAn(ft) = 0A00524 Vm std = (T,,(d)(Vm)M(0 H Abs) - 197.676 dscf (Psid)(Tm) Vw std = 0.04706 (V,Total gain) - 49.761 scf Bws = VW(std) I Vm(etd)+VW(std) = 0.201 Bws = by steam tables - NA 1 - Bws = 1 -Bws = 0.799 Md = 0.440 0/00O2) 0,320 M02) 0.280 (%N2+%CO) - 29.828 Ibllb-mole Ms - Md(1-Bm)+ 18(B,,,,S) = 27.449 lbllb-mole G = SQRT(Ts(abs)1Ps Ms) = 0.966 Vs = 85.49 (Cp) (G)(SQRTo P) - 46.974 fps Qs = 3600 (1-13ws)MM)MM PSIPStdT.(abs)) = 6,087,259 dscfh = 3600(Vs) (As) - 11,066,979 acfh = acth 160 - 184,450 acfm I - (Ts)W.Std) (Ps,d) 100 101.4 %isokinetic (Tstd) (V.) (An) (Ps)60 (1-Bws)(Run Time) r NF013AS-021420-RT-1303 Appendix A-Page 59 of 135 Isokinetic Calculations Facility/Site: Wheetabrator 1 North Andover Date: 10/26/22 Source: Unit No. 1 FF Outlet Start Time: 7:35 Run No.: UI-M23-Run 3 Stop Time: 11:40 Ts(OF) = 296.8 02(%vd) = 11.0 V.(dcf) = 189.388 T.(OR) = 756.8 CO2(%vd) = 8.7 AH (Abs) ("Hg) = 30.07 T.(OF) = 76.6 CO(%Vd) = 0 Pa("Hg) = 29.18 TStd(°R) = 536.6 N2(%vd) = 80.30 SQRT A P = 0.6674 V, (Total gain) = 10243 CQ = 0.84 Y = 1.024 V, (adj.for sat.) = NA Run Time(min.) = 240 An(ft) = 0,000524 V,std - (Tstd)(V,)(Y)(A H Abs) - 191,787 dscf (Pstd)(T.) V,,,std = 0.04708 (VI Total gain) - 48.222 sef B. VW(sld) 1 Vm(std)+VW(atd) - 0.201 B" W by steam tables - NA 1 - B„s = 1 -B,B - 0.799 Md = 0.440 MCO2) 0.320 MOO 0.280 (%N2+%CO) = 29.832 Iblib-mole Ms = Md(1-B„,)+ 18 (B„,) - 27.455 Ibllb-male G = SQRT(Ts(abs)IPs Ms) = 0.972 Vs = 85.49 (Cp) (G)(SQRTA P) - 46.574 fps Qg W 3600(1-13.)Ns)(A)(Ts1d PJPstd T.(abs)) - 6,967,249 dscfh 3600 (Vs)(As) - 10,972,864 acfh = acfh 160 - 182,881 acfm I - (Ts) (V.std) (Petd) 100 = 100.3 %Isokinetic (Tstd) E V.)(Ad)(Ps)60 (1-B,,,) (Run Time) NE013AS-021420-RT-1303 Appendix A- Page 60 of 135 F Inbut Data Facility/Slte: Wheelabrator 1 North Andover Date: 10125/22 Source: Unit No. 1 FF Outlet Start Time: 7:50 Run No.: U1-1023-Run 1 Stop Time: 11,.55 i Traverna Della R 8punra Raot Della H Dry(iaa Meter Tramps. Stack $tBCi(Diameter("�: 0.D Rafnt {"Hlt)J Data P ("H,D) Inlet{FJ tlutlnt(F) Temp.(F) Stack Area(fe) 65.44 Nozzle Diameter("): 0,310 Al 0.55 0.74 2.64 60 60 296 Pitot Coefficient: 0.84 1 0.55 0.74 2.64 64 62 301 2 0.56 0.75 2.69 67 60 301 Initial Im in er VolumetWel Ats: 2 0.56 0.75 2.69 70 60 301 Impinger 1 (ml) 375.7 3 0.61 0.71 2.45 73 61 300 Impinger 2(ml) 710.3 3 0.51 0.71 2.45 75 62 300 Impinger 3(ml) 686.8 4 0.48 0.69 2.30 76 63 290 Impinger 4(ml) 606.7 4 0.48 0.69 2.30 78 64 290 Impinger 6(ml) 873.6 Bl 0.53 0.73 2.64 79 65 298 Impinger 6(ml) - 1 0.53 0.73 2.54 80 65 300 Trap(g) 326.4 2 0.48 0,69 2.30 82 67 300 2 0,48 0.69 2.30 82 67 300 Final Im In er VolumeMel hts: 3 0.45 0.67 2.16 83 68 300 Impinger 1 (ml) 1033.5 3 0.45 0.67 2.16 82 68 300 Impinger 2(ml) 893.1 4 0.50 0.71 2.40 83 68 292 Impinger 3(ml) 789.7 4 0.50 0.71 2.40 84 69 290 Impinger 4(ml) 610.3 C1 0.40 0,63 1.92 84 70 298 Imptnger 6(ml) 926.0 1 0.40 0.63 1.92 84 70 300 Impinger 6(ml) - 2 0A0 0.63 1.92 84 70 300 Trap(g) 346.7 2 0.40 0.63 1,92 84 71 300 3 0.42 0.65 2,02 85 71 298 %Oy (Outlet): 11.0 3 0.42 0,65 2.02 85 71 298 4 0.45 0.67 2.16 86 72 295 %CO,(Outlet): 8.5 4 0.45 0.67 2.16 87 73 292 D1 0.47 0.69 2.26 84 72 298 %CO (Outlet): 1 0.47 0.69 2.26 87 73 300 2 0.44 0.66 2.11 87 73 302 Bar.Pressure("Fig): 3D.19 2 0.44 0.66 2.11 88 74 302 3 0.40 0,63 1.92 88 74 295 Static Pressure("HxO): -1D.0 3 0.40 0.63 1.92 88 74 295 4 0.38 0,62 1.82 88 75 288 No.of Traverse Points: 24 4 0.38 0.62 1.82 88 75 285 El 0.44 0.66 2.11 88 75 298 Run Duration(minutes): 240 1 0.44 0.66 2.11 89 75 301 2 0.40 0,63 1.92 89 76 300 Meter Vol.Final(dcf): 671.976 2 0.40 0.63 1.92 89 76 298 Leak Check Volume(def): 0.210 3 0.35 0.59 1.68 89 76 285 Meter Vol.Initial(dcf): 478.148 3 0.35 0.59 1.68 89 76 285 4 0.40 0.63 1.92 89 76 295 4 0.40 0.63 C92 89 76 295 F1 0.45 0.67 2.16 89 76 297 1 0.45 0.67 2.16 90 77 299 2 0.35 0.59 1.68 90 77 290 2 0.35 0.59 1.68 89 77 290 3 0.39 0.62 1.87 89 77 288 3 0.39 0,62 1.87 89 77 288 4 0.45 0,67 2.16 90 77 285 4 0.45 0.67 2.16 90 77 283 AVERAGE: 0.44 0.66 2.13 83.8 71.0 295.5 NE013A5-021420-RT-1303 Appendix A- Page 61 of 135 Input Data, FacilitylSite: Wheelabrator 1 North Andover pate: 10/26/22 t Source: Unit No. 1 FF Outlet Start Time: 12:15 Run No.: U1-M23-Run 2 Stop Time: 16:18 Traverse Della P Squate Root Delta H Dry Gas Meter Tempe, Stack Stack Diameter("�: 50.3 .Q Polnt {"Ha0) Della P (-H2O) Inlet(F) Outlet IF) Tamp.(F) Stack Area(fe) .44 Nozzle Diameter("): 10 Al 0.44 0.66 2.11 78 74 295 Pitot Coefficient: 84 1 0.44 0,86 2.11 80 74 297 2 0.35 0.59 1.68 62 74 288 Initial Im in er Volume/Wei ihts: 2 0.35 0.69 1.68 85 74 288 Impinger 1 (mi) 377.6 3 0A0 0.63 1.92 85 74 288 Impinger 2(ml) 703.5 3 0.40 0.63 1,92 85 74 288 Impinger 3(ml) 709.8 4 0.47 0.69 2.26 85 74 285 Impinger 4(ml) 502.4 4 0.47 0,69 2.26 87 74 285 Impinger 6(ml) 906.2 B1 0.45 0.67 2.16 88 75 295 Impinger 6(ml) - 1 0.45 0.67 2.16 88 75 299 Trap(g) 287.2 2 0.42 0.65 2.02 89 76 299 2 0.42 0.65 2.02 89 75 297 Final Imainner VotumelWel htss. 3 0.35 0.59 1.68 89 76 283 Impinger 1 (ml) 1017.8 3 0.35 0,59 1,68 89 76 280 Impinger 2(ml) 917.8 4 0.40 0,63 1.92 89 76 280 Impinger 3(ml) 833.3 4 0.40 0.63 1,92 89 77 280 Impinger 4(ml) 510.1 C1 0,48 0.69 2.30 89 77 298 Impinger 8(ml) 959.2 1 0.48 0.69 2.30 90 77 300 Impinger 8(ml) 2 0.45 0.67 2.16 90 77 302 Trap(g) 305,9 2 0.45 0.67 2.16 90 77 302 3 0.43 0.66 2.06 90 77 295 01 (Outlet) : 10.9 3 0.43 0.66 2.06 90 77 292 4 0.38 0.62 1.82 90 78 285 %CO2(Outlet): 8.7 4 0.38 0.62 1.82 90 78 285 D1 0.42 0.65 2.02 88 77 299 %CO (Outlet): 1 0.42 0.65 2,02 90 78 301 2 0,44 0.66 2.11 90 78 301 Bar.Pressure("Mg): 30.19 2 0,44 0.66 2.11 90 78 302 3 0,45 0.67 2.16 90 78 300 Static Pressure("H20): -10.0 3 0.45 0,67 2,16 90 78 300 4 0.49 0.70 2.35 91 78 288 No.of Traverse Points: 24 4 0.49 0.70 2,35 91 78 288 E1 0.54 0.73 2.69 91 78 302 Run Duration(minutes): 240 1 0.54 0.73 2.59 91 78 302 2 0.60 0.71 2.40 90 78 302 Meter Vol.Final(dcf): 807.176 2 0.50 0.71 2.40 90 78 302 Leak Check Volume(dcf): 0.320 3 0.46 0.68 2.21 90 78 300 Meter Vol.Initial(dcf): 671.206 3 0.46 0.68 2.21 90 78 300 4 0.60 0.71 2.40 91 78 295 4 0.50 0.71 2.40 91 78 290 F1 0.59 0.77 2.83 91 78 301 1 0.69 0.77 2.83 91 78 302 2 0.59 0.77 2.83 91 78 306 2 0.59 0.77 2.83 91 78 303 3 0.55 0,74 2.64 91 78 300 3 0.55 0.74 2.64 91 78 300 4 0.50 0.71 2.40 91 78 295 4 0.60 0,71 2.40 91 78 293 AVERAGE. 0.46 0.68 2.21 88.9 76.8 295.0 y NEW 3AS-021420-RT-1 303 Appendix A-Page 62 of 135 Input Data Facility/Site: Wheelabrator 1 North Andover Date: 10/26/22 Source: Unit No. 1 FF Outlet Start Time: 7:36 Run No.: U1-M23-Run 3 Stop Time: 11:40 Travorao Delta P Square Rout Dolls H Dry Oar Molar Temps. Stack Stack Diameter("): 0.0 Paint ("H20) nails P ("H20) Inlet(F) Outlat(F] Temp.(F) Stack Area(ft2) 65.44 Nozzle Diameter("): 0.310 Al 0.44 0.66 2.11 61 61 295 Pltot Coefficient: 0.84 1 0.44 0,66 2.11 64 62 296 2 0.45 0.67 2.16 67 64 296 Initial Imolnaer Volume[Wei ihts. 2 0.45 0.67 2.16 69 64 295 Impinger 4 (ml) 380.6 3 0.40 0,63 1.92 71 63 295 Impinger 2(ml) 705.3 3 0.40 0.63 1.92 72 63 295 Impinger 3(ml) 676.3 4 0.35 0.59 1.68 74 65 290 Impinger 4(ml) 610.8 4 0.35 R59 1.68 75 65 288 Impinger 6(ml) 884.1 B1 0.45 0.67 2.16 76 65 294 Impinger 6(ml) 1 0.46 0.67 2.16 77 66 295 Trap(g) 323.6 2 0.45 0.67 2.16 80 68 299 2 0.45 0.67 2,16 81 68 300 Final Im in r VolumelWei hts: 3 0.40 0.63 1,92 82 69 295 Impinger 1 (ml) 1055.8 3 0.40 0.63 1.92 82 69 290 Impinger 2(ml) 899.9 4 0.33 0.57 1.58 83 69 285 Impinger 3(ml) 759.9 4 0.33. 0.57 1,58 83 70 280 Impinger 4(ml) 612.9 C1 0,60 0.71 2.40 82 70 300 Impinger 6(ml) 934.8 1 0.50 0,71 2.40 83 70 300 Impinger 6(ml) - 2 0.45 0.67 2.16 84 71 301 Trap(g) 342.0 2 0.45 0,67 2.16 85 71 301 3 0,42 0.65 2.02 85 72 298 %Or (Outlet): 11.0 3 0,42 0.65 2.02 86 72 296 4 0.40 0.63 1.92 86 72 290 %CO2(Outlet): 8.7 4 0.40 0.63 1.92 86 72 290 101 0.42 0.65 2.02 82 73 299 %CO (Outlet) 1 0.42 0.65 2.02 82 73 299 2 0.42 0.65 2.02 83 73 299 Bar.Pressure("Hg): 29.92 2 0.42 0.65 2.02 85 73 299 3 0.45 0.67 2.16 86 73 297 Static Pressure("H20): -10.0 3 0.46 0.67 2.16 86 74 297 4 0.46 0.68 2.21 86 74 300 No.of Traverse Points: 24 4 0.46 0.68 2.21 86 74 300 E1 0.50 0.71 2.40 86 75 302 Run Duration(minutes): 240 1 0.50 0.71 2.40 86 75 302 2 0.50 0.71 2.40 87 74 301 Meter Vol.Final(dcf): F 1-057.668 2 0.60 0.71 2.40 87 74 300 Leak Check Volume(dcf): 0.170 3 0.48 0.69 2.30 87 75 301 Meter Vol.Initial(dcf): 868.100 3 0.48 0,69 2.30 87 75 301 4 0.48 0.69 2.30 88 74 296 4 0.48 0.69 2.30 88 74 295 F1 0.50 0.71 1.00 88 75 299 1 0.50 0.71 1.00 88 75 300 2 0.62 0.72 2.50 88 75 300 2 0.52 0.72 2.50 88 75 300 3 0.50 0,71 2.40 88 75 300 3 0.50 0.71 2.40 88 75 300 4 0.46 0.67 2.16 89 76 301 4 0.45 0.67 2.16 89 76 293 AVERAGE: 0.46 0.67 2.09 82.3 71.0 296.8 NE013AS-021420-RT-1303 Appendix A- Page 63 of 135 Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test gates: October 18-19,2022&October 25-28,2022 r A6 Unit No. 1 Outlet Condensable Particulate rv�;rM O�v,rzk KYWI NE01 3AS-021420-RT-1 303 Appendix A-Page 64 of 135 1 Particulate Emission Calculations - Method 202 FacilitylSite: Wheelabrator I North Andover Date: 10/27/22 Source: Unit No, 1 FF Outlet Start Time: 9:26 Run No.: U1-M202-Run 1 Sta Time: 11:35 02 — 11.60 %vd M„(mg) Organic - 0.70 CO2 — 8.00 %vd M„(mg) Inorganic= 19.07 VS — 47.63 ft/sec A, (mg) - 2.0 As — 65.44 ft2 V,,,std= 91.717 dscf V,,,std= 2.60 dscm W (mg) = 17.8 F-factor(Fc) = 1820 Qs = 3600(1-Bj(Vs)(A)(Ts1d Ps/Pstd Ts(abs) = 6,078,629 dscfh mg/dscm Q7%02 =mg1dscm"13.9/(20.9-%02) = 10.23 mg/dscm t@7%02 Cs = (2.205 E-6)(M„)/(Vmstd) = 4.27E-07 Ib/dscf Cs' — 0.0164 (Mn)/(VmStd) — 0.0030 gr/dscf Cs'@ 7%02 = 0.0164 Mn/VmStd — 0.0045 gr/dscf Q7°/%02 E — Cs x F Qs x Cs = 2.60 Ib1hr E — Cs x F FACTOR(Fc)x (100!CO2) = 0.0097 Ib/MMBtu 1 NE013AS-021420-RT-1303 Appendix A- Page 65 of 135 i Particulate Emission Calculations - Method 202 Facility/Site: Wheelabrator I North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 12:60 Run No.: U1-M202-Run 2 Stop Time: 16:13 Oz = 11.10 %vd Mn(mg)Organic = 0.36 CO2 = 8.60 %vd Mn(mg) Inorganic= 14.29 V. - 47.15 ft/sec Ar (mg) = 2.0 As - 65.44 ftz V,std = 92.142 dscf V.std= 2.61 dscm Mn m = 12.6 F-factor Fc = 1820 Q$ - 3600(1-13m)(W(A)(Tald RPM T.(abs) - 6,079,360 dscfh mgldscm @7%0= =mgldscm*13.9/(20.9-%02) - 6.87 mgldscm @7%02 C. - (2.205 E-6) (Mn)/(Vmstd) - 3.02E-07 Ib/dscf Cs' - 0.0154 (Mn)/(VmStd) - 0.0021 grldscf Cs'@ 7% 02 = 0.0154 Mn 1 VmStd = 0.0030 grldscf @7%02 E - Cs x F Q. x Q, - 1.84 Ib/hr E - Cs x F FACTOR(Fc)x (1001 CO2) - 0.0064 Ib/MMBtu NE013AS-021420-RT-1303 Appendix A- Page 66 of 135 Particulate Emission Calculations - Method 202 Facility/Site: Wheelabrator 1 North Andover pate: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:60 Run No.: U1-M202-Run 3 Stop Time: 18:02 OZ - 11.10 %vd Mn(mg) Organic W 0.23 CO2 = 8.60 %vd Mn (mg) Inorganic: 11.89 V. = 47.25 ft/sec Ar (mg) = 2.0 As = 65.44 ft' V,,,std= 89.866 dscf Vn,std = 2.54 dscm Mn m = 10.1 F-factor f=c 1820 Qe -» 3600 (I-B,,)(Ve)(A)(TMd PI/Pgid T,(abs) - 6,049,422 dscfh mgldscm @7°/%02 = mgldscm*13.9/(20.9%02) - 5.64 mg/dscm @7%02 C, _ (2.205 E-6) (M„)1(V,,,std) - 2.48E-07 lbldscf Cs' - 0.0154(Mn)/(VmStd) - 0.0017 grldscf Cs'@ 7%02 = 0.0154 Mn I VmStd - 0.0025 grldscf @7%02 E - Cs x F Qe x C,, = 1.50 Iblhr E - Cs x F FACTOR(Fc)x (100/CO2) - 0.0053 Ib/MMBtu z NE013AS-021420-RT-1303 Appendix A-Page 67 of 135 Non-Isokinetic Calculations Facility/Site: Wheelabrator/North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-M202-Run 1 Stop Time: 11:35 T.(OF) = 293.1 02(%vd) = 11.60 V. (dco = 91.074 T.(OR) = 753.1 COx(%vd) = 8.00' AH (Abs)("Hg) = 30.03 Tm(OF) = 78.9 CO(%vd) = 0 P,,("Hg) = 29.13 Told(°R) = 538.9 N2(%vd) = 80.40 SQRT❑ P » 0.6818 Vi(Total gain) = 506.9 Cp = 0.84 Y = 1.024 Vi(adj,for sat.) = NA Run Time(min.) = 120 An(ft) = NIA Vm std — (Tstd)(V jY)(o H Abs) — 91.717 dscf (P,(d)(Tm) V,,,std - dscf/35.314667 = 2.60 dscm Vw std = 0.04706(VI Total gain) - 23,855 scf B" = Vw(M) / Vm(.1d)+VW(etd) - 0.206 Bm = by steam tables = NA 1 -B,a = 1 -B,, - 0.794 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%Nz+%CO) - 29.744 lb/lb-mole M. = Md(1-B,,,e)+ 18(Bw.) - 27.320 lb/lb-mole G = SORT(Ts(abs)/Ps Ms) - 0.973 V. = 86.49(Cp)(G) (SQRTa P) = 47,634 fps Q� = 3600(1-B,,,78)(V.)(A)(TStd Ps/PBtd TB(abs)) = 6,078,629 dscfh = 3600(Vs) (As) = 11,222,561 acfh = acfh!60 - 187,043 acfm NB013AS-021420-RT-1303 Appendix A- Page 68 of 135 i Nan-Isokinetic Calculations FacilitylSite: Wheelabrator 1 North Andover pate: 10127/22 Source: Unit No. 1 FF Outlet Start Time: 12:50 Run No.: U1-M202-Run 2 Stop Time: 15;13 Ts(OF) = 291.2 02(%vd) W 11.10 V.(dcf) = 90.813 Ts(OR) : 761.2 CO2(%vd) = 8.60 AH (Abs) ("Hg) = 30.03 T.(OF) = 74.9 CO(%vd) = 0 Ps("Hg) = 29.13 Tstd (OR) = 534.9 N2(%vd) = 80.30 SQRT A P = 0.6774 V,(Total gain) = 490.0 CP = 0.84 Y = 1.024 V,(ad].for sat.) = NA Run Time(min.) = 120 An(ft) = NIA V,,,std = (T.1d)(V.)(Y)(Q H Abs) - 92.142 dscf (Pstd)(T.) V,,,std = dscf 135.314667 - 2.61 dscm Vw std = 0.04706 (V,Total gain) - 23.059 sef Bws = Vw(atd) I Vm(std) +VW(std) - 0.200 B,,s = by steam tables = NA 1 -B" = 1 -B„, - 0.800 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) -- 29.820 Ibllb-mole Ms = Md(1-B,,,,$) + 18(B.) - 27.454 lb/lb-mole G = SQRT(Ts(abs)IPs Ms) - 0.969 VS = 85.49(Cp) (G) (SQRTO P) -- 47.145 fps Q$ = 3600(1-B„,)(V,)(A)(Txtd PslPetd TS(abs)) = 6,079,360 dscfh = 3600(Vs) (As) = 11,107,394 acfh = acfh/60 - 185,123 acfm NEW 3AS-021420-RT-1 303 Appendix A- Page 69 of 135 Y Non-Isokinetic Calculations Facility/Site: Wheelabrator/North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:50 Run No.: U1-M202-Run 3 Stop Time: 18.02 T.(OF) 293.0 02(%vd) = 11.10 Vm (dcf) = 88.398 Tr,(OR) = 763.0 CO2(%Vd) = 8.60 AH (Abs) ("Hg) = 30.03 T.(OF) = 73.9 CO(%Vd) = 0 Pa("Hg) = 29.13 Tatd('R) = 533.9 N2(%vd) = 80.30 SQRT A P = 0.6776 V, (Total gain) = 488.9 CP = 0.84 Y = 1.024 V, (adj.for sat.) = NA Run Time(min.) = 120 A„{ft2) = NIA Vm std — (Tstd)(Vm)(Y)(A H Abs) = 89.856 dscf (Pstd)(Tm) Vm sid = dscf/35.314667 = 2.64 dscm Vw std = 0.04706(V,Total gain) - 23.008 scf �wa Vw(std) I VM(aid)+VW(aid) = 0.204 B" = by steam tables - NA 1 -BWE = 1 -B. -- 0.796 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) = 29.820 Ibllb-mole Ms = Md{1-B1Te) + 18(B111) = 27.410 lb/lb-mole G = SQRT (Ts(abs)/Ps Ms) -- 0.971 Vs = 86.49(Cp) (G) (SQRTA P) - 47.248 fps Q. = 3600(I-Bws)(Vs)(A)(Tstd PslPatd Ts(abs)) = 6,049,422 dscfh = 3600(Vs) (As) = 11,131,601 acfh = acfh/60 185,627 acfm a NE01 3AS-021420-RT-1 303 Appendix A-Page 70 of 135 I Input Data Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 9:25 Run No.: U1-M202-Run 1 Stop Time: 11:35 Traverse Delta P Square Root Delta H Dry ans meter Temps. Black Stack Diameter NIA Palnl ("H20) [fella P ("lt,o) Inlet(F) outlet(F) Temp.(F) Stack Area(fe) 65.4 Nozzte Diameter("): We Al 0.60 0.77 1.80 69 68 300 Pitot Coefficient; 0.84 1 0.60 0.77 1.80 69 68 298 1 0.52 0.72 1.80 71 68 298 Initial Impinger Volume/Wel fits: 1 0.46 0.68 1.80 75 69 293 Impinger 1 (milg) 382.7 1 0.55 0.74 1.80 77 69 301 impinger 2(mllg) 608.4 1 0.50 0.71 1.80 79 70 302 Impinger 3(milg) 702.2 1 0.48 0.69 1.80 81 71 302 Impinger 4(mlig) 866.1 1 0.52 0.72 1.80 83 71 292 Impinger 6(milg) - 1 0.43 0.66 1.80 84 72 297 Impinger 6(milg) - 1 0.45 0.67 1.00 85 73 302 impinger 7(mllg) - 1 0.46 0.68 1.80 86 74 301 1 0.50 0.71 1.80 87 75 294 Final lmu Inner VolumelWeI hts: 1 0.53 0.73 1.80 83 76 298 Impinger 1 (mllg) 832.5 1 0.49 0.70 1.80 85 76 300 Impinger 2(mllg) 620.0 1 0.43 0.66 . 1.80 87 77 291 Impinger 3(milg) 722.7 1 0.46 0.68 1.80 89 78 280 Impinger 4(mllg) 891.1 1 0.46 0.68 1.80 89 78 290 Impinger 6(mllg) 1 0.42 0.65 1.80 89 78 295 Impinger 6(milg) - 1 0.38 0.62 1.80 89 79 281 Impinger 7(milg) - 1 0.39 0.62 1.80 89 79 280 1 0.35 0.59 1.80 89 79 284 %OZ (Outlet); 11.6 1 0.38 0.62 1.80 89 79 286 1 0.42 0.65 1.80 89 79 284 %CO2(Outlet): 8.0 1 0.43 0.66 1.80 89 79 286 %CO (Outlet): Bar.Pressure("Hg): 29,90 Static Pressure("H20): -10.5 No.of Traverse Points: Run Duration(minutes): 120 MeterVOl.Final(dcf): 149.103 Leak Check Volume(dcf): 0.000 Meter Vol,Initial(dcf): 58,029 K-Factor N!A AVERAGE: 1 0.47 0.68 1.80 83.4 74.4 293.1 NE013AS-021420-RT-1303 Appendix A-Page 71 of 135 Iu uut Data Facility/Site: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 12:50 Run No.: Ul-M202-Run 2 Stop Time: 15:13 Traverse Dolle P Square Root Delta H Dry Gas Meter Temps. Stack Stack Diameter("): NIA P°Int C%0) D"Ile P ("HxOy Inlet 4Fl Outlet tFy Temp.(F) Stack Area(fe) 66A Nozzle Diameter("): n/a Al 0.46 0.68 1.80 71 69 291 Pitot Coefficient: 0.84 1 0.37 0.61 1.80 74 69 288 1 0A0 0.63 1.80 77 69 284 Initial Impinger VolumeMei ihts: 1 0.51 0.71 1.80 78 69 282 Impinger 1 (mllg) 361A 1 0.47 0.69 1.80 80 70 291 Impinger 2(mllg) 583.4 1 0.47 0.69 1.80 81 70 299 Impinger 3(mllg) 681.9 1 0.44 0.66 1.80 82 70 295 Impinger 4(mllg) 823.5 1 0.40 0.63 1.80 82 71 279 Impinger 5(mllg) - 1 0.49 0.70 1.80 82 71 281 Impinger 6(mllg) - 1 0.46 0.68 1.80 82 71 294 Impinger 7(mllg) - 1 0.42 0.65 1.80 82 71 293 1 0.39 0.62 1.80 82 71 282 Final Imp InnerVolumelW_ei hts: 1 0.57 0.75 1.80 73 70 300 Impinger 1 (mllg) 769A 1 0.50 0.71 1.80 73 70 300 Impinger 2(mllg) 603.2 1 0.49 0.70 1.80 74 59 289 Impinger 3(mllg) 717.1 1 0.48 0.69 1.80 77 70 287 Impinger 4(mlig) 060.5 1 0.48 0.69 1.80 79 70 289 Impinger 6(mllg) - 1 0.47 0.69 1.80 80 70 290 Impinger 6(mllg) - 1 0.47 0.09 1.80 80 70 297 Impinger 7(mllg) - 1 0.62 0.72 1.80 82 71 301 1 0.41 0.64 1.80 84 71 298 02 (Outlet): 11.1 1 0.42 0.65 1.80 83 71 299 1 0,45 0.67 1.80 85 72 296 %CO2(Outlet): 8,6 1 0.50 0.71 1.80 84 72 283 %CO (Outlet) Bar.Pressure("Hg): 29.90 Static Pressure("H2O): -10,5 No.of Traverse Points: Run Duration(minutes): 120 Meter Vol.Final(dcf): 243.256 Leak Check Volume(dcf): 0.000 Meter Vol.initial(dcf): 152,442 K-Factor N1A AVERAGEt 0.46 0.60 1.80 79.5 70.3 291.2 NE013AS-021420-RT-1303 Appendix A-Page 72 of 135 Input Data FacllltylSite: Wheelabrator 1 North Andover Date: 10/27/22 Source: Unit No. 1 FF Outlet Start Time: 15:50 Run No.. U1-M202-Run 3 Stop Time: 18:02 Trevarea Delta P Squara Root Delta H Dry Gas Meter Temps. Stack Stack Diameter CT NIA Palnt t"H20) Delta P ("H20) inlet(F) oettet(F) Temp.(P) Stack Area(fe) 65.4 Nozzle Diameter("): nla Al 0.43 0.66 1.80 71 70 300 Pitot Coefficient: 0.84 1 0.43 0.66 1.80 71 69 300 1 0.44 0.66 1.80 73 68 297 Initial Impinger VolumeMel ihts: 1 0.43 0.66 1.80 74 68 298 Impinger 1 (mllg) 384.8 1 0.54 0.73 1.80 76 68 296 Impinger 2(mllg) 611.5 1 0.50 0.71 1.80 78 69 302 Impinger 3(mllg) 704A 1 0.40 0.63 1.80 79 69 299 Impinger 4(mllg) 819.0 1 0.46 0.68 1.80 79 69 284 Impinger 5(milg) - 1 0.60 0.77 1.80 80 70 294 Impinger 6(mllg) - 1 0.60 0.77 1.80 80 70 300 Impinger 7(mllg) - 1 0.55 0.74 1.80 81 70 301 1 0.62 0.72 1.80 81 70 295 Final ImgInner Voluma Wel hts: 1 0.49 0.70 1.80 74 70 298 Impinger 1 (mllg) 795.6 1 0.46 0.68 1.80 75 70 300 Impinger 2(mllg) 636.0 1 0.41 0.64 1.80 77 70 297 Impinger 3(mllg) 734A 1 0.41 0,64 1.80 78 69 283 Impinger 4(mt1g) 842.6 1 0.46 0.67 1.80 79 70 299 Impinger 5(mllg) - 1 0.43 0.66 1.80 80 70 296 fmpinger 6(mllg) - 1 0.37 0.61 1.80 80 70 281 Impinger 7(mllg) - 1 OA4 0.66 1.80 81 70 276 1 OA4 0.66 1.80 82 70 287 %02 (Outlet): 11.1 1 0A0 0.63 1.80 82 71 286 1 0.42 0.65 1.80 82 71 286 %CO2(Outlet): 8.6 1 0.44 0.66 1.80 82 71 280 %CO (Outlet) Bar.Pressure("Hg): 29.90 Static Pressure("1-11x0): No.of Traverse Points: 0 Run Duration(minutes); 120 Meter Vol.Final(def): 224fl Leak Check Volume(dcf): Meter Vol.Initial(dcf): K-Factor NIA AVERAGE: 0.46 0.68 1.80 78.1 69.7 293.0 NE01 3AS-021420-RT-1 303 Appendix A-Page 73 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test Dates: October 1849,2022&October 25-28, 2022 A7 Unit No. 2 Inlet Hydrogen Chloride Alt! QtIATIIV S(IlVII,l NE013AS-021420-RT-1303 Appendix A-Page 74 of 135 HCL Emission Calculations Facility/Site: Wheelabrator!North Andover Date: 10/18122 Source: Unit No.2 5DA Inlet Start Time: 9:40 Rurt No.: U2-5DA In-MMA-Run 1 Stop Time: 10:40 Laboratory Results: 02 = 9.80 %vd HCL(µg)= 321,223 CO2 = 9.60 %vd HCL(mg),M„= 321.2 As - 60.13 f V,std= 1.32 dscm MW of HCL(gfmol): 36.46 V,,,std= 46.638 dscf ppmvd = (Ibldscf)1(MW of HCU3.856E08) — 160.96 ppmvd ppmvd @7%02 = ppmvd(13.9/(20.9-%02)) — 201.67 ppmvd@7%02 mgldscm = mg 1 dscm — 243.75 mgldscm NE01 3AS-021420-RT-1 303 Appendix A- Page 75 of 135 1 HCL Emission Calculations Faci ft/sIte: Wheelahrator 1 Norlh Andover Date: 10/18/22 Source: Unit No.2 SDA Inlet Start Time: 12:38 Rutz No.: U2-SDA In-M26A-Run 2 Stop Time: 13.38 Laboratory Results: 02 - 9.70 %vd HCL(µg)= 828,949 CO2 = 9.70 %vd HCL(mg), M„= 828.9 As - 60.13 f V,std= 1.24 dscm MW of HCL(glmol): 36.46 V,,,std= 43.709 dscf ppmvd = (lbidscf)1(MW of HCL13.856E08) - 442.27 ppmvd ppmvd @7%02 = ppmvd (13.9/(20.9-%02)) - 548.88 ppmvd@7%02 mg/dscm = mg!dscm - 669.75 mg/dscm NE013AS-021420-RT-1303 Appendix A-Page 76 of 135 HCL Emission Calculations FacII41Slte: Wheelabrator I North Andover Date: 10/19/22 Source: Unit No.2 SDA Inlet Start Time: 7:50 Run No.: U2-SDA In-M26A-Run 3 Stop Time: 8:60 Laboratory Results: 02 - 9.80 %vd HCL(µg)= 753,347 CO2 - 9.60 %vd HCL(mg), M„= 753.3 As = 60.13 if V,,,std= 1.32 dscm MW of HCL(glmol): 36.46 V,,,std= 46.735 dscf ppmvd = (Ibldscf)1(MW of HCL13.856E08) = 375.91 ppmvd ppmvd @7%02 = ppmvd(13.9/(20.9-%02)) = 470.73 ppmvd@7%02 mgldscm mg 1 dscm 569.26 mg/dscm a NE01 3AS-021420-RT-1 303 Appendix A- Page 77 of 135 Nan-Xsokinetic Calculations Facility/Site: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No. 2 SDA Inlet Start Time: 9:40 Run No.: U2-SDA In-M26A-Run 1 Stop Time. 10:40 T.(OF) = 452.7 02(%Vd) = 9.8 Vm(dcf) = 47.237 T.(OR) = 912.7 CO2(%vd) = 9.6 AH (Abs)("Hg) = 29.64 T.(OF) = 80.0 CO(%vd) = 0 Ps("Hg) = 29.43 Tr„(OR) = 540.0 N2(%vd) = 80.6 SQRT A P = Vi(Total gain) = 98.1 Cp = 0.84 Y = 1.017 Vi(adj.for sat.) = NA Run Time(min.) = 60 An(ft) -- VR,std = (T.1d)(V.)(Y)(A H Abs) - 46.538 dscf (Pstd)(Tm) Vy,std = 0.04706(VI Total gain) = 4.617 scf = VW(std) / Vm(std)+Vw(sld) - 0.090 1 -Bm = 1 - Bwa - 0.910 Md = 0.440 (%CO2) 0.320 M02) 0.280 (%N2+%CO) - 29.928 lb/lb-mole Mg = Md(1-13.)+ 18(p,,f18) - 28.862 Ibllb-mole G = SQRT(Ts(abs)/Ps Ms) = 1.037 NE01 3AS-021420-RT-1 303 Appendix A-Page 78 of 135 f Von-Isokinetic Calculations Facility/Site: Wheelabrator/North Andover pate, 10/18/22 Source: Unit No.2 SDA Inlet Start Time: 12:38 Run No.: U2-SDA In-M26A-Run 2 Stop Time: 13:38 T.(°F) = 464.8 02(%vd) = 9.7 Vm(dcf) = 44.410 T.(°R) = 914.8 CO2(%vd) = 9.7 ©H (Abs) ("Hg) =29.64 Tm(°F) = 80.5 CO(%vd) = 0 P.("Hg) = 29.43 Tm(°R) = 540.5 N2(%vd) = 80.6 SQRT 0 P = Vi(Total gain) = 219.0 Cp = 0.84 Y = 1.017 Vi (adj.for sat.) = NA Run Time(min.) = 60 A.(Y) Vm std — (Tgld)(Vm)(Y)(n H Abs) — 43.709 dscf (Pstd)(Tm) Vw aid = 0.04706 (VI Total gain) = 10.306 scf B" = Vw(W) 1 Vm(W)+VW(sfd) = 0.191 1 -B„ = 0.809 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2 %CO) = 29.940 Ibllb-mole Ma = Md(1-Bw.)+ 18 (B.) -- 27.662 Iblib-mole G = SQRT(Ts(abs)/Ps Ms) — 1.060 NE013AS-021420-RT-1303 Appendix A-Page 79 of 136 1' Non-Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/19/22 Source: Unit No.2 SDA Inlet Start Time: 7:60 Run No.: U2-SDA In-M26A-Run 3 Stop Time: 8:50 T.(OF) = 451.8 02(%vd) = 9.8 V, (dcf) = 46.375 T$(°R) = 911.8 CO2(%vd) = 9.6 AH (Abs)("Hg) = 29.77 Tm(°F) = 58.8 CO(%vd) = 0 Ps("Hg) = 29.66 Tm(OR) = 518.8 N2(%vd) = 80.6 SQRT A P - Vi(Total gain) = 190.3 Cp = 0.84 Y = 1.017 IV,(adj.for sat.) = NA lRun Time(min.) = 60 JAn(ft) - V,,,std - (T$,d)(Vm)(Y)(A H Abs) - 46.735 dscf (P.1d)(T.) Vw std = 0.04706 (VI Total gain) = 8.956 sof Bws = Vw(sid) I Vm(std)+VW(4d) = 0.161 1 -B„s = 1 -B" _ 0.839 Md = 0.440 MCO2) 0.320 MOO 0.280 (%N2+%GO) - 29,928 Iblib-mole MB = Md(1-B.)+ 18(B.) - 28.010 lb/lb-mole G = SORT(Ts(abs)IPs Ms) -- 1.049 NE01 3AS-021420-RT-1 303 Appendix A- Page 80 of 135 Inimt Data FacilltylSite: Wheelabrator I North Andover Date: 10/18/22 Source, Unit No.2 SDA Inlet Start Time: 9;40 Run No.: U2-SDA In-M26A-Run 1 Stop Time: 10;40 Traverse Delta P Square Root Delta H Dry Gas Mater Temps. Stack Stack Diameter("): 105.0 Point ("Ha0) Delta P ("Hzo) Inret(F) Outlet(F) Temp.(F) Stack Area(fe) 60.1 Nozzle Diameter("): 1 1.95 70 71 452 Pltot Coefficient: 0.84 1.95 76 72 452 1.95 81 76 454 Initial I yin er Volume[Welt hts: 1.95 81 76 454 Impinger 1 (ml) 644.9 1.95 83 78 457 Impinger 2(ml) 687.7 1.95 84 78 454 Impinger 3(ml) 696.7 1.95 85 79 452 Impinger 4(ml) 615.7 1.95 85 79 450 Impinger 5(ml) 816.1 1.95 86 79 456 Impinger 6(ml) 1.95 86 80 450 Impinger 7(g) 1.95 87 81 451 1.95 86 81 450 Final I 1n er VolumelWel hts: Impinger 1 (ml) 711.4 Impinger 2(ml) 696.5 Impinger 3(ml) 699.5 Impinger 4(ml) 623.1 Impinger 5(ml) 828.7 Impinger 6(ml) Impinger 7(g) %Ox (Inlet): 9,8 ale CO2(Inlet): 9.B *CO (Inlet) : 0 Aar.Pressure("Hg): 29,50 Static Pressure("HxO): -1.Q No.of Traverse Points: Run Duration(minutes): 60 Meter Vol.Final(dcf): 903.237 Leak Check Volume(dcf): Meter Vol.Initial(dcf): 856.QQQ Start Time: 9;40 End Time: 10;40 AVERAGE: 1.96 82.6 77.5 02.7 NE01 3AS-021420-RT-1 303 Appendix A-Page 81 of 135 TnIAu#Data Facility/Site: Wheelabrator I North Andover Date: 10/18/22 Source: Unit No.2 SDA Inlet Start Time: 12:38 Run No.: U2-SDA In-M26A-Run 2 Stop Time: 13:38 Tray me Delta P Square hoot Volta H D7 Gee MotorTampe, Slack Stack Diameter("): 105.0 Point V Hiol Delta P ("Hao) Inlet(F) outlet(P) Temp,(P) Stack Area(fe) 60.1 Nozzle Diameter("): 1 1.95 75 75 454 Pilot Coefficient: 0.84 1.95 78 76 456 1.95 80 77 459 Initial Imoinoer Volume/Wei hts: 1.95 81 78 458 Impinger 1 (ml) 660.4 1.95 83 79 455 Impinger 2(ml) 693.8 1.95 84 79 455 Impinger 3(ml) 693.2 1.96 85 79 452 Impinger 4(ml) 615.5 1.95 85 79 454 Impinger 5(ml) 810.8 1,95 85 79 464 Impinger 6(ml) 1.95 85 79 452 Impinger 7(g) 1.95 86 80 452 1.95 86 80 457 Final Im in er VotumeWei to: Impinger 1 (ml) 765.2 Impinger 2(ml) 772,4 Impinger 3(ml) 718.7 Impinger 4(ml) 622.2 Impinger 5(ml) 824.2 Impinger 6(ml) Impinger 7(g) %02 (inlet): 9.7 %CO2(Inlet): 9.7 %CO (inlet): Bar.Pressure("Hg): 29,50 Static Pressure("H20): -1A No.of Traverse Points: 0 Run Duration(minutes): 60 Meter Vol.Final(dcf): 948.410 Leak Check Volume(dcf): Meter Vol.Initial(dcf): Mid Start Time: 12:38 End Time: 13:38 AVERAGE: 1.95 82.8 78.3 454.8 5 NE013AS-021420-RT-1303 Appendix A-Page 82 of 135 Input Data FaciiltylSlte: Wheelabrator 1 Forth Andover Date: 10/19/22 Source: Unit No.2 SDA Inlet Start Time: 7:50 Run No.: U2-SDA In-M26A-Run 3 Stop Time: 8:50 Traverse Dolte P Square Root Delta H Dry Etna Meter Temps. Stack Stack Diameter{"): 105.0 Polot ("H20) Delta P ("H20) Inlot IF) Outlet(F) Temp.(F) Stack Area(fe) : 60.1 Nozzle Diameter("): 1 1.95 50 49 451 Pilot Coefficient: 0,84 1.95 51 49 460 1.95 55 53 460 Initial Imeftner Volume/We[o hts: 1.95 59 55 460 Impinger 1 (ml) 646.4 1.95 61 56 451 Impinger 2(ml) 701.0 1.95 64 57 451 Impinger 3(ml) '694A 1.95 66 58 453 Impinger4(mi) 619.2 1.95 67 58 453 Impinger 5(mi) 873.0 1.95 67 58 453 Impinger 6(m1) 1.95 68 58 455 Impinger 7(g) 1.95 68 58 452 1.95 68 56 453 Final Im in er ValumeWei hts: Impinger 1 (ml) 716.1 Impinger 2(ml) 781.0 Impinger 3(ml) 716,0 Impinger 4(ml) 625.3 Impinger 5(ml) 885.9 Impinger 6(ml) Impinger 7(g) %Oy (Inlet): 9,8 %CO2(Inlet): 9.6 %CO (Inlet) Bar,Pressure("Hg): 29.63 Static Pressure("H10): No,of Traverse Points: 01 Run Duration(minutes): 60 Meter Vol.Final(dcf): 995.875 Leak Check Volume(dcf): 0.000 Meter Vol.Initial(dcf): 950.600 Start Time: 7:50 End Time: 8;50 AVERAGE: 1 1.95 62.0 65.6 451.8 NE013AS-021420-RT-1303 Appendix A-Page 83 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test hates: October 18-19,2022&October 25-28,2022 r AS Unit No. 2 Inlet Mercury MONTROSE NEW 3AS-021420-RT-1303 Appendix A-Page 84 of 135 Mercury Emission Calculations Facilltylslte: Wheelabrator I North Andover Date: 10118122 Source: Unit No.2 SDA Inlet Start Time: 9140 Run No.: U2-SDA IN-M29-Run 1 Stop Time: 11:63 Total Reagent Stank Concentratlon(C8]_.__� Emission--Rate Hg' BEank2 Cor.Totat {ugldscm IhIMMBtu Anal a (ug) (ug) (ug} (Ibldsct) {ugldscm) @7%02) (F°) (1blhr) Mercury 3 0,000 42.6 1.148E-09 18.39 21.84 2.069E-06 6,438E-03 Run Data Vm(dsco - 81.82 Q, (dscth) = 4,738,640 Welghted Fuel Factor(F°) 1,820 OZ{%) = 9.20 CO2(° ) = 10.10 l° uatlona Qs (dscfh) = 3600(1-13w°)(Q(Q(17,64)(Ps)/(T6) G. (Ibldscf) = (ug*0.4538E09)1 Vm 5td 08 (ug/dscm @7%02) = ug1dscm*13.91(20.9-1YoQO E (lb1MMBtu)-using Fe - (C.,lbldscl)(F,)(100/002,%) E (lblhr) o(CR,tb/dsct)(Q■,d8cfh) Conversions to obtain dacm; multiply dsct by 0.02832 to obtain u : multiply lb by 0.4636E09 to obtain mg: divide ug by 1000 to obtain Ib: multiply U9 by 2,205E-0 NEW 3AS-021420-RT-1 303 Appendix A-Page 85 of 135 f _ a j` Mercury Emission Calculations FacllitylStte: Whealabrator 1 North Andover Date: 10118122 Source: Unit No.2 SDA Inlet Start Time: 12:38 Run No., U2-SDA IN-M29-Run 2 Stop Time: 16:60 Total Reagent Blank Concentration,(Cs)_____ __Emission Rate,�E). __ HU Blank' Car.Total ���^� (ugldscm Ib1MMBtu Anal a (ug) (ug) (ug) (ibldsct) (ugldscm) @7%02) (Fa) (Ib1hr) Mercury 63 0.000 1 63.0 1 1.695 -08 I 27. 4 1 31.17 2.937E-05 I 7.084E-03 Run Data m(dsof) = 81.98 Q, (dscfh) = 4,711,673 Fuel Factor(F.) 1,820 02(%) — 8.80 CO2(%) 10.50 Equations Q. (dsofh) = 3600(1-Bwo)(Vs)(Aa)(17.64)(P,)l(Ta) C, (lbldsct) : (ug`0.4536E09)/Vm Std C, (ugldscm @7%02) = ugldscm`13.91(20.9-%Q2) E (Ib1MM13tu)-using F. = (C„Ibldsct)(Fe)(1001CO2.°A) E (lblhr) _ (Cmibldscf)(Q„dscfh) Conversions to obtain dscm: ___Imuitlply dsof by 0.02832 to obtain u : multiply lb by 0.4536E09 to obtain mg: divide ug by 1000 to obtain IN. multi I u is 2.205E-091 NEW 3AS-021420-RT-1 303 Appendix A-Page 86 of 135 3 Mercury Emission Calculations FacllltylSlte: Wheelabralor!North Andover Date; 10119/22 Source: Unit No.2 SDA Inlet Start Time: 7:60 Run No.: U2-SDA IN-M29-Run 3 Stop Time: 10:00 Total Reagent Blank Concentration ems)_ _ _ Em ss on Rate1E�_, Mg' Blank` Cor.Total (ugldscm i6MMfl81u -^- Anat a Ng) (ag) (ug) (Ibldsct) (ugldscm) �7°/af�2) (Fe) (1b1hr) Mercury 48.1 1 0.000 1 48.1 1 1.264E-09 1 20.08 1 24.70 2.329E-06 6.896E-03 Run Data Vm(dscf) 84.58 Qs (dscfh) = 4,702,444 Fuel Factor(Fo) 1,820 02 M 9.60 CO2 N = 9.80 Equations Q. (dscfh) - 3000(1-Bwo)(Vs)(As)(17.64)(Pe)!(Ts) Cs (lbldsco - (ug*0.4636E09)!Vm Std C, (ugldscm Q7%02) = ugldscm'13.9!(20.9%02) E (lblMM6tu)-using F. - (C„lbldsct)(Fr)(100ICO2,%) —j E (lblhr) = (Cs,IbldscO(Qs,dscth) Conversions to obtaln dscm: Imulti I dscf by 0.02832 to obtain u : multiply multlply lb by 0.4536E09 to obtain mg: IdIvIde ug by 1000 to obtain tb: I multiply multIply ug by 2.20SE-091 NE013AS-021420-RT-1303 Appendix A-Page 87 of 135 Mercury Emission Calculations Facility/S1te: Wheelabrator l North Andover Gate: 10119/22 Source: Unit No.2 SDA Inlet Start Time: 10:22 Run No.: U2-SDA IN-M29-Run 4 Stop Time: 12:27 Total Reagent Blank I ���Concentration(Cs) Emission Rate_(E)__ Fig' Blank2 Cor.Total — (ugldscm Ib1MMBtu Anel a (ug) (ug) (ug) (lbldsc0 (ugldscm) @7%02) (Fj (Ibrnr) ercu 22.7 1 0.000 1 22.7 1 6,03 - 0 1 9,48 1 12.08 1.181E-05 2.997E-03 Run Data Vm(dscf) - 82.96 Q. (dscfh) d 4,966.461 Fuel Factor(F.) - 1,820 02 M 10.00 CO2(%) 9.30 Equations Q. (dscfh) - 3600(1`Bw.)(V,,)(Q(17.64)(Pe)/(T.) C, (lbldsel) = (ug"0.4636E09)/V,j Sid C, (ugldscm®7%00 = ug1dscm"13,9/(20,9-%07) E (lb/MMBtu)-using F,, :(C.,Ib/dscQ(F,)(1001CO2,%) E (lb/fv) W(C.,Ib dscl)(Q.,dscfh) Conversions to obtain dscm: multiply dsof by 0.02832 to obtain u : multiply lb by 0,4636E09 to obtain m : divide ug by 1000 to obtain lb: multi I u b 2.205E-0 i NE013AS-021420-RT-1303 Appendix A- Page 88 of 135 1 Isokilnetic Calculations Facility/Site: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No.2 SDA Inlet Start Time: 9:40 Run No.: U2-SDA IN-M29-Run 1 Stop Time: 11:53 T.(°F) = 465.0 02(%vd) = 9.2 Vm(dcf) = 82.603 T.(OR) = 925.0 CO2(%vd) = 10.1 AH (Abs) ("Hg) = 29.62 Tm(T) = 76.2 CO(%vd) = 0 P,("Hg) = 29.43 Tstd(OR) = 536.2 N2(%vd) = 80.7 SQRT A P = 0.6263 Vt(Total gain) = 396.3 Cp = 0.84 Y = 1.016 V,(adj.for sat.) = NA Run Time(min.) = 120 A„(ft2) = 0.000607 Vm aid = (T61d)(VO(Y)(n H Abs) - 81.818 dsof (PStd)(Tm) V,ti std = 0.04706(V,Total gain) - 18.650 scf B. = Vw(std) 1 Vm(std)+VW(std) = 0.186 BWB = by steam tables = NA = 1 -B„s -- 0.814 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) = 29.984 lb/lb-mole M, = Md(1-B11) + 18(B11) = 27.769 lb/lb-mole G = SQRT(Ts(abs)Ms Ms) = 1.064 V. = 85.49(Cp) (G) (SQRTA P) - 47.861 fps Q$ = 3600(1-B,,,,g)(V6)(A)(Tsta P./Pbtd Tjabs)) = 4,736,640 dscfh = 3600(Vs) (As) = 10,360,726 acfh = acfh!60 172,679 acfm I - (T.) (Vm std)(Petd) 100 = 102.4 %Isokinetic (Tstd) (Vs) (A„) (Pe)60(1-3,�g) (Run Time) ,i NE013AS-021420-RT-1303 Appendix A-Page 89 of 136 1 Non-Isokinctic Calculations Facility/Site: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No. 2 SDA Inlet Start Time: 12:38 Run No,: U2-SDA IN-M29-Run 2 Sto Time: 15:50 Ts(OF) = 473.5 02(%vd) = 8.8 Vm (dcf) = 83.564 T.(OR) = 933.5 CO2(%vd) = 10.5 OH (Abs) ("Hg) =29.62 TR,(OF) = 81.4 CO(%vd) = 0 Ps("Hg) = 29.43 Tstd(OR) = 541.4 N2(%vd) = 80.7 SQRT A P = 0.6257 VI(Total gain) = 394.5 CP = 0.84 Y = 1.016 VI(adj. for sat.) = NA Run Time(min.) = 120 A.(ft) = 0.000507 V,,,aid = (Tstd)(Vm)(Y)(A H Abs) = 81.980 dscf (Patd)(Tm) Vw std = 0.04706(VI Total gain) = 18.565 scf Bws = Vw(std) / Vm(sld)+VW(std) - 0.185 BM = by steam tables - NA 1 -B,. 1 -B,, 0.815 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) - 30.032 lb/lb-mole Ms = Md 0-Bm)+ 18(B,,,,$) - 27.810 lb/lb-mole G SQRT(Ts(abs)/Ps Ms) = 1.068 VS = 85.49(CP)(G) (SQRTA P) - 47.987 fps Q. = 3600(1-Bws)(Ve)(A)(Ta(d Ps/Pstdjabs)) : 4,711.673 dacfh = 3600(Vs) (As) = 10,388,012 acfh = acfh 160 = 173,134 acfm -- (T.)(Vm std)-(Pstd) 100 - 103.1 %Isokinetic (Tstd) (Vs)(An) (P.)60(1-8„,)(Run Time) NF013AS-021420-RT-1303 Appendix A-Page 90 of 135 I i Non-Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date. 10/19/22 Source: Unit No.2 SDA Inlet Start Time: 7:60 Run No.: U2-SDA IN-M29-Run 3 Stop Time: 10:00 TB(OF) = 468.8 02(%vd) = 9.6 V.(dcf) = 83.381 Ts(OR) = 918.8 CO2(%vd) = 9.8 AH (Abs) ("Hg) = 29.75 Tm (OF) = 65.9 CO(%vd) = 0 Ps("Hg) = M56 Tstd(OR) = 625.9 N2(%vd) = 80.6 SQRT A P = 0.6082 Vt(Total gain) = 367.2 CP = 0.84 Y = 1.016 Vt(adj.for sat.) = NA Run Time(min.) = 120 An(ft) = 0.000507 Vm std -- (Tstd)(Vm)(Y)(A H Abs) 84.583 dscf W MATm) Vy,std = 0.04706(VI Total gain) = 17.280 scf BM = Vw(SW) 1 Vm(Btd)+VW(etd) = 0.170 8ws = by steam tables = NA 1 -BW8 — 0.830 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) — 29.952 Ibllb-mole M6 = Md(1-13„m)+ 18 (Bwx) = 27.924 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 1.055 V$ = 85.49(CP) (G)(SQRTO P) 46.081 fps Q6 = 3600(1-IBws)(VB)(A)(Tetd P6/Petd Tjabs)) = 4,702,444 dscfh = 3600(Vs) (As) = 9,976,421 acfh = acfh 160 -- 166,257 acfm I -- (Tj(Vm std) (Pstd) 100 -- 106.6 %isakinetic (Tstd)(V. (An) (P.) 60(1-Bws) (Run Time) NE01 3AS-021420-RT-1 303 Appendix A- Page 91 of 135 r Non-Isokinetic Calculations Facilityl5ite: Wheelabrator 1 North Andover (late: 10/19/22 Source: Unit No. 2 SDA Inlet Start Time: 10:22 Run No.: U2-SDA IN-M29-Run 4 Stop Time: 12:27 TB(00) = 460.4 02(%vd) = 10.0 V,n (dcf) = 83.414 T6(OR) = 920.4 CO2(%vd) = 9.3 AH (Abs)(°Hg) = 29.76 T.(OF) = 76.4 CO(%vd) = 0 P6("Hg) =29.56 Tstd(°R) = 536.4 N2(%vd) = 80.7 SQRT❑ P = 0.6321 V,(Total gain) = 319.0 CP = 0,84 Y = 1.016 V,(adj.for sat.) = NA Run Time(min.) = 120 IN(ft) = 0.000507 V,,,std — (T.jd)(V.)(Y)(A H Abs) — 82,958 dscf (PStd)(Tm) VM,std = 0.04706 (V,Total gain) — 15.012 scf BM = Vw(std) / Vm(atd)+VW(atd) — 0.153 B", = by steam tables — NA 1 -B„, = 1 -B„s — 0.847 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) = 29,888 Ibllb-mole M. = Md (1-13„.)+ 18(B,,,,e) = 28.066 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 1.053 V. = 85.49(Cp) (G) (SQRTo P) 47.809 fps Qs = 3600 (1-13.)(Vs)(A)(Tstd P.IPStd T.(abs)) = 4.966,451 dscfh = 3600(Vs)(As) = 10,349,545 acfh = acfh 160 = 172,492 acfm I = (T.) (Vm std)(Pgtd) 100 — 99.0 %Isokinetic (T,td) (Vs) (A,,) (Pe)60(1-13.) (Run Time) NE013AS-021420-RT-1303 Appendix A- Page 92 of 135 Input Data Y FacilitylSlte: Wheelabrator 1 North Andover Date: 10/18122 Source: Unit No.2 SDA Inlet Start Time: 9:40 Run No.: U2-SDA IN-M29-Run 1 Stop Time: 11:63 Traverse Delta p Square Root Delta H Dry Gas Meter Tomps. Stack Stack Diameter("): 105.0 Faint 1°H,o) Dean P i"H,o} Inlet(F) WHOM Temp.(F) Stack Area(ft) 60.1 Nozzle Diameter("): 0.305 Al 0.34 0.58 1.4 65 65 461 Pitot Coefficient: 0.84 2 0,34 0.58 1.4 68 65 453 3 0.36 0.60 1.5 70 66 456 Initial lm In erVolume/W E hts: 4 0.38 0.62 1.6 71 66 454 Impinger 1 (ml) 548A 5 0.40 0.63 1.7 73 67 455 Impinger 2(ml) 617,3 6 0.42 0.65 1.8 75 67 457 Impinger 3(ml) 697.2 7 0.42 0.65 1.8 77 69 455 Impinger4(ml) 620,7 8 0.47 0.69 2.0 79 70 453 Impinger 5(ml) 628.6 9 0.41 0.64 1.7 79 71 452 Impinger 6(mi) 705.6 10 0.40 0.63 1.7 82 73 449 Impinger 7(g) 866.0 11 0.39 0.62 1.6 82 74 449 12 0.37 0.61 1.6 83 74 448 Final Im En er VolumeNVei hts: el 0.35 0.59 1.5 77 77 484 Impinger 1 (ml) 640.4 2 0.38 0.62 1.6 80 77 480 Impinger 2(ml) 819.7 3 0.40 0.63 1.7 81 78 477 Impinger 3(ml) 766.3 4 0.38 0.62 1.6 84 78 476 Impinger 4(ml) 633.7 5 0.40 0.63 1.7 84 78 476 Impinger 5(ml) 1 635.6 6 0.40 0.63 1.7 84 78 476 Impinger 6(ml) 1 709.4 7 0.44 0.66 1.8 84 78 476 Impinger 7(g) $74.0 8 0.45 0.67 1.9 84 78 475 9 0.42 0.66 1.8 84 78 475 Oz (Inlet): 9.2 10 0.37 0.61 1.6 84 78 475 11 0.38 0.62 1.6 83 78 478 ale CO2(Inlet): 10.1 12 0.36 0.60 1.5 83 78 481 %CO (inlet): Bar. Pressure("Hg): 29.50 Static Pressure("H20): -1.0 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 1054.640 Leak Check Volume(dcf): 0.176 Meter Vol.Initl a I(dcf): 971,861 Start Time: 9:40 End Time: 11:53 AVERAGE: 0.39 0.63 1.660 79.0 73.4 466.0 NEW 3AS-021420-RT-1303 Appendix A-Page 93 of 135 Input t Data Facility/Site: Wheelabrator 1 North Andover Date: 10/18/22 Source: Unit No.2 SDA Inlet Start Time: 12:38 Run No.: U2-SDA IN-M29-Run 2 Stop Time: 15:50 Traverse Delta P Square Root Delta H Dry Oss Meter Temps. Stack Stack Diameter VT 105.0 Point ("HiO) Dope P ("H2O) Inlet(F) Outlet(F Temp.(F) Stack Area(ft) 60.1 Nozzle Diameter("): 0.305 Al 0.32 0.57 1.3 75 76 463 Pitot Coefficient: 0.84 2 0.36 0.60 1.5 75 76 462 3 0.37 0.61 1.6 77 76 464 Initial im in erVolumeNllel hts: 4 0.39 0.62 1.6 80 76 463 Impinger 1 (ml) 568.4 5 0.42 0.65 1.8 84 77 463 Impinger 2(ml) 715.8 6 0.41 0,64 1.7 85 77 461 Impinger 3(ml) 696.8 7 0.44 0.66 1.8 88 78 459 Impinger 4(ml) 59R8 8 0.42 0.65 1.8 88 79 460 Impinger 5(ml) 724.5 9 0.42 0.65 1.8 88 80 462 Impinger 6(ml) 727.8 10 0,40 0.63 1.7 B9 81 463 Impinger 7(g) 863,9 11 0.37 0.61 1.6 88 82 468 12 0,35 0,59 1.5 88 82 465 Final ImpIn or VolumeMel hts: 131 0.31 0.56 1.3 78 79 483 Impinger I (ml) 773.6 2 0.34 0.58 1 A 81 79 484 Impinger 2(ml) 843.2 3 0.34 0,5B 1.4 78 78 485 Impinger 3(ml) 715.7 4 0.39 0.62 1.6 82 78 486 Impinger4(ml) 610.5 5 0.41 0.64 1.7 84 79 488 Impinger 6(ml) 728.9 6 0.45 0.B7 1.9 85 79 488 Impinger B(ml) 730.5 7 0.44 0.66 1.8 89 79 484 Impinger 7(g) 886.1 8 0.45 0.67 1.9 86 79 483 9 0.43 0.66 1.8 87 79 483 %Oz (Inlet): 8.8 10 0.41 0.64 1.7 87 80 483 11 0.41 0.64 1.7 87 80 483 %COx(lnlet): 10,5 12 0.37 0.61 1.6 87 80 481 %CO (Inlet) : L Bar.Pressure("Hg): 29.50 Static Pressure("H2O): -1.0 No.of Traverse Paints: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 146.844 Leak Check Volume(dcf): 8.403 Meter Vol.Initial(dcf): 54.877 Start Time: 12:38 End Time: 15:50 AVERAGE: 0.39 0.63 1.65 84.0 78.7 473.6 NE013AS-021420-RT-1303 Appendix A-Page 94 of 136 r Input Data Facility/Site: Wheelabrator I North Andover Date: 10/19/22 Source: Unit No.2 SDA Inlet Start Time: 7:50 Run No.: U2-SDA IN-M29-Run 3 Stop Time: 10:00 Traverse Dolta P Squaro Root Delta H Dry Gas Meter Temps. Statk Stack Diameter("): 105.0 polnt VIM) r]elta P ("H2O) Erdet(F) Outlot(F) Temp,(F) Stack Area(ft) 60.1 Nozzle Diameter("): 0.305 Al 0.32 0.57 1.3 47 45 459 Pitot Coefficient: 0.84 2 0.35 0.59 1.5 49 46 458 3 0.39 0.62 1.6 50 47 454 Initial lm In erVolumelWe! hts: 4 0.43 0.66 1.8 55 49 464 Impinger 1 (ml) 554.2 5 0.45 0.67 1.9 60 51 465 Impinger 2(ml) 619.3 6 0.45 0.67 1.9 62 53 454 Impinger 3(ml) 692.5 7 0.47 0.69 2.0 65 55 456 Impinger 4(ml) 621.1 8 0.42 0.66 1.8 67 57 457 Impinger 5(ml) 705.1 9 0.42 0.65 1.8 69 58 457 Impinger 6(ml) 639.1 10 0.40 0.63 1.7 70 60 458 Impinger 7(g) 867.E 11 0,38 0.62 1,6 71 62 458 12 0.36 0.60 1.5 73 64 456 Final Impinger VolumelWei his: B1 0.34 0,58 1.4 72 67 459 Impinger 1 (mi) 671.4 2 0,36 0.60 1.5 73 68 462 Impinger 2(ml) 767.4 3 0.39 0.62 1.6 75 68 462 Impinger 3(ml) 749.4 4 0.43 0.66 1.8 77 69 463 Impinger 4(ml) 634.0 5 0.42 0,65 1.8 77 69 464 Impinger 5(ml) 1 716.0 6 0.44 0.66 1.8 78 70 463 Impinger 6(ml) 643.1 7 0.47 0,69 2.0 79 70 462 Impinger 7(g) 884.8 8 0.45 0,67 1.9 81 71 460 9 0.41 0.64 1.7 81 72 458 %02 (Inlet): 9,6 10 0.40 0.63 1.7 81 72 459 11 0.37 0,61 1.6 81 73 460 %CO2(Inlet): 9.8 12 0.34 0.58 1.4 81 73 462 *CO (Inlet) Bar. Pressure("Hg): 29.63 Static Pressure("H20): -1.0 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 231.405 Leak Check Volume(dcf): 0,265 Meter Vol.Initial(dcf): 147.759 Start Time: 7:50 End Tlme: 10;00 AVERAGE: 0.40 0.61 1.69 69.8 62.0 458.8 NE013AS-021420-RT-1303 Appendix A- Page 95 of 135 i Input_Data 1 FaclfitylSite: Wheelabrator 1 North Andover Date: 10/19/22 Source: Unit No,2 SDA Inlet Start Time: 10:22 Run No.: U2-SDA IN-M29-Run 4 Stop Time: 12:27 Traverse Delta P Square Root Delta H Dry Gas Meter Temps. Stack Stack Diameter 105,0 PON ("H201 Detfa P ("H201 Inlet Fi outlet(F1 Temp.(F) Stack Area(ft) 60.1 Nozzle Diameter("): 0.305 Al 0.33 0,67 1.4 73 72 463 Pitot Coefficient: 0.84 2 0,36 0.69 1.6 74 72 465 3 0.38 0.62 1.6 77 72 463 Initial Im in er Volume/Wel hts: 4 0.40 0,63 1.7 79 73 468 Impinger 1 (ml) 567.0 5 0.43 0.66 1.8 79 73 468 Impinger 2(ml) 713,0 6 0.46 0.68 1,9 80 73 465 Impinger 3(ml) 696.2 7 0.45 0.67 1.9 80 73 466 Impinger 4(m1) 597.0 8 0.42 0.65 1.8 80 73 460 Impinger 8(ml) 723.1 1 9 0.42 0.65 1.8 80 73 456 Impinger 6(ml) 732.9 10 0.39 0.62 1.6 80 73 455 Impinger 7(g) 871.5 11 0.37 0,61 1.6 80 73 452 12 0.36 0.60 1.5 80 73 451 Final lm In r VolumeMei Its: 131 0.35 0.59 1.5 77 73 456 Impinger 1 (ml) 72R2 2 0.35 0.59 1.6 78 73 461 Impinger 2(ml) 825.8 3 0.38 0.62 1.6 79 73 463 Impinger 3(mi) 714.4 4 0.41 0.64 1.7 80 73 463 Impinger4(ml) 599.6 5 0,44 0.66 1.8 81 74 462 Impinger 6(ml) 725.0 6 0,48 0.69 2.0 82 74 460 Impinger 6(ml) 734.2 7 0.45 0.67 1.9 82 74 457 Impinger 7(g) 891.6 8 0.42 0.65 1.8 82 74 457 9 0.40 0.63 1.7 81 74 456 %02 (Outlet): 1 0-0-7 10 0.40 0.63 1.7 82 74 458 11 0.40 0,63 1.7 82 74 462 %CO2(0€ 10t): 9.3 12 0.37 0.61 1.6 82 74 462 %CO (Outlet): �] Bar.Pressure("Hg): 29.63 Static Pressure("H20): -1.0 No.of Traverse Points; 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 316,428 Leak Check Volume(dcf): 0.371 Meter Vol.Initial(dcf): 231,643 Start Time: 10:22 End Time: 12;27 AVERAGE: 0.40 0.63 1.68 79.6 73.2 460.4 NEW 3AS-021420-RT-1 303 Appendix A- Page 96 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test Dates: October 18-19,2022&October 25-28,2022 i A9 Unit No. 2 Outlet Hydrogen Chloride and Ammonia .kMO11�5'kEO'S: NE01 3AS-021420-RT-1 303 Appendix A-Page 97 of 135 HCL Emission Calculations Facility/Site: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-M26AICTM027-Run 1 Stop Time: 10:40 Laboratory Requite: 02 = 10.40 %avd HCL(µg)= 9,829 CO2 = 9.10 %avd HCL(mg),M„= 9.8 V. - ftlsec As = 64.89 fy Vm std= 1.32 dscm MW of HCL(g/mol): 36.46 V.std= 46.504 dscf Q8 = 3600(I-Bw.)(Vs)(A)(Tatd P.IP.Id T.(abs)) - 5,916,1326 dscfh C. = (2,205 E-6) (M,,)/(Vmstd) = 4.66E-07 Ibldscf mg/dscm = mg I dscm - 7.46 mg/dscm ppmvd = (lb/dscf)1(MW of HCLf3.856EO8) 4.93 ppmvd ppmvd @7%02 = ppmvd'(13.9/(20.9-%02)) - 6.52 ppmvd@7%02 EIb,%,— Q. X Cs - 2.76 lb/hr NE013AS-021420-RT-1303 Appendix A-Page 98 of 135 7 HCL Emission Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 12:38 Run No.: U2-FF Out-M26A/CTM027-Run 2 Stop Time: 13:38 Laboratory Results: 02 10.40 %vd HCL(µg)= 4,763 CO2 = 9.10 %vd HCL(mg), Mn= 4.8 V. - fusee As - 64.89 fe Vm std= 1.32 dscm MW of HCL(glmol): 36.46 Vm std= 46.755 dscf Q. = 3600(1-Bwg)(VB)(A)(T.Id Pe/PBtd T.(abs)) -- 5,887,538 dscfh Ca = (2.205 E-6)(M„)!(Vmstd) = 2.24E-07 Ib/dscf mgldscm = mg 1 dscm 3.59 mg/dscm ppmvd = (Ibldscf)/(MW of HCL/3.856EO8) 2.37 ppmvd ppmvd @7%02 = ppmvd*(I 3.91(2U-%O2)) = 3.14 ppmvd@7%02 Ejbffi,= Q. x C. - 1.32 Ib/hr NE013AS-021420-RT-1303 Appendix A- Page 99 of 135 r HCL Emission Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/19/22 Source: Unit No.2 Pt"Outlet Start Time: 7:50 Run No.: U2-FF Out-M26AICTM027-Run 3 Stop Time: 8:50 Laboratory Results: 02 = 10.60 %vd HCL(µg)= 15,423 CO2 = 8.90 %vd HCL(mg), M,= 16.4 V. = ftlsec As - 64.89 ff V,n std= 1.36 dscm MW of HCL(gfmol): 36.46 V,std = 47.999 dscf Qg = 3600(1-B.)(V.)(A)(Ta+a P./Ps,d Ts(abs)) - 6,237,874 dscfh Cs = (2.205 E-6) (M,)1(V,,,std) = 7.09E-07 Ibldscf mgldscm = mg 1 dscm = 11.35 mgldscm ppmvd = (lbldscf)/(MW of HCU3.856E08) 7.49 ppmvd ppmvd Q7%02 = ppmvd*(13.9/(20.9%02)) = 10.11 ppmvd@7%02 Eih,,= Q. x Cs = 4.42 Ib/hr NE013AS-021420-RT-1303 Appendix A-Page 100 of 135 1 I i 1 Ammonia Emission Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/18122 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-M26AICTM027-Run 1 Stop Time: 10:40 Laboratory,Results: 02 = 10.40 %vd NH3(µg)= 1,007 CO2 = 9.10 %vd NH3(mg), M„= 1.007 Ve - 46.61 ftisec As - 64.89 ft' Vm std: 1.32 dscrn MW of NH3(9/mol); 17.031 VR,std= 46.604 dscf Q$ = 3600(1-B.)(V.)(A)(Tetd PslPstd T.(abs)) = 5,916,925 dscfh C. = (2.205 E-6)(M,,)/(Vmstd) - 4.77E-08 Ibldscf mgldscm = mg 1 dscrn - 0.76 mgldscm ppmvd = (Ibldscf)1(MW of NH3I3.856E08) 1.08 ppmvd ppmvd @7%02 G ppmvd*(13.9/(20.9-%02)) = 1.43 ppmvd@7%02 Elm,~ Q. x C. = 0,28 lblhr NE013AS-021420-RT-1303 Appendix A-Page 101 of 135 Ammonia Emission Calculations Facility/Site: Wheelabrator/North Andover Rate: 10/18122 Source: Unit No.2 FF Outlet Start Time: 12:38 Run No.: U2-FF Out-M26A/CTM027-Run 2 Stop Time: 13:38 Laborato Results: 02 = 10.40 %vd NH3(µg)= 919 CO2 = 9.10 %vd NH3(mg), M„= 0.919 V. - 46.75 ft/sec As - 64.89 ftz Vm std= 1.32 dsom MW of NH3(g/mol): 17.031 VR,std= 46.765 dscf Q,, = 3600(1-i3w.)(Vg)(A)(Tgtd Pe/P9td T.(abs)) — 6,887,638 dscfh C8 = (2.205 E-6) (Mn)/(V,,,std) - 4.33E-08 lbldscf mg/dscm = mg i dscm = 0.69 mg/dscm ppmvd = (lb/dscf)/(MW of NH3/3.856EO8) 0.98 ppmvd ppmvd @7%02 = ppmvd*(13.9/(20.9%02)) = 1.30 ppmvd@7%02 Eit,f= Q. x C. = 0.26 lb/hr NE013AS-021420-RT-1303 Appendix A-Page 102 of 135 T Ammonia Emission Calculations FacilglSite: Wheelabrator/North Andover Date: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 7:50 Run No.: U2-FF Out-M26A/CTM027-Run 3 Stop Time: 8:50 Laboratory Results: 02 10,60 %vd NH3(µg)= 586 CO2 = 8.90 °/ovd NH3(mg), M„= 0.586 V. - 47.55 ft/sec As - 64.89 If V,,,std= 1.36 dscm MW of NH3(g/mol): 17.031 V,,,std= 47.999 dscf Q. = 3600(1-8,,,,6)(V,,)(A)(T,td P$/PBtdTjabs)) = 6,237,874 dscfh C$ _ (2,205 E-6)(M„)/(Vmstd) = 2.69E-08 Ibldscf mg/dscm = mg/dscm - 0.43 mg/dscm ppmvd = (ibldscf)/(MW of NH3/3.856E08) 0.61 ppmvd ppmvd @7%02 = ppmvd*(13.9/(20.9-%02)) - 0.82 ppmvd@7%02 Elm,;= Q. x Cs = 0.17 lblhr ti NE01 3AS-021420-RT-1 303 Appendix A-Page 103 of 135 Non-Ysokinetic Calculations FacilitylSite: Wheelabrator/North Andover Date: 10118/22 Source: Unit No. 2 FF Outset Start Time: 9:40 Run No.: U2-FF Out-M26A/CTM027-Run 1 Stop Time: 10:40 TB(°F) = 289.1 02(%vd) = 10.4 V,(dcf) = 46.931 T.(OR) = 749.1 CO2(%vd) = 9.1 AH (Abs)("Hg) = 29.74 T,,, (OF) = 73.1 CO(%vd) = 0 P"("Hg) = 29.01 Tstd('R) = 533.1 N2(%vd) = 80.50 SQRT a P = 0.669 Vt(Total gain) = 254.6 Cp = 0.84 Y = 1.0065 V,(adj.for sat.) = NA Run Time(min.) = 60 An M ) _ V,,,std — (Tetd)(V.)(Y)(A H Abs) — 46.504 dsef (PWAT.) V,,std = 0.04706(V,Total gain) — 11.981 scf Byre = V.wd) / Vm(std)+VW(std) — 0.205 1 -B„" = 1 -Bw = 0.795 Md = 0.440 MCO2) 0.320 M02) 0.280 (%N2+ %CO) = 29.872 lb/lb-mole M. = Md(1-Bw,)+ 18 (Bw,) -- 27.440 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 0.970 V. = 85.49(Cp) (G)(SQRTA P) 46.608 fps Q$ = 3600(1-Bwj(Vj(A)(Tetd P6/Pstd Tjabs)) = 5,916,926 dscfh = 3600(Vs) (As) = 10,887,747 acfh = acfh/60 = 181,462 acfm a NE01 3AS-021420-RT-1 303 Appendix A-Page 104 of 135 r Non-Isokinetic Calculations Facitit /Site: Wheelabrator 1 North Andover ©ate: 10116I22 Source: Unit No. 2 FF Outlet Start Time: 12:38 Run No.: U2-FF Out-M26AICTM027-Run 2. Stop Time: 13:38 Ts(OF) = 290.3 02(%vd) = 10.4 Vm(dcf) = 48.250 T.(OR) = 760.3 CO2(%vd) = 9.1 AH (Abs) ("Hg) = 29.75 Tm(OF) = 85.3 CO(%vd) = 0 PB("Hg) = 29.01 Tetd(OR) = 545.3 N2(%vd) = 80.6 SQRT❑ P = 0.670 Vt (Total gain) = 263.9 Cp = 0.84 Y = 1.0065 IV,(adj. for sat.) = NA Run Time(min.) = 60 IA.(ft) _ V,,,std - (Tstd)(Vm)(Y)(A H Abs) = 46.755 dscf (Pstd)(Tj '.. V,M std = 0.04706(VI Total gain) - 12.419 scf Bws - Vw(std) I Vm(std)""VW(std) — 0.210 1 -BM = 1 -Bws = 0.790 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+ %CO) = 29.872 IbAb-mole M8 = Md(1-13WI)+ 18(B.) = 27.380 lb/lb-mole G = SQRT(Ts(abs)IPs Ms) - 0.972 Vs = 85A9(Cp) (G)(SQRTA P) -- 46.746 fps Qs = 3600(1-Bws)(Vs)(A)(T.td P./Pstd Ts(abs)) = 5,887,638 dscfh = 3600(Vs) (As) = 10,919,945 acfh acfh 160 - 181,999 acfm k NE013AS-021420-RT-1303 Appendix A- Page 105 of 135 I Non-Isokinetic Calculations Facility/Site: Wheelabrator I North Andover Date: 10/19/22 Source: Unit No. 2 FF Outlet Start Time. 7:50 Run No.: U2-FF Out-M26A/CTM027-Run 3 Stop Time: 8:50 Ts(OF) = 289.3 02(%Vd) = 10.6 Vm(dcf) =46.397 Ts(OR) = 749.3 CO2(%vd) = 8.9 AH (Abs) ("Hg) = 29.88 T.(OF) = 63.0 CO(%vd) = 0 Ps("Hg) = 29.14 Tstd(°R) = 513.0 N2(%Vd) = 80.5 SQRT A P = 0.687 VI(Total gain) = 226.6 CP = 0.84 Y = 1.0066 VI(adj.for sat.) = NA Run Time(min.) = 60 IA,(ft2) = 0.000000 Vm aid = (Tstd)(Um)(Y)(0 H Abs) = 47.999 dscf (Pstd)(Tm) Vw std = 0,04706(VI Total gain) = 10.664 scf B" = VW(sld) / VM(std)+VW(std) 0,182 = 1 -B. — 0.818 Md = 0A40 MCO2) 0.320 MOO 0.280 (%N2+ %CO) 29.848 fb/lb-mole Ms = Md 0-BM) + 18 (B.) = 27.694 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) - 0.964 Vs = 85.49(CP) (G)(SQRTo P) r 47.647 fps - Qs = 3600(1-B,,,$)(Vs)(A)(Tstd Ps/Pstd T.(abs)) — 6,237,874 dscfh = 3600(Vs)(As) = 11,107,231 acfh = acfh/60 — 185,121 acfm NE013AS-021420-RT-1303 Appendix A-Page 106 of 135 Input Data FacliltylSite: Wheelabrator I North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-M26A1CTM027-Run 1 Stop Time: 10:40 Travarso nalta P Square Root Dolta H dry Goo Meter Temps. Stack Stark Diameter CT r1la Point ("HAOI Delia P ["Hioy inlet{Fl Outlat(F) Temp.(F) Stack Area(fe) 64.9 Node Diameter("): 1 0.58 0.76 1.90 64 63 291 Pitot Coefficient: 0.84 0.68 0.76 1.90 65 62 291 0.57 0.75 1.90 68 63 290 Initial lmpinrler_Volume[Wel hts: 0.54 0.73 1.90 72 64 289 Impinger 1 (mi) 674.9 0.48 0.69 1.90 76 65 291 Impinger 2(ml) 710.6 0.46 0.68 1,90 79 66 291 Impinger 3(ml) 703.7 0.45 0.67 1.90 82 67 292 Impinger 4(ml) 587,1 0.44 0.66 1.90 84 69 286 Impinger 5(ml) 822.1 0,45 0.67 1.90 86 71 288 Impinger 6(ml) 0,44 0,66 1.90 88 72 289 Impinger 7(g) 0.40 0,63 1.90 90 73 291 0.45 0.67 1.90 90 75 288 Final Impinner Volume/Wain Volume/Wain hts• 0.38 0.62 291 Impinger 1 (ml) 819.0 0.40 0.63 291 Impinger 2(ml) 784.2 0.44 0.66 290 Impfnger 3(ml) 725.9 0A5 0,67 287 Impfnger 4(m1) 589.9 0,40 0.63 288 Impinger 6(ml) 834.0 0,38 0.62 289 Impinger 6(m1) 0.45 0,67 289 Impinger 7(g) 0.38 0.62 285 0.40 0.63 289 *02 (Outlet): 10.4 0.44 0.66 290 0,45 0,67 290 COz(Outlet): 9.1 0.38 0.62 282 *CO (Outlet) Bar.Pressure("Hg): 29.60 Static Pressure("H2O): -8.0 No.of Traverse Points: �1 ] Run Duratlon(minutes): 60 Meter Vol.Final(dcf): 371.890 Leak Check Volume(dcf): Meter Vol.Initial(dof): 324.959 Start Time: 9, 0 End Time: 10:40 AVERAGE: 0.45 0.67 1.90 78.7 67.5 289.1 4 ` NE013AS-021420-RT-1303 Appendix A-Page 107 of 136 r Input Data Facility/Site: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No.2,FF Outlet Start Time: 12:38 Rein No.: U2-FF Out-M26AICT'M027-Run 2 Stop Time: 13:38 Traverse Anita P Square Root Delta H Dry Gas Meter Temps. Stack Stack Diameter("): n1a Paint ("H10) Della P (%o) Infel(F) nutlet(F) Tomp.(F) Stack Area(fe) 64.9 Nozzle Diameter("): 1 0.40 0.63 2.00 77 74 288 Pitot Coefficient: 0.84 0.43 0.66 2.00 80 75 290 0,45 0.67 2.00 84 75 290 Initial lmpingerVolumelWei hts: 0.44 0.66 2.00 88 76 290 Impinger 1 (ml) 663.9 0.44 0.66 2.00 91 78 290 Impinger 2(ml) 703.1 0.42 0.65 2.00 93 79 290 Impinger 3(ml) 716.7 0.36 0.60 2.00 95 80 288 Impinger 4(ml) 614.0 0.38 0.62 2.00 96 81 289 Impinger 5(ml) 810.3 0.36 0.60 2.00 96 82 290 Impinger 6(ml) 0.36 0.60 2.00 97 83 291 Impinger 7(g) 0.40 0.63 2.00 98 84 291 0.45 0.67 2.00 99 85 291 Final Im In er VoiumelWel hts: 0.46 0.68 291 Impinger 1 (ml) 809.1 0,45 0,67 291 Impinger 2(ml) 776.0 0.45 0.67 291 Impinger 3(ml) 734.0 0.44 0.66 291 Impinger 4(ml) 619.7 0.56 0.75 291 Impinger 5(ml) 823.1 0.56 0.75 291 Impinger 6(ml) 0.48 0,69 290 Impinger 7(g) 0.50 0,71 291 0.53 0.73 290 *OZ (Outlet): 10.4 0.53 0.73 291 0.48 0.69 291 *CO2(Outlet): 9.1 0.48 0.69 290 *CO (Outlet): L Bar. Pressure("Hg): 29.60 Static Pressure("H20): No.of Traverse Points: Run Duration(minutes): 60 Meter Vol,Final(dcf): 420.618 Leak Check Volume(dcf): Meter Vol.Initial(dcf): 372,368 Start Time: 12;38 End Time: 13:38 AVERAGE: 0.45 0.67 2.00 91.2 79.3 290.3 ti NE01 3AS-021420-RT-1 303 Appendix A-Page 108 of 135 Input Data Facility/Site: Wheelabrator 1 North Andover Date: 10/19122 Source: Unit No.2 FF Outlet Start Time: 7:50 Run No.: U2-FF Out-M26A/CTM027-Run 3 Stop Time: 8:50 7ravurea Delta P Square Ftcot Delta H Dry Gas Motor Temps. Stack Stack Diameter("): nla Pnlnl ("H20) Delta A ("H20) Inlet(F) Outlat(F) Tamp.(F) Stack Area(fe) 64.9 Nozzle Diameter("): 0.000 1 0.44 0.66 2,00 44 41 289 Pitot Coefficient: 0.84 0,43 0.66 2.00 44 41 290 0.42 0.65 2.00 47 42 289 Initial Impinger VolumeMel hts: 0.40 0.63 2.00 53 43 288 Impinger 1 (mi) 676.6 0.48 0.69 2.00 57 44 289 Impinger 2(ml) 712.5 0.50 0.71 2.00 60 45 290 Impinger 3(ml) 705.2 0,52 0.72 2.00 63 47 290 Impinger 4(ml) 584.5 0.50 0,71 2.00 66 48 289 Impinger 5(ml) 834.0 0.63 0.79 2.00 67 50 290 Impinger 6(ml) 0.60 0.77 2,00 67 51 291 Impinger 7(g) 0.66 0.75 2.00 71 53 290 0.61 0.71 2.00 72 55 290 Final Im In er VolumelWel hts: 0.46 0.68 289 Impinger 1 (ml) 767.3 0.48 0.69 289 Impinger 2(ml) 792.1 0.45 0.67 290 Impinger 3(ml) 740.6 0.42 0.65 290 Impinger4(ml) 592.8 0.46 0.68 287 Impinger 5(ml) 846.6 0.45 0.67 288 Impinger 6(ml) 0.44 0.66 288 Impinger 7(g) 0,44 0.66 287 0,46 0.68 290 %02 (Outlet): F-To-,6-1 0.44 0.66 290 0.45 0.67 289 a/o CO2(Outlet): 8.9 0.43 0.66 290 a/o CO (Outlet): �0 Bar. Pressure("Hg): 29.73 Static Pressure("H2,0): No.of Traverse Points: Run duration(minutes): 6A Meter Vol.Final(dcf): 467.319 Leak Check Volume(dcf): 0.000 Meter Vol.Initial(dcf): 420.922 Start Time: 7:50 End Time: 8:50 AVERAGE: 1 0.47 0.69 2.00 69.3 46.7 289.3 4 NF013AS-021420-RT-1303 Appendix A-Page 109 of 135 Wheelabrator Environmentai Systems, Inc,—Wheelabrator N.Andover, Inc. Compliance Test{grogram on Unit Nos. 1 &2 Test Rates,October 18-19,2022&October 25-28,2022 j A10 Unit No. 2 Outlet Particulate, Metals and Mercury ��nON ROS E NEW 3AS-021420-RT-1303 Appendix A- Page 110 of 135 Metals Emission Calculations Facility/Site: Wheelabrator!North Andover Date: 10/18/22 Source: Unll No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-M6129•Run 1 Stop Time: 11:63 Total Reagent Blank Concentration(Ca) Emisalon Rate Wg i' Blanle Cor.Totat (ugldscm fMMt3tu Anal a (ug) (ug) NO) (ibldscf) (ugldscm) 07%02) (uglAcm) (F.) (Ibthr) Cadium 0.791 0.000 0.701 1.797E-11 0.29 0.30 0.16 3.694E-07 1,056E-04 Lead 10.20 0.617 9.68 2,2E-10 3.52 4.60 1.92 4.400E-08 1.303E-03 Mercury 6.39 0.000 6.39 1.462E-10 2.32 3.68 1.27 2.904E-06 8,602E-04 Run Data V.(dso 97.05 Vm(Ncrn) = 2.66 V.(Arm) 5.06 0. (dsc h) = 6,924,964 Weighted Fuel Factor(Fj = 1,620 42 M =1 0,40 CO20/a) =1 9,10 Equations Q, (dscth) =3600(1-B.)(Va)(Aa)(17.84)(t.)1(Ta) 06 (Ibldsol) =(uglo,4638E09)IV.Std C. (ugldscm @7%%) =ugldscm'13,91(20,9-%02) E (Ib1MMBtu)-using Fa =(C.jbldacQ(Fo)(1001G02'O)) E (lblhr) = (C.dbldscf)(Qn,dscfh) Convaralons to obtaln dsem: mullft dscf by 0,02832 to obtaln Nero: mulliply dsof b 480+321460+68 *0,02832 to obtaln Acm: multiply Ncm b 400+Ta!460+32 1 1-Bws'29,92IPs to obtaln u : multiply lb by 0.4638E09 to obtaln m : divide by 1000 to obtaln Ib: multiply muMply up by 2,206E-00 NE013AS-021420-RT-1303 Appendix A-Page 111 of 135 Metals Emission Calculations Facliltylsite: Wheelabrator I North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 12:30 Run No.: U2-FF Out-M5129-Run 2 Stop Time: 15:50 Total Reagent Blank Concentration Cs _Emission Rate(EL HgI Blank-2 Car.Total (ugldscm I131MM8#u -- Ana[ a (ug) (ug) (ug) {ibldscf} {ugldscm) 07%02) (uglAcm) (Fat (Iblhr) Ca lum 1,810 0.000 1.810 3.808E-11 0.68 0.76 0.31 7,218E-07 2.136E-04 Lead 12.60 0.517 12.08 2.70BE-10 4.34 5.69 2.36 5.416E-06 I 1.802E-03 Mercury 3.68 0.000 1 3.68 8.023E-11 1.28 1.68 0.70 1.670E-06 4.748E-04 Run cata Vm(daco = 98,39 Vm(Ncm) - 2.00 V.(Arm) = 5.13 Q. (dscih) = 6,917,409 Fuel Factor{N = 1,820 02(%) - 10.30 02(0/0 = 9.30 E uationa QO (dscth) =3800(1-B,,,,6)(Va)(Q(17.64)(P.)I(T.) Ca (ibldscl) =(ug*0.4638E09)IV.Std Ca (ug/dsom 07%02) =ugldscm*13.9/(20.9%02) E (Ib/MMBIu)-using Fu =(C„IbIdsCQ(Fj(IOUICO2-%) E (Ib/hr) =(Gjbldsct)(Q„dscfh) Conversions to obtain dsom: mufti muftly dscf by 0.028322 to obtain Ncm; multiply dscf by 460+32 1460+88 *0.02832 to obtain Acm; multiply Ncm b 460+Ts/480+32 11-Bws*29.921Pa to obtain u : multiply lb by 0.4638E09 to obtain mg: divide by 1000 to obtain Ib; multiply ug by 2,206E-00 it NE01 3AS-021420-RT-1 303 Appendix A- Page 112 of 135 r Metals >E=misslon Calculations Facilltylslte: Wheefebrator 1 North Andover date: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 7:60 Run No.: U2-FF Out-M5/20-Run 3 Stop Time: 10:00 Total Reagent en oncen a on(Cal Emission Ra e _ Hg' Blenle Cor.Total (ugldscm 16108tu� u Anslyte (ug) (ug) (ug) (IbldscQ (ugldscm) @7%02) (uglAcm) (F.) (lblhr) cadlum 6.969 9 -11 0.31 0.42 0.18 3.8 Lead 16.40 0.617 14.86 3.025E-10 4.84 6.48 2,73 8.061E-Ofi 1.890E-03 Mercury 1.80 0,000 1.80 3.859E-11 0.60 0.78 0.33 7.399E-07 2.286E-04 Run Data Vm(dscr) = 108A7 Vm(Ncm) = 2.86 Vm(Acm) = 6,46 0. (dam) = 0,247,383 Fuel Factor{Fd) 1,820 02(°/n) = 10,50 C0.,(%) = 9.00 Equattons 0. (dscfh) =3600(1-B„,,)(V.)(Q(17.64)(P.)/(Tj C. (Ibldscl) :(ug'0,4538E09)I Vm Std C. (ugldscm @7%02) -ugldscm'13.91(20.9-%O2) E (IbIMMBtu)-using F. _(C.,Wdscl)(F.)0001CO2,i/n) E (lblhr) =(C.,lbldscl)(O.,dscfh) Conversions to obtain dacm: multiply dsof by 0.02832 to obtain Ncm: multiply dscr b 460+32 1460+88 '0.02832 to obtain Acm: multiply Ncm b 460+Ta 1460+32/1-Bws'29.921Ps to obtain ug: multiply Ib by 0,453BE09 to obtain mg: dlvida by 1000 to obtaln lb. MUIIIPIY Jig by 2.206E-09 NEW 3AS-021420-RT-1303 Appendix A- Page 113 of 135 Mercury Emission Calculations FactlltylStte; Whealabrator I North Andover Data; 10/19/22 Source: Unit No.2 FF Oullet Start Tlme; 10;22 Run No.: U2-FF Out-MB/29-Run 4 Sto Tlme; 12:27 Total Reagent Blank Concentra lon s Emission Rate(E) Hgi Blank' Cor.Total (ugldscm IbIMMBtu ---- — Anal a lug) (ug) (ug) (Ibldsct) (ugldsom) 07%02) (uglAcm) (F.) (Iblhr) Mercury1,69 0.000 1.59 3.47E-11 0.56 0.77 0,32 7.344E-07 I 2.136E-04 Run Data Vm(dsct) = 101.02 .(Ncm) 2.87 V„(Acm) 5.00 Q. (dscth) = 6,156,957 Fuel factor(F,} - 1,820 Oz(%) = 10,90 CO2(°/.) 8.61) Equations Q. (dscth) =3600(1-Sw,)(V.)(A,)(17.64)(PjI(T.) C. (Ib/daco =(ug'0.453BE09)I Vm Std C. (ugldscm®7%02) =ugldscm'13.9/(20.9-%O,) E (IbIMMBtu)-using F. -(c„lbldsco(FJ 0OOICO21%) I.E (lbmr) = (C bldscO(Q.,dscm) Conversions to obtain dscm: multiply dsct by 0.02832 to obtain Nom: multi I dsct by((460+32 1460+88 '0,02832 to obtain Acm: multiply Ncm b 480+Ts 1460+32!1-Bws'20.92113a to obtain ug: multiply Ib by 0,4636E09 to obtain mg: divide by 1000 to obtain Ib: Multiply MuMply ug by 2.205E-09 NE013AS-021420-RT-1303 Appendix A- Page 114 of 135 I j Particulate Emission Calculations Facility/Site: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-M5129-Run 1 Stop Time: 11:63 BLANKS FILTER BEAKER FILTER ACETONE NUMBER: e39621-13 e39621-13 e39621-18 e39621-18 NET (g) : 0.0000 0.0033 0.0000 0.0001 Volume of Blank Rinse(ml): 102 Volume of Rinse(ml): 62 M,-A, = Mr, 02 = 10.40 %vd CO2 = 9.10 %vd Mn(mg) = 3.300 V. - 46.59 ftlsec A, (mg)= 0.061 A - 64.89 fe Vm std= 97.05 dscf Vn,std 2.76 dscm Mo (mg) = 3.239 Ffactor(Fa) 1,820 Qs -- 3600(1-Bw6)(V.)(A)(Ts,d P,/Pst(I Ts(abs)) w 5,924,964 dscfh mgldscm mg I dscm = 1.18 mgldscm mgldscm @7%02 = mg1dscm*13.91(20.9-%02) = 1.56 mgldscm @7%02 CB = (2.205 E-6) (M,)/(V,,std) = 7.36E-08 Iblscf Cs' = 0.0164(Mn)/(VmStd) 0.0005 gr/dscf Cs'@ 7%02 = 0.0154 Mn 1 VmStd - 6.80E-04 grldscf @7%02 E _ (QB x Cs - 0.4360 Ib1hr E - Cs x F FACTOR(Fc)x (1001 CO2) 1.47E-03 IbIMMBtu E - (Iblhr)IHeat Input = 0.0038 IbIMMBtu k NE013AS-021420-RT-1303 Appendix A-Page 115 of 135 j 1 i Particulate Emission Calculations Facility/Site: Wheelabrator!North Andover Date: 10/18/22 Source, Unit No. 2 FF Outlet Start Time: 12:38 Run No.: U2-FF Out-M5129-Run 2 Stop Time: 15:50 BLANKS FILTER BEAKER FILTER ACETONE NUMBER: e39621-14 e39621-14 e39621-18 e39621-18 NET (g) : 0.0000 0.0013 0.0000 0=01 Volume of Blank Rinse(ml): 102 Volume of Rinse ml : 95 M.-Ar = M. 02 = 10.30 %vd CO2 = 9.30 %vd M.(mg) = 1.300 Vs = 46.67 ft/sec Ar (mg)= 0.093 A - 64.89 V,r,std= 98.39 dscf Vm std= 2.79 dscm M„ (mg)= 1.207 Ffactor(FO) = 1,820 Qs — 3600(1-Bw.)(Vs)(A)(Ystd PslPstd Ts(abs)) — 6,917,489 dscfh mg/dscm = mg 1 dscm -- 0.43 mg/dscm mg/dscm @7%02 =mgldscm"13.91(20.9-%02) 0.57 mg/dscm @7%02 C. — (2.205 E-6)(M„)/(Vmstd) — 2.70E-08 lb/scf Cs' — 0.0154(Mn)/(VmStd) — 0.0002 gr/dscf Cs'@ 7%02 0.0154 Mn 1 VmStd — 2.48E-04 gr/dscf @7%02 E - C Q,, x C. = 0.1600 iblhr E — Cs x F FACTOR(Fc)x (1001 CO2) = 5.29E-04 Ib[MMBtu E _ (lb/hr)IHeat input = 0.0014 Ib/MMBtu NE013AS-021420-RT-1303 Appendix A-Page 116 of 135 i Particulate Emission Calculations FacilitylSite: Wheelabrator I North Andover Date: 10/19/22 Source: Unit No. 2 FF Outlet Start Time: 7:50 Run No.: U2-FF Out-M5/29-Run 3 Stop Time: 10:00 BLANKS FILTER BEAKER FILTER ACETONE NUMBER: e39621-15 e39621-15 e39621-18 e39621-18 NET (g) : 0.0000 0.0023 0.0000 0.0001 Volume of Blank Rinse(ml): 102 Volume of Rinse(ml): 70 M„ Ar = M„ 02 -- 10.60 %vd CO2 = 9.00 %vd M„(mg) = 2.300 V. - 47.62 ft/sec Ar (mg)= 0,069 A = 64.89 ftz V,,,std = 108.47 dscf V,,,std= 3.07 dscm M. (mg)= 2.231 Ffactor(F,,) = 1,820 Qs 3600(I-B,r)(VS)(A)(Tstd Ps/Peed T6(abs)) — 6,247,383 dscfh mg/dscm mg 1 dscm -- 0,73 mg/dscm mg/dscm @7%0x = mgldscm*l3.9/(20.9%02) — 0.97 mgldscm @7%02 CB - (2,205 E-6) (M„)I(Vstd) = 4.54E-08 Ib/scf Cs' — 0.0154(Mn)/(Vm5td) = 0.0003 gr/dscg Cs'@ 7%02 = 0.0164 Mn 1 VmStd — 4.23E-04 gr/dscf @7%02 E _ (Q6 x Cs — 0.2834 Whr E = Cs x F FACTOR(Fc)x (1001 CO2) - 9.17E-04 Ib/MMStu E — (lb/hr)/Heat input — 0.0024 lb/MMStu NE013AS-021420-RT-1303 Appendix A- Page 117 of 135 Ysokinetic Calculations Facility/Site: Wheelabrator I North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-M5/29-Run 1 Stop Time: 11:53 Ts(OF) = 289.1 02(%vd) = 10.4 VR,(dcf) = 95.844 Ts(OR) = 749.1 CO2(%avd) = 9.1 AH (Abs) ("Hg) = 29.77 T.(OF) = 73.0 CO(%avd) = 0 P.("Hg) = 29.01 Tstd(OR) = 633.0 N2(%vd) = 80.6 SQRT❑ P = 0.6691 Vi(Total gain) = 527.1 Cp = 0.84 Y = 1.0272 IV,(adj,for sat.) = NA Run Time(min.) = 120 A„(ft2) = 0,000524 V,,,std = (Tetd)(Vm)(Y)(A H Abs) = 97.062 dsef (Pstd)(T.) VW std W 0.04706 (VI Total gain) 24.805 scf B" = Vw(std) 1 Vm(Std)+VW(S1d) — 0.204 B" = by steam tables = NA 1 -B„, = 1 -B„j - 0.796 Ma = 0.440 (%CO2) 0.320 MOO 0.280 (%N2+%aCO) = 29.872 lb/lb-mole MS = Md 0-BM) + 18 (B,,,,S) = 27,455 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) - 0,970 VS = 85.49(CO) (G) (SQRTA P) = 46.595 fps Qg » 3600(1-BWe)(V.)(A)(Tstd PS/Pstd T,,(abs)) = 5,924,954 dscfh = 3600(Vs) (As) = . 10,884,678 acfh = acfh 160 -- 181,411 acfm - (TS) (V.std) (Pstd) 100 = 101.4 %olsokinetic (T.td) (V. (An)(Pe)60(1-B,,,S) (Run Time) NE013AS-021420-RT-1303 Appendix A- Page 118 of 135 r Isokinetic Calculations Facilityf5ite: Wheelabrator/North Andover Date: 10/18/22 Source: Unit No. 2 FF Outlet Start Time: 12:38 Run No.: U2-FF Out-M5/29-Run 2 Stop Time: 15:50 T.(OF) = 290.3 02(%vd) = 10.3 V. (dcf) = 98.153 T.(OR) = 750.3 CO2(%vd) = 9.3 ❑H (Abs) (°Hg) = 29.77 T.(OF) = 78.4 CO(%vd) W 0 PS("Hg) = 29.01 Tstd('R) = 538.4 N2(%vd) = 80.4 SQRT A P = 0.6698 Vi (Total gain) = 537.9 CP = 0.84 Y = 1.0272 IV,(ad].for sat.) = NA IRun Time(min.) = 120 1& (ft) = 0.000524 V,,,std - (T.fd)(Vj(Y)(A H Abs) - 98.391 dscf (Pctd)(T.) Vw std = 0.04706(V,Total gain) = 26.314 scf B. = VW(Std) / Vm(sld)+VW(std) - 0.205 B" = by steam tables = NA 1 -B" = 1 -Bws = 0.795 M, = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) - 29.900 [bllb-mole MS = Md(1-SW.)+ 18(B") - 27.465 [b/fb-mole G = SQRT(Ts(abs)iPs Ms) - 0.970 VS = 85.49(Cp) (G)(SQRTA P) = 46.674 fps Q. = 3600(1-B.)(VS)(A)(T.td PS/Pstd Ts(abs)) = 5,917,489 dscfh = 3600(Vs)(As) = 10,903,127 acfh = acfh 160 = 181,719 acfm = (TS) (V.std)(P.td) 100 = 102.9 %Isokinetic (TMd)(VS) (An) (PS)60(I-Bws)(Run Time) NEW 3AS-021420-RT-1303 Appendix A-Page 119 of 136 Ysokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10/19/22 Source: Unit No. 2 FF Outlet Start Time: 7:50 Run No.: U2-FF Out-M5/29-Run 3 Stop Time: 10:00 Ts(OF) = 289.3 02(%vd) = 10.5 V,(dcf) = 103.333 TB(OR) = 749.3 CO2(%vd) = 9.0 AH (Abs)(°Hg) = 29.91 T.(OF) = 56.5 CO(%vd) = 0 Ps("Hg) = 29.14 Tstd(OR) = 516.6 N2(%avd) = 80.5 SQRT❑ P = 0.6872 Vt(Total gain) = 506.3 Cp = 0.84 Y = 1.0272 Vt(ad). for sat.) = NA Run Time(min.) = 120 A„(ft2) = 0.000524 ------------- V,,,std -» (T.td)(V.)(Y)(A H Abs) - 108.476 dscf (Pstdl(Tml Vw std = 0.04706 (VI Total gain) = 23,826 scf BM = Vw(aid) / Vm(std) VW(std) = 0,180 = by steam tables = NA 1 -B„,s = 1 -B„, = 0.820 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%aCO) — 29.860 Ib/lb-mole Ms = Md(1-Bwg)+ 18(B,,,,B) = 27.724 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) — 0.963 V. = 86.49(Cp)(G) (SQRTo P) — 47.522 fps Q. = 3600(1-B.)(Vs)(A)(Tstd Pe/Paid Tjabs)) = 6,247,383 dscfh = 3600(Vs)(As) = 11,101,250 acfh = acfh 160 - 185,021 acfm [ -- (T8) (Vm std)(P61d) 100 = 107.5 %isokfnetic (T6td) (V.)(An)(Ps)60 (1-Bws) (Run Time) NE01 3AS-021420-RT-1 303 Appendix A-Page 120 of 136 , 1 Ysokinetic Calculations Facility/Site: Wheelabratorl North Andover Date: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 10:22 Run No.: U2-FF Out-M5/29-Run 4 Stop Time: 12:27 Ts(OF) = 281.3 02(%vd) = 10.9 . Vm(dcf) = 99,216 Ts(OR) = 741.3 CO2(%vd) = 8.6 ©H(Abs) ("Hg) = 29.90 Tm(OF) = 72.3 CO(%vd) = 0 Pa("Hg) = 29.14 TBtd(OR) = 532.3 N2(%vd) = 80.5 SQRT❑ P = 0.6696 Vi (Total gain) = 455.1 CP = 0.84 Y = 1.0272 Vt(adj.for sat.) = NA Run Time(min.) = 120 A„(ft2) = 0.000524 Vm std — (Tstd)(Vm)(Y)(A H Abs) = 101,023 dscf (Pstd)(Tm) V,w std = 0.04706 (VI Total gain) — 21 A17 scf BM = Vw(std) / Vm{s!d} VW(etd) = 0.175 Bm = by steam tables = NA 1 -B„. = 1 -B,,, Md = 0,440 MCO2) 0.320 (%02) 0.280 (%N2 t%CO) - 29.812 Iblib-mole Me = Md(1-B,,,fe) + 18(BM) — 27,746 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) — 0,958 Vs = 85.49(Cp)(G) (SQRTA P) = 46.041 fps Qs = 3600(1-B,,,,$)(V8)(A)(Tstd PslPstd TS(abs)) = 6,155,957 dscfh = 3600(Vs)(As) = 10,755,329 acfh = acfh 160 = 179,255 acfm I — (Ts)(Vm std) (Pstd) 100 — 101.6 %isokinetic (raid)(Vg) (An)(Ps)60(1-B,$) (Run Time) } NE013AS-021420-RT-1303 Appendix A- Page 121 of 135 Input data FacilitylSite: Wheelabrator l North Andover Date: 10118/22 Source; Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-FF Out-105129-Run 1 Stop Time: 11:53 TravaEso Delta P Square hoot Volta H Dry Gas MeterTemps. Slack Stack Diameter("): n18 Point ("H:O) DoltsP ("HxO) Inlot(F) Outlat(F) Stack Stack Stack Area(fte) 64.9 Nozzle Diameter("): 0.310 Al 0,58 0.76 3.0 63 63 291 Pitot Coefficient: 0.84 2 0.58 0.76 3.0 64 64 291 3 0.57 0.75 3.0 66 66 290 Initial Impinger V Iumef Wel hta: 4 0.54 0.73 2.8 66 66 289 Impinger 1 (ml) 564.8 131 0,48 0,69 2.5 67 67 291 Impinger 2(ml) 693.6 2 0.46 0,68 2.4 68 68 291 Impinger 3(ml) 687.8 3 0.45 0.67 2.3 68 68 292 Impinger 4(m1) 621.1 4 0.44 0.66 2.3 69 69 286 Impinger 5(m1) 709.7 C1 0.45 0.67 2.3 73 73 288 Impinger 6(ml) 719.9 2 0.44 0.66 2.3 74 74 289 Impinger 7(g) 850.9 3 0.40 0.63 2.1 74 74 291 4 0.45 0,67 2.3 70 70 288 Final Im In er Volume/Wei hts: D1 0.38 0.62 2.0 75 75 291 Impinger 1 (ml) 692.9 2 0.40 0.63 2.1 76 76 291 Impinger 2(ml) 904.6 3 0.44 0.66 2.3 76 76 290 Impinger 3(ml) 820.8 4 0.45 0.67 2.3 77 77 287 Impinger4(ml) 637.7 E1 0.40 0.63 2.1 77 77 288 Impinger 5(ml) 717.7 2 0.38 0.62 2.0 77 77 289 Impinger 6(ml) 723.7 3 0.46 0.67 2.3 78 78 289 Impinger 7(g) 877.5 4 0.38 0,62 2.0 78 78 285 F1 0.40 0.63 2.1 78 78 289 *02 (Outlet): 10.4 2 0.44 0.66 2.3 79 79 290 3 0,45 0.67 2.3 79 79 290 *CO2(Outlet): 9.1 4 0,38 0.62 2.0 79 79 282 *CO (Outlet): Bar.Pressure("Hg): 29.60 Static Pressure("H20): -6.0 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 347,983 Leak Check Volume(dell): 1,502 Meter Vol.Initial(dcf): 250.637 Start Time: 9;40 End Time: 11:53 AVERAGE: 0.45 0.67 2.338 73.0 73.0 289.1 NE01 3AS-021420-RT-1 303 Appendix A-Page 122 of 135 Input� Data Facility/Site: Wheeiabrator 1 North Andover Date: 10118/22 Source: Unit No.2 FF Outlet Start Time: 12:38 Run No.: U2-FF Out-M5129-Run 2 Stop Time: 15:50 Travarse Dolta P Squara Root delta H Dry Gas Motor Tomps. Stack Stack Diameter("): n/a Point ("H2O) Delta `Ht o Inlet{F( Outlet Tamp. Fi Stack Area(ft) 64.9 Nozzle Diameter{"): 0.310 Al 0.40 0.63 2.1 73 73 288 Pilot Coefficient: 0.84 2 0.43 0.66 2.2 74 74 290 3 0.46 0.67 2.3 75 75 290 Initial Imalncer VolumelWet hts: 4 0.44 0.66 2.3 78 78 290 Impinger 1 (ml) 658.8 81 0.44 0.66 2.3 79 79 290 Impinger 2(ml) 703.4 2 0.42 0.66 2.2 79 79 290 Impinger 3(ml) 707.0 3 0.36 0.60 1.9 79 79 288 Impinger 4(ml) 617.8 4 0.38 0.62 2.0 82 82 289 Impinger 6(ml) 713.4 C1 0.36 0.60 1.9 82 82 290 Impinger 6(ml) 721.0 2 0.36 0.60 1.9 82 82 291 Impinger 7(g) 891.1 3 0.40 0.63 2.1 82 82 291 4 0.45 0.67 2,3 82 82 291 Final Im in er Volume/Wei hts: 01 0.46 0.68 2.4 82 82 291 Impinger 1 (ml) 737.9 2 0.45 0.67 2.3 72 72 291 Impinger 2(ml) 900.9 3 0.45 0.67 2.3 72 72 291 Impinger 3(ml) 827.3 4 0.44 0.66 2.3 72 72 291 Imp]nger4(ml) 628.2 El 0.56 0.75 2.9 78 78 291 Impinger 5(ml) 718,3 2 0.66 0.75 2.9 78 78 291 Impinger 6(ml) 723.1 3 0.48 0.69 2.5 79 79 290 Impinger 7(g) 914.7 4 0.50 0.71 2.6 79 79 291 F1 0.53 0.73 2.8 80 80 290 *Oz (Outlet): 10.3 2 0.53 0.73 2.8 80 80 291 3 0.48 0.69 2.6 81 81 291 %COz(Outlet): 9.3 4 0.48 0.69 2.6 81 81 290 %CO (Outlet): 0 Bar.Pressure("Hg): 29.60 Stolle Pressure("HBO): -8.0 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 448.551 Leak Check Volume(dcf): 0.000 Meter Vol.Initial(dcf): 350.398 Start Time: 12:38 End Time: 15;50 AVERAGE 0.46 0.67 2.34 78.4 78.4 290.3 NE01 3AS-021420-RT-1 303 Appendix A-Page 123 of 135 r Invut Data FacllitylSite: Wheelabratar 1 North Andover Date: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 7:50 Run No.: U2-FF Out-M5/29-Run 3 Stop Time: 10:00 Traverae Delta P Square(toot Detta H Dry Gas Motor Tamps. Stack Stack Diameter("); Ne point ("H2o) Delta P {"H20) Intot(F) Outlet{F) Temp. F) Stack Area(te) 64.9 ', Nozzle Diameter("): 0.310 Al 0.44 0.66 2.3 43 43 289 Pitot Coefficient: 0.84 2 0.43 0.66 2.2 43 43 290 3 0.42 0.65 2.2 44 44 289 Initial imttinnerVolume/W_ et hts: _ 4 0.40 0.63 2.1 44 44 288 Impinger 1 (ml) 565.0 131 0.48 0.69 2.5 46 46 289 Impinger 2(ml) 696.7 2 0.50 0.71 2.6 47 47 290 Impinger 3(ml) 690.2 3 0.52 0.72 2.7 48 48 290 lmpinger4(ml) 620.2 4 0.50 0.71 2.6 48 48 289 Impinger 5(ml) 714.7 Cl 0.63 0.79 3.3 51 51 290 Impinger 6(ml) 723.3 2 0.60 0.77 3.1 56 56 291 Impinger 7(g) 876.4 3 0,56 0.75 2.9 58 58 290 4 0.51 0,71 2.7 60 60 290 Final im In erVolumelWei hts: D1 0.46 0.68 2.4 61 61 289 Impinger 1 (ml) 648.3 2 0.48 0.69 2.5 62 62 289 Impinger 2(ml) 907.5 3 0.45 0.67 2.3 62 62 290 Impinger 3(ml) 823.0 4 0.42 0.65 2.2 62 62 290 lmpinger4(ml) 649.8 E1 0.46 0.68 2.4 63 63 287 Impinger 5(mt) 732.9 2 0.45 0.67 2.3 63 63 288 Impinger 6(ml) 728.7 3 0.44 0.66 2.3 64 64 288 Impinger 7(g) 902.6 4 0.44 0.66 2.3 65 65 287 F1 0.46 0.68 2.4 66 66 290 *Oz (Outlet) : 10.5 2 0.44 0.66 2.3 66 66 290 3 0.45 0.67 2.3 67 67 289 *CO2(Outlet): eA 4 0.43 0.66 2.2 67 67 290 *CO (Outlet) Bar.Pressure("Hg): 29.73 Static Pressure("H2O): -8.0 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): F 552.153 Leak Check Volume(dcf): Meter Vol.Initial(dct): 448.820 Start Time: 7:50 End Time: 10:00 AVERAGE: 1 0.47 0.69 2.46 56.5 56.5 289.3 NE013AS-021420-RT-1303 Appendix A-Page 124 of 135 Input Data FacliltylSlte: Wheelabrator 1 North Andover Rate: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 10:22 Run No.: U2-FF Out-M5129-Run 4 Stop Time: 12:27 Travorse Delta P 5guaro Root Delta H pry ans Meter Temps. Stack Stack Diameter("): n1a polnt ("H20) Delta ("H20) IntatIF) Outlet(F) Tsmp.)F) Stack Area(ft) 64.9 Nozzle Diameter("j: 0.310 Al 0.44 0.66 2.3 66 66 290 Pltot Coefficient: 0.84 2 0.42 0.65 2.2 67 67 290 3 0.45 0,67 23 67 67 289 Initial lm in erVolume/Wei ihts: 4 0.41 0.64 2.1 67 67 288 Impinger 1 (ml) 659.6 131 0.40 0.63 2.1 69 69 290 Impinger 2(ml) 709.3 2 0.42 0.65 2,2 70 70 89 Impinger 3(ml) 702,5 3 0.38 0.62 2.0 72 72 289 impinger44(ml) 620.0 4 0.40 0.63 2.1 74 74 290 Impinger 5(ml) 726.9 C1 0.44 0.66 2.3 71 71 290 impinger 6(ml) 721.7 2 0.45 0.67 2.3 72 72 290 Impinger 7(9) 832.1 3 0,43 0.66 2.2 72 72 290 4 0.44 0.66 2.3 72 72 291 FinallmpinnerVolumelWel hts: D1 0.50 0.71 2.6 72 72 290 Impinger 1 (mi) 675.1 2 0.62 0.72 2.7 72 72 289 Impinger 2(ml) 924.3 3 0.64 0.73 2.8 72 72 289 Impinger 3(ml) 778.7 4 0.51 0.71 2.7 73 73 290 Imp]nger4(mi) 638.5 E1 0.48 0.69 2.5 74 74 290 Impinger 5(ml) 732.7 2 0.49 0.70 2.5 75 75 290 Impinger 6(ml) 724.0 3 0.45 0.67 2.3 76 76 290 Impinger 7(9) 852.8 4 0.44 0.66 2.3 76 76 289 F1 0.44 0.66 2.3 76 76 290 *Oz (Outlet) : 10,9 2 0.45 0.67 2.3 77 77 290 3 0.42 0.65 2.2 77 77 290 %COz(Outlet): 8,6 4 0A6 0.68 2.4 77 77 289 CO (Outlet); Bar.Pressure("Hg): 29.73 Static Pressure("H2O); -8.0 No.of Traverse Points: 24 Run Duration(minutes): 120 Meter Vol.Final(dcf): 661.821 Leak Check Volume(dcf): 0.000 Meter Vol.Initial(dct : 562,605 Start Time: 10:22 End Time: 12;27 AVERAGE: 0,45 0.67 2.34 72.3 72.3 281.3 k NE013AS-021420-RT-1303 Appendix A-Page 125 of 135 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. I &2 Test❑ates: October 18-19,2022&October 25-28,2022 All Unit No. 2 PCDDIPCDFs MONTROSE to, AH; 00-M'ly NE013AS-021420-RT-1303 Appendix A-Page 126 of 135 PCDD/DF EMISSION CALCULATION SHEET Facillty/Site: Wheelabratorl North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-M23-Run 1 Stop Time: 13:43 Emlaslon rates Analytical Results C. Mn C. ngiDSCM PMR Anal p6 ng ngIDSCM @7%0, Whr 2005 WHO Toxic E uivatent Tetra-Octa) Total pg(including NDs&EMPCs) 1 190 1 1.9E-01 1 3.41E-02 4.52E-02 1,24E-08 Total pg Not Including NDs&EMPCs) 1 141 1 ME-01 I 2,53E-02 3.35E-02 9.22E-09 1991 MA Toxic Eq ulvalenl Tatra-Octa Total pp(Includinp NDs&EMPCs 713 7.1 E-01 1.28E-01 1.70E-01 4.66E-08 Total Not Including NDs&EMPCs 659 6.6E-D1 1.18E-01 1.57E-01 4.31E-08 Dioxin and Furans-Total PCDDs and PCDFs Total (Including NDs&EMPCs 21300 2.1 E+01 3.83E+00 5.07E+00 1.39E-06 Total pg(Not Including NDs&EMPCs} 2D400 2.0E+01 3.66E+00 4.85E+00 1.33E-06 Blank values are not substracted from the emiselon resulls Input Values: Equations: V,,,Standard(BSCF) = 196.57 C.(ngIDSCM) W(Mn(ng))I(Vm Sid 136,3146) Q. (DSCFH) — 6.831,333 c,(ngIDSCM)A7%03 p C.(13.91(20.9%02)) Corrected to%02 = 7.00 %(DSCFH) =3600 %0, — 10,40 0,(DSCFM) Q.(DSCFH)(0.02832) %CO, = 9.10 JPMR(Iblhr) =C.(ng/dscm)`2.204622E-12"Q,(dscth)'0.02832 i NE013AS-021420-RT-1303 Appendix A-Page 127 of 135 PCDD/DT EMISSION CALCULATION SHEET Eacilityl5ite; Wheelabrator I North Andover Date: 10/19/22 Source: Unit No.2 FF Outlet Start Time; 7:60 Run No,; U2-M23-Run 2 Stop Time: 11:54 Emission rates Analytical Results C, Mn C. ng1DSCM PMR Analyto pg ng ng1DSCM @7%02 1131hr 2005 WHO Toxic Equivalent Tetra-Octa Total Pg iincludingNDs&EMPCs 315 3.2E-01 I 5.40E-02 7.61 E-02 2.06E-08 Total pg(Not Including NUB&hMPUB) 2 __2.UE-01 1 5.0 1 E-02 -02 .9 B 1991 MA Toxic Equivalent Tetra-Octa Total (including NDs&EMPCs 1020 1.0E+00 1.75E-01 2.43E-01 6.69E-08 Total pg(Not Including NRs&EMPCs) 944 9.4E-01 1.62E-01 2,25E-01 6.19E-08 Dioxin and Furans-Total PCDDs and PCDF9 Total Includin NDs&EMPCs 30000 1 3.0E+01 5.15E+00 7.15E+QQ 1.97E-06 Total pg(Not Including NDs&EMPCs) 28400 1 2.8E+01 4.87E+00 6.77E+00 1.86E-06 Blank values are not subsiracted from the emission results Input Values; Equations: Vm Standard(DSC1F) = 206.84 C.(ng![]SCM) _(Mn(ng)1(ym Sid 135,3146) Q, (DSCFH) = 6,119,659 0,(ng1DSCM)@7%02 =C.(13.91(20.9-%02)) Corrected to%02 = 7.00 Q,(DSCFH) =3600(1-H,,,)(V.)(A,)(528129.92)(P,)/(T,) %02 = 10.90 Q,(DSCFM) =Q.(DSCFH)(0.02832) °/.CO2 8.60 IPMR(iblhr) C.(ngldsCot)"2.204622E-12'Q,(dscfh)'0.02832 e NE01 3AS-021420-RT-1 303 Appendix A-Page 128 of 135 PCDD/DF EMISSION CALCULATION SHEET Facility/Site: Wheetabrator 1 North Andover Date: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 12:38 Run No.: U2-M23-Run 3 Stop Time: 16:42 Emission rates Analytical Results C, Mn Ca nUIDSCM PMR Analyte P9 ng ng)DSCM @7%02 Whir 2005 WHO Toxic Equivalent Tetra-Octa Total (including NDs&EMPCs 424 4.2E-01 I 7.42E-02 1.05E-01 2.73E-08 Total pg(Not including NDs&EMPCs) 232 2.3E-01 4.06E-02 5.76E-02 1.50E-08 1991 MA Toxic Equivalent Tetra-Octa Total (Including NDs&EMPCs 1220 1.2E+o0 2,14E-01 I 3.05E-01 7.87E-08 Total pg(Not Including NDs&EMPCs) 1 1110 1.1 E+00 1.94E-01 2.76E-01 7.16E-08 Dioxin and Furans-Total PCDDs and PCDFs Total (including NDs&EMPCs 33800 1 3.4E+01 5.92E+00 8.39E+00 2.18E-06 Total pg(Not Including NDs&EMPCs) 1 33200 1 3,3E+01 6.81 E+00 8.24E+00 2.14E-06 Blank values are not substractsd From the emission results Input Values: Equations: V,n Standard(DSCF) = 201,77 C.(nglD5CM) =(Mn(ng))/(Vm Std 136.3146) Q, (DSCFH) = 5,901,067 C,("910SCMl@7%02 W C,(13,91(20,)%02)) Corrected to%0, A 7.00 Q,(DSCFH) =3600(1-Bw.)(V,)(A,)(628129.92)(P,)/(TB) %O, = 11.10 0,108CpM) =Q.(DSCFH)(0,02832) °la CO, - 8.40 PMR(Ibthr) =C,(ngldscrn)*2.204622E-12*Q,(dsclh)*0.02832 is NE013AS-021420-RT-1303 Appendix A- Page 129 of 135 Isokinetic Calculations Pac111ty1Slte: Wheelabrator 1 North Andover Date: 10/18/22 Source: Unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-M23-Run 1 Stop Time: 13:43 TB("F) = 290.8 02(%vd) = 10.4 V.(dcf) = 196.223 T,(OR) = 750.8 CO2(%vd) = 9.1 QH (Abs)("Hg) = 29.77 Tm(OF) = 80.2 CO(%vd) = 0.0 P.("Hg) = 29.01 Tstd(*R) = 540.2 N2(%Vd) = 80.5 SQRT A P = 0.6551 V,(Total gain) = 1081.2 CR = 0.84 Y = 1.0301 V, (adj.for sat.) = NA Run Time(min.) = 240 A„(#t) = 0.000531 Vm std = (Tstd)(V jM(A H Abs) = 196.568 dscf (Pstd)(Tm) Vw std 0.04706(VI Total gain) - 50.881 scf Bws = Vw(std) / Vm(std)"f Vw(W) - 0.206 l3m = by steam tables = NA 1 -Bw - 0.794 Md = 0.440 (%CO2) 0.320 MOO 0.280 (%N2+%CO) = 29.872 IbIlb-mole M8 = Md(I-B.) + 18 (B.) - 27.431 lb/lb-mole G = SQRT(Ts(abs)/Ps Ms) = 0.971 Vs = 85.49(Cp) (G) (SQRTA P) 45.693 fps Qe = 3600 (1-B.)(V.)(A)(Ts,d P&JPstd T.(abs)) - 6,831,333 dscfh 3600(Vs) (As) = 10,765,298 acfh acfh/60 - 179,422 acfm = (T.)(V.std) (Paid) 100 = 103.9 %Iso}dnetic (T IM) (Vr,) (An) (PS)60(1-Bw8)(Run Time) NEW 3AS-021420-RT-1303 Appendix A-Page 130 of 135 r Isokinetic Calculations Faclilty/Site: Wheelabrator 1 North Andover Date: 10/19/22 Source: Unit No, 2 FF Outlet Start Time: 7:50 Ran No.: U2-M23-Run 2 Stop Time: 11:54 T.(OF) = 290.2 02(%vd) = 10.9 V.(dcf) = 199,868 Ts(OR) = 750.2 CO2(%Vd) = 8.6 AH (Abs)("Hg) = 29.90 Tm(OF) = 67.8 CO(%vd) = 0.0 Pa("Hg) = 29.14 T.Id(OR) = 527.8 N2(%vd) = 80.5 SQRT a P = 0.6674 Vi (Total gain) = 961.5 Cp = 0.84 Y = 1.0301 IV, (adj.for sat.) = NA lRun Time (min.) = 240 1& (ft) = 0.000531 Vm std _ (T&td)(Vm)(Y)(0 H Abs) - 205.844 dscf (Patd)(Tm) Vw std = 0.04706(VI Total gain) 45.248 sof Bwa = Vw(aid) 1 Vm(atd)+VW(atd) - 0.180 Bm = by steam tables = NA 1 -B. = 1 -B,,B - 0.820 Md = 0.440 MCO2) 0.320 MOO 0.280 (%N2+%CO) - 29.812 lb/lb-mote Ma = Md(1-B.) + 18(B.) - 27.683 lb/lb-mole G = SORT(Ts(abs)IPs Ms) 0.964 V. = 85.49 (Cp) (G) (SQRTO P) - 46.219 fps Q& = 3600 0-Bw.)(Va)(A)(Tstd P./P.Id T.(abs)) - 6,119,659 dscfh = 3600 (Vs) (As) - 10,889,094 acrh = acfh 160 181,485 acfm - (Ta) (Vm std) WSW) 100 = 103.7 %Isokinetic Mid) (V.} (A„}(Pa)60(1-B,,,)(Run Time) NE013AS-021420-RT-1303 Appendix A-Page 131 of 135 Isokinetic Calculations Facility/Site: Wheelabrator 1 North Andover Date: 10119122 Source: Unit No. 2 FF Outlet Start Time: 12:38 Run No.: U2-M23-Run 3 Stop Time: 16:42 T.(OF) = 290.4 02(%vd) = 11.1 V.(dcf) = 200.030 T.(OR) = 750.4 CO2(%vd) = 8.4 AH (Abs)("Hg) = 29.90 T.(OF) = 78.9 CO(%vd) = 0.0 Ps("Hg) = 29.14 Tstd(OR) = 538.9 N2(%vd) = 80.5 SQRT A P = 0.6491 Vt(Total gain) = 998.5 Cp = 0.84 Y = 1.0301 IV,(ad].for sat.) = NA Run Time(min.) = 240 A„(ft) = 0,000531 V,std = (Tgtd)(Vm)(Y)(A H Abs) = 201.774 dscf (P6(d)(TM) V,w std = 0.04706 (VI Total gain) = 46,989 scf B",s = VW(std) 1 Vm(Bid)'�VW(std) 0,189 B,,, = by steam tables = NA 1 -Bwa = 1 -B,,r, = 0.811 Md = 0.440 (%CO2) 0.320 (%02) 0.280 (%N2+%CO) -- 29.788 Ibllb-mole M$ = Md 0-13.) •+ 18 (13.) = 27.501 Ibllb-mole G = SQRT(Ts(abs)1Ps Ms) 0.967 V3 = 86.49(Cp) (G) (SQRTA P) = 45.057 fps Q. = 3600 (1-B,,.)(VB)(A)(Tstd PdP&tdTjabs)) -- 5,901,067 dscfh = 3600(Vs) (As) _ 10,615,642 acfh = acfh 160 = 176,926 acfm I = (T.)W.Std) (Pstd) 100 - 105.4 %isokinetic (Tgtd) (V.) (An) (Ps)60(1-B„,)(Run Time) NEW 3AS-021420-RT-1303 Appendix A-Page 132 of 135 Input Data FacilIWSite-, Wheelahrator 1 North Andover Date: 10/18122 Source: unit No.2 FF Outlet Start Time: 9:40 Run No.: U2-1023-Run 1 Stop Time: 13:43 7ravetae Delta P Squarn Rant Dells H Dry Gas Meter Tempe. Stack Stack Diameter("): nla Faln! 1"11201 Delta P ("HIG) Inlet(F) Oatlet(F) Temp.(F) Stack Area(ft) : 66.44 Nozzle Diameter("): 0.312 Al 0.36 0.60 1.9 63 62 286 Pilot Coefficient: 0.84 1 0.36 0.60 1.9 64 63 289 2 0.37 0.61 2.0 67 62 290 Initial Impinger Volume/Wei hts: 2 0.37 0.61 2.0 68 62 290 Impinger 1 (ml) 374.7 3 0.41 0.64 2.2 72 63 290 Impinger 2(ml) 700.6 3 0.41 0.64 2.2 73 63 292 Impinger 3(ml) 690.2 4 0.36 0.60 1.9 76 65 290 Impinger 4(ml) 608.7 4 0.36 0.60 1.9 78 65 290 Impinger 5(ml) 852.7 131 0.37 0.61 2.0 79 66 288 Impinger 6(mi) - 1 0.37 0.61 2.0 81 68 289 Trap(g) 301.1 2 0.38 0.62 2.0 81 68 290 2 0.38 0.62 2.0 82 68 290 Final Im in er Volum !W I h : 3 0.50 0.71 2.7 83 70 290 Impinger 1 (ml) 1041.4 3 0.50 0.71 2.7 85 70 290 Impinger 2(ml) 909.6 4 0.50 0.71 2.7 85 71 290 Impinger 3(mi) 807.9 4 0.50 0.71 2.7 85 72 289 Impinger4(ml) 612.4 C1 0.43 0.66 2.3 85 73 289 Impinger 6(ml) 900,E 1 0.43 0.66 2.3 85 73 290 Impinger 6(ml) _ 2 0.42 0.65 2.2 85 73 290 Trap(g) 337.3 2 0.42 0.65 2.2 85 73 290 3 0,37 0.61 2.0 66 74 292 %Ox (Outlet): 10.4 3 0,37 0.61 2.0 86 74 292 4 0,42 0,65 2.2 87 75 290 %CO2(Outlet); 9.1 4 OA2 0,65 2.2 87 75 290 D1 0.36 0.59 1.9 88 75 290 %CO (Outlet): DO 1 0.35 0.59 1.9 88 76 290 2 0.38 0.62 2.0 89 77 293 Bar.Pressure("Hg): 29.60 2 0.38 0.62 2.0 89 77 293 3 0.44 0.66 2.3 90 77 296 Static Pressure("H2O): -8.0 3 0.44 0.66 2.3 90 77 294 4 0.44 0.66 2.3 90 77 290 No.of Traverse Points: 24 4 0.44 0.66 2.3 91 78 290 E1 0.46 0.68 2.4 92 79 285 Run Duration(minutes): 240 1 0.46 0.68 2.4 92 80 285 2 0.44 0.66 2.3 93 80 286 Meter Vol.Final(dcf); 428,109 2 0.44 0.66 2.3 93 80 286 Leak Check Volume(dcf). 0,901 3 0.45 0.67 2A 93 80 293 Meter Vol.Initial(dcf); 1 230.985 1 3 0.45 0.67 2.4 94 81 293 4 0.45 0.67 2.4 94 81 296 4 0.45 0.67 2.4 96 82 296 F1 0.50 0.71 2.7 95 82 292 1 0.50 0.71 2,7 95 83 292 2 0.52 0.72 2.8 96 83 293 2 0.52 0.72 2.8 95 83 293 3 0.52 0.72 2.8 94 83 294 3 0.52 0.72 2.8 95 83 295 4 0.50 0.71 2,7 95 83 294 4 0.50 0.71 2,7 94 83 294 AVERAGE: 0.43 0.66 2.28 86.0 74.3 290.8 NE013AS-021420-RT-1303 Appendix A-Page 133 of 135 Input Data Facllity/Site: Wheelabrator/north Andover Date: 10/19/22 Source: unit No.2 FF Outlet Start Time: 7:50 Run No,: U2-M23-Run 2 Stop Time: 11:54 W Travarae Della P Square Root Delia H Dry Qua Meter Tempe. Stack Stack Diameter("): n/a Point ("HaO) Detta P I"Ha0) Inlet(F) Oullet(Fj Tamp,(F) Stack Area(fe) 65.44 Nozzle Diameter("): 0.312 Al 0.55 0.74 2.92 45 43 285 Pitot Coefficient: 0.84 1 0.56 0.74 2.92 47 43 285 2 0.54 0.73 2.86 51 44 289 Initial Ire In er VolumelWe!ihts: 2 0.64 0.73 2.85 53 45 289 Impinger 1 (ml) 377.1 3 0.51 0.71 2.70 55 45 290 Impinger 2(ml) 707.8 3 0,51 0.71 2.70 58 46 290 Impinger 3(ml) 687.1 4 0.48 0.69 2.54 60 47 292 Impinger 4(ml) 607.9 4 0.48 0.69 2.54 61 48 292 Impinger 5(ml) 941.0 131 0.60 0.71 2.65 62 48 289 Impinger 6(ml) - 1 0.50 0.71 2..65 64 49 289 Trap(9) 334.8 2 0.47 0.69 2.49 66 51 291 2 0.47 0.69 2.49 67 52 291 Final Imuintyer VolumeMal hts: 3 0.45 0.67 2.39 69 53 292 Impinger 1 (m!) 1024.0 3 0.45 0.67 2.39 70 54 292 Impinger 2(ml) 906.7 4 0.50 0.71 2.65 70 54 289 Impinger 3(ml) 735.3 4 0.60 0.71 2.65 71 55 289 Impinger4(ml) 607.9 C1 0.39 0.62 2,07 71 56 292 Impinger 5(ml) 997.5 1 0.39 0.62 2.07 72 57 292 Impinger 6(ml) - 2 0.41 0.64 2.17 73 58 292 Trap(g) 345.8 2 0.41 0.64 2.17 74 58 292 3 0.44 0.66 2,33 75 59 293 %02 (Outlet): 10.9 3 0.44 0.66 2.33 76 60 293 4 0.47 0.69 2.49 76 61 291 %COz(Outlet): 8.6 4 0.47 0.69 2.49 77 61 291 D1 0.44 0.66 2,33 75 62 291 %CO (Outlet) : ® 1 0.44 0.66 2.33 76 63 291 2 0.44 0.66 2,33 77 63 292 Bar.Pressure("Hg): 29,73 2 0.44 0.66 2.33 78 63 292 3 0.40 0.63 2.12 79 64 291 Static Pressure("H2O): -8.0 3 0.40 0.63 2,12 81 65 291 4 0.45 0.67 2,39 82 66 290 No.of Traverse Points: 24 4 0.45 0.67 2,39 82 67 290 E1 0.34 0.59 1.82 84 68 289 Run Duration(minutes): 240 1 0.43 0.66 2.28 84 68 289 2 0.42 0.65 2.23 85 70 290 Meter Vol.Final(dcf): 628.765 2 0.42 0.65 2.23 86 70 290 Leak Check Volume(dcf): 0,539 3 0.47 0.69 2.49 87 72 291 Meter Vol.Initial(dcf): 428.368 3 0.47 0.69 2.49 87 72 291 4 0.46 0.68 2.44 87 73 289 4 0:46 0.68 2,44 87 73 289 F1 0.36 0.69 1.86 87 73 286 1 0.35 0.59 1.86 87 73 286 2 0.37 0.61 1.96 89 75 289 2 0.37 0.61 1.96 88 75 289 3 0.41 0.64 2.17 89 75 290 3 0.41 0.64 2.17 89 76 290 4 0.42 0.65 2.23 89 76 291 4 0.42 0.65 2.23 89 76 291 AVERAGE: 1 0.45 0.67 2.37 74.7 60.9 290.2 NE013AS-021420-RT-1303 Appendix A- rage 134 of 135 Input Data Facility/Site: Wheelabrator/North Andover Date: 10/19/22 Source: Unit No.2 FF Outlet Start Time: 12:38 Run No.: U2-M23-Run 3 Stop Time: 16:42 Traverse Delta P Square Root Delta H Dry Gas Mater Tamps. Stack Stack Diameter("): nla Point ("H2O) Delia P ("H20) Irnlat(F) Outlet(Fl Temp.(Fl Stack Area(ft) 65.44 Nozzle Diameter CT 0.312 Al 0.36 0.60 1.91 74 72 286 Pitot Coefficient: 0.84 1 0.36 0.60 1.91 77 72 286 2 0.32 0.57 1.70 79 72 287 initial Impinger VolumelWel ihts; 2 0.32 0.57 1.70 81 72 287 Impinger 1 (mi) 375.8 3 0.36 0.60 1.91 81 72 290 Impinger 2(ml) 7%2 3 0.36 0.60 1.91 82 72 290 Impinger 3(ml) 721.0 4 0.42 0.65 2.23 83 73 291 impinger4(ml) 502.5 4 0.42 0.65 2.23 84 73 291 Impinger 6(ml) 916,4 131 0.38 0.62 2.01 84 73 289 Impinger 6(mi) - 1 0.38 0.62 2.01 85 73 289 Trap(g) 333.8 2 0.38 0.62 2.01 85 73 290 2 0.38 0.62 2.01 86 74 290 Final Im in er Volume/Wei hts: 3 0.47 0.69 2.49 86 74 292 Impinger 1 (ml) 1025.5 3 0.47 0,69 2.49 86 74 292 Impinger 2(ml) 906.6 4 0.49 0,70 2.60 86 75 292 Impinger 3(ml) 805.1 4 0.49 0.70 2.60 85 74 292 Impinger4(mi) 504.8 C1 0.45 0.67 2.39 85 74 289 Impinger 5(ml) 964.5 1 0.45 0,67 2.39 85 74 289 Impinger 6(ml) - 2 0.44 0.66 2.33 85 74 290 Trap(g) 351.7 2 0.44 0.66 2.33 86 74 290 3 0.41 0.64 2.17 86 74 291 %Ox (Outlet); 11.1 3 0.41 0.64 2.17 86 74 291 4 0.43 0.66 2.28 86 74 289 %CO2(Outlet): 8.4 4 0,43 0.66 2.28 86 74 289 DI 0.38 0.62 2.01 83 74 292 %CO (Outlet) : ® 1 0.38 0.62 2.01 83 74 292 2 0.45 0.67 2.39 84 74 293 Bar.Pressure("Hg): 29.73 2 0.45 0.67 2.39 85 74 293 3 0.48 0.69 2.54 85 74 290 Static Pressure("H20); -8.0 3 0.48 0.69 2.54 85 74 290 4 0.48 0.69 2.54 85 74 291 No.of Traverse Paints: 24 4 0,48 0,69 2.54 85 74 291 El 0.47 0.69 2.49 85 74 290 Run Duration(minutes): 240 1 0.47 0.69 2.49 85 74 290 2 0.45 0.67 2.39 85 74 292 Meter Vol.Final(dcf): 8297765 2 0.45 0.67 2.39 85 74 292 Look Check Volume(dcf): 0.640 3 0.45 0.67 2.39 85 74 292 Meter Vol.Initial(dcf): 620.095 3 0.45 0.67 2.39 85 74 292 4 0.47 0.69 2.49 85 74 291 4 0.47 0A9 2.49 85 74 291 F1 0.53 0.73 2.81 84 74 290 1 0.53 0.73 2.81 84 74 290 2 0.53 0,73 2.81 84 74 291 2 0.53 0.73 2.81 84 74 291 3 0.60 0.71 2.65 84 74 291 3 0.50 0.71 2.65 84 74 291 4 0.48 0.69 2,54 84 74 290 4 0.48 0.69 2.64 84 73 290 AVERAGE: 0.44 0.65 2.34 84.1 73.6 290.4 NE013AS-021420-RT-1303 Appendix A-Page 135 of 135 Wheelabrator Environmental Systems, Inc.--Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test Dates: October 18-19,2022&October 25-28,2022 APPENDIX E Process Data E1 Process Parameters' Test Interval Averages E2 Continuous Opacity Monitoring System (COMS) data r I) MONI"ROSI NEW 3AS-021420-RT-1 303 Appendix E- Page 1 of 7 VVhoolabmwtorEnoironman0* VVhoelabnstorN.Andover |no Compliance Test Program on Unit Nos, I &2 \ ' / � � N� n� ` �_ Process~~.~~~~~~~ Parameters' Test Interval Averages � � � � ` ������]-�[��� ' '`^ ^^^^ | Al", ���."� .m.�� | NE813AS-021428-RT-1803 Appendix E'Page 2of7 z M 0 i W a 6 ro N DA5 Data Averaged Over Test Intervals o Wheelabrator North Andover FRDIN DAs FROM Di5TRIBUTWE CONTROL(PLC)SYSTEM Steam Carbon FF Feed SDA SUA Slurry ptluton Percent Fabric Fabric Urea Flow Row Inlet Water Inlet Total Flow H2O Slurry Filter Filter Flow Unit Run Time Temp Flow Temp Flow Row Delta-P Outlet Test No. No. Date Start Stop ]dbs/hr lbs/hr deg F Klb/hr deg F gpm gpM gpm % In.H2O INWC GPM 1 1 10/27/2022 09-25 21:35 165.3 12 3-10 163.0 %3 43.7 7A 36.3 16.9 7-6 -10.5 5.4 TSP/Metals 2 2 10/27/2022 12:50 1533 10.0 12 309 132A 518 43.9 8.8 35.1 20.1 7.5 -10.3 5.5 (M29;MS/M29) 1 3 10/27/2022 1550 2&02 16&0 12 309 163.5 522 45.0 8.1 36.9 17.8 7-6 -10.4 7.2 Inlet/Outlet 1 4 10/28/2022 08:15 10:20 166.6 12. 1 3M 164.4 518 1 44.3 7.8 1 36.5 17.5 7.5 -10.3 4.7 8nW 16.5.7 12 309 15S.8 SU 44.2 SA 35.2 1&1 7.6 -10A 5.7 a Condensable PM 1 1 10/27/2022 9:25 1135 165.3 1.2 310 163.0 523 433 7.4 363 16.9 7.6 -105 &4 a (N=) 1 2 10/27/2022 12 50 15:13 165.0 12 309 132.4 518 439 8 8 35.1 20.1 7.5 -103 5S CD Outlet 1 3 10/27/2022 I550 1.8:02 166.0 12 309 1635 522 45.0 &1 36A 17.8 7.6 -10.4 7.2 Average 10.4 12 309 193.0 518 44.2 &1 36.1 1" 7.6 -10.4 6.0 a x HCL/NH3 1 1 10/27/2022 9:25 10.25 165.9 12 310 162E 511 43.3 7.5 35.8 17A 7.6 -10-5 5-6 I (M26A) 1 2 10/27/2022 22:50 1350 165.5 12 3W 1629 519 44.2 8.5 35.7 19-3 7.6 -10.4 SA -0 Inlet/outlet 1 3 10/27/2022 15:50 16:50 3.63.5 12 310 1.619 520 44.4 8.3 S&2 1&6 7.5 -10.3 7.8 cn Average 265.6 12 3" 162.9 517 44.0 8.1 35.9 =4 7.6 -10A 6.2 O PCDD/PCDF 1 1 10/25/2022 7.50 11.55 165.6 12 309 163.2 501 39.6 7.9 3L7 20.0 6-9 -9.7 6.5 W O (Mn) 1 2 10/Z5/2022 12:15 16-so 164.7 12 309 1616 508 41.8 7.9 33.4 1&8 7.1 -9.9 5.5 Outlet 1 3 10/26/2022 7:35 11:40 155.8 12 310 163.7 5D8 41.4 7.0 34.3 17.0 7.2 -10.0 5.0 Average 163A 12 309 163.2 S06 409 7.6 99.2 116 7.1 -9.8 5.7 TSP/Metals 2 1 1D/18/2022 9.40 11:53 166.4 13 310 164.6 471 27-1 8.7 18.4 31.7 6.1 -8S 7.9 (M29;MS/M29) 2 2 iD/1812022 12:38 15:50 166.7 12 310 163.9 478 27.6 6.8 20.8 245 6.1 -8.5 a6 Inlet/Outlet 2 3 10/19/2022 7:$0 10:00 165.2 13 310 262.8 476 27.2 9.0 19.2 29.1 6.2 -8.7 &E 2 4 10119 10:22 12:27 165.9 11 310 163.4 476 27-4 95 17S 34.5 6.1 -8.5 6.2 Average 166.1 12 320 1617 475 Z7.3 83 19.1 30.0 &IL -&r, 7.4 HCL/NH3 2 1 1 10/78/2022 9:40 10:40 166.4 13 310 164-1 471 27.9 10.1 17.8 359 6.2 -&7 7.3 (M26A) 2 2 10/18/2022 12:38 13:38 157.5 12 220 164.3 476 27.4 6.6 20.9 24.0 6.1 8.6 9.0 Inlet/Outlet 2 3 10/19/2022 750 8:50 165.6 11 310 163.6 475 26.5 6.6 199 25.0 6.2 -&7 6.4 Averse 1665 12 310 164.0 474. 27.3 7.9 1915 28.3 6.2 -29 7.6 PCDD/PCDF 2 1 10/18/2022 9:40 13.43 166.7 12 310 164S 473 27.2 7.9 19-2 29.0 6.1 -&5 8.2 (M23) 2 2 10/19/2022 7:50 11:54 165.5 12 310 163.0 476 27.1 8.5 is.7 3L0 6.1 -8.6 6 2 Outlet 2 3 10/19/2022 12:38 16.42 165.4 12 1 310 1618 481 28.0 8.6 19.4 30.5 6.1 -&6 &1 Averse 1.65.9 12 1 310 163.4 477 27A &3 19.1 30.2 61 -8.6 7.5 Wheelabrator Environmental Systems, Inc.—Wheel abrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test Dates, October 18-19,2022&October 25-28,2022 EL Continuous Opacity Monitoring System (COMS) data MONTROSE NE01 3AS-021420-RT-1 303 Appendix E- Page 4 of 7 Unit 3 Outlet Unit 1 Outlet Unit 1 Outlet, Unit 1 Outlet, MS/29 Runt MS/29 Runt M5/29 Run3 M5/29 Run4 OPACITY3 OPACITY3 OPACITY1 OPACITY3 96 96 96 96 08:24 27.Oct-2022 0.7 11:43 27-Oct-2022 0.5 14:36 27-Oct-2022 0.5 07:12 28-Oct-2022 0.7 08:30 27-Oct-2022 0.6 11:54 27-Oct-2022 0.5 14.42 27.Oct-2022 0.5 07:18 28-Oct-2022 0.7 08:36 27-Oct-2022 0.7 12:00 27-Oct-2022 0.6 14:48 27.00-2022 0.5 07:24 28-Ott-2022 0.7 08:42 27-Oct-2022 0.6 32:06 27-Oct-2022 0.6 14:54 27-Oct-2022 0.5 0730 28-Ott-2022 0.7 08:48 27-Oct-2022 0.7 12.12 27-Oct-2022 0.6 15:00 27.Oct-2022 0.6 07:36 28-0ct-2022 0.7 08:54 27-Oct-2022 0.7 12:18 27-00-2022 0.6 15:06 27.act-2022 0.6 07:42 28-Ott-2022 0.7 09:00 27-Oct-2022 0.7 12:24 27-Oct-2022 0.6 15:12 27-Ott-2022 0.5 07:48 28-Oct-2022 0.7 09:06 27-Oct-2022 0.7 12:30 27-Oct-2022 0.6 15:18 27-Oct-2022 0.5 07:54 28-Oct-2022 0.7 09:12 27-Oct-2022 0.7 12:36 27.Oct-2022 0.6 15:24 27-Oct-2022 0.6 08:00 28-Oct-2022 0.7 09:18 27-Oct-2022 0.6 12:42 27-Oct-2022 0.7 15:30 27-Oct-2022 0.5 08:06 28-Oct-2022 0.7 09:24 27.Oct-2022 0.6 12:48 27-Oct-2022 0.6 15:36 27-Oct-2022 0.5 08:12 28.Oct-2022 0.6 09.30 27.Oct-2022 0.6 12:54 27-Oct-2022 OX 1.5:42 27-Oct-2022 0.5 08:18 28.Oct-2022 0.7 09:36 27-Oct-2022 0.6 13:00 27-Oct-2022 0.6 1S.48 27-Oct-2022 0.6 08:24 28-Oct-2022 0.6 09:42 27.Oct-2022 0.6 13:06 27-Oct-2022 0,5 15.54 27-Oct-2022 0.6 08:30 28.Oct-2022 0.6 09:48 27.Oct-2022 0.6 13:12 27-Oct-2022 0.6 16:00 27.Oct-2022 0.6 08:36 28-Oct-2022 0.6 09:54 27-Oct-2022 0.6 13:18 27-Ott-2022 0.6 16:06 27-Oct-2022 0.6 08:42 28-Oct-2022 0.6 10:00 27-Oct-2022 0.6 13:24 27-Oct-2022 0.5 16:12 27-Oct-2022 0.6 08:49 28-Oct-2022 0.6 10:06 27-Oct-2022 0.5 13:30 27-Oct-2022 0.6 16:18 27.Oct-2022 0.6 08:54 28-Oct-2022 0.6 1012 27-Oct-2022 0.5 13:36 27-Oct-2022 0.6 16:24 27.Oct-2022 0.5 09:00 28-Oct-2022 0.6 10:18 27-Oct-2022 0.6 13:42 27-Oct-2022 0.6 1630 27-Oct-2022 0.5 09;06 28-Oct-2022 0.6 10:24 27-Oct-2022 0.6 13:48 27-Oct-2022 0,6 1636 27-00-2022 0.5 0912 28-Oct-2022 0.7 10:30 27-Oct-2022 0.6 13:54 27-Oct-2022 0.6 16:42 27-Ott-2022 0.5 09:18 28-Oct-2022 0.7 10:36 27-Oct-2022 0.6 14:00 27-Oct-2022 0,6 16:48 27-Oct-2022 0.6 09:24 28-Oct-2022 0.7 14:06 27.Oct-2022 0.6 16:54 27-0 ct-2022 0.6 14:12 27-Oct-2022 0.5 17:00 27-Oct-2022 0.5 14:18 27-Oct-2022 0.6 17:06 27-Oct-2022 0.6 Average 0.6 0.6 0.9 0.7 NE013A5-021420-RT-1303 Appendix E- Page 5 of 7 Unit 2 Outlet Unit 2 Outlet Unit 2 Outlet, Unit 2 Outlet, INS/29 Runl M5/29 Runt M5/29 Run3 M5/29 Run4 MOM OPA[tTV2 OPA[tTY2 OPA[ITY2 9t; 96 96 96 08:36113-Oct-2022 0.7 11:361R-Oct-2022 0.7 06;4819-Oct-2022 0.8 09;1819-Ott-2022 0.9 08:4218.Oct-2022 0.7 11;4218-Oct-2022 0.7 06;5419-Oct-2022 0.8 09:2419-Oct-2022 0.8 08:4818-Oct-2022 0.7 11;4818-Oct-2022 0.7 07:0019-Oct-2022 0.8 09:3019-Oct-2022 0.8 08:5418.Oct-2022 0.7 11;5418-Oct-2022 0.7 07:0619-Oct-2022 0.8 09:3619-Ott-2022 0.8 09;0018-Oct-2022 0.7 12:0018-Oct-2022 0.7 07:1219-Oct-2022 0.8 09:4219-Oct-2022 0.8 09;0618-Oct-2022 0.8 12:0618.Ott-2022 0.8 07:1819-Ott-2022 0.8 09:4819-Oct-2022 0.8 09:1218-Oct-2022 0.7 12:1218-Oct-2022 0,7 07:2419-Oct-2022 0.8 09:5419-Oct-2022 0.9 09:1818-Oct-2022 0.7 12:1818-Oct-2022 0.7 07:3019-Oct-2022 0.8 16JI019-Oct-2022 0.8 09;2418-Oct-2022 0.7 12:2418.Oct-2022 0.7 07:3619-Oct-2022 0.8 10:0619-Oct-2022 0.8 09:3018-Oct-2022 0.7 12:3018-Oct-2022 0.7 07:4219-Oct-2022 0.8 10;1219-Oct-2022 0.8 09:3618.Ott-2022 0.7 12:3618-Oct-2022 0.7 07:4819.Oct-2022 0.8 10,1819-Oct-2022 0.8 09:4218-Oct-2022 0.7 12:4218-Oct-2022 0.8 07:5419-Oct-2022 0.8 10;2419-Oct-2022 0.8 09:4818-Oct-2022 0.7 12:4818.Oct-2022 1.1 08:0019-0ct-2022 0.8 10:3019-Oct-2022 0.8 09:5418-Opt-2022 0.7 12:5418.Oct-2022 1.1 08:0619-Ott-2022 0.8 10:3619-Oct-2022 0.8 10:0018.Oct-2022 0.7 13:0018-Oct-2022 1.1 08:1219-Oct-2022 0,8 10:4219-Oct-2022 0.8 10:0618-Oct-2022 0.7 13 06 18.Oct-2022 1.1 08;1819.Oct-2022 0.8 10:4819.Oct-2022 0.8 10:1218-Oct-2022 0.7 13:1218-Oct-2022 1.1 08:2419-Oct-2022 0.9 10:5419-Oct-2022 0.8 10;1818-Oct-2022 0.7 13:1018-Oct-2022 1.0 08:3019.Oct-2022 0.8 11:0019.Oct-2022 0.8 10:2418-Oct-2022 0.7 13:2418-Oct-2022 1,0 08:3619-Oct-2022 0.9 21:0619-Oct-2022 0.8 10:3018-Oct-2022 0.6 13:3018-Oct-2022 1.0 08;4219.Oct-2022 0.8 11;1219-Oct-2022 0.8 10:3618-Oct-2022 0.6 13;3618-Oct-2022 1.0 08;4819-Oct-2022 0.8 11:1819-Oct-2022 0.8 10:4218.Oct-2022 0.7 13:4218-Oct-2022 LO 08:5419-Oct-2022 0.8 11:2419-Oct-2022 0.9 10:4818.Oct-2022 0.7 13:4818-Oct-2022 1.0 09:0019-Oct-2022 0.8 11:3019-Oct-2022 0.8 10:541R-Oct-2022 0.7 13;5418-Oct-2022 0.8 14;0018-Oct-2022 0.7 14:0618.Ott-2022 0.6 14;1218-Oct-2022 0.6 14:1818-Oct-2022 0.6 14:2418-Oct-2022 0.6 14:3018-Oct-2022 0.6 14:3618-Oct-2022 0.6 14,4218-Oct-2022 0.6 14:4818-Ott-2022 0,6 14:5418-Ott-2022 0.6 Avery a BY 0.8 0.8 0,8 NE013AS-021420-RT-1303 Appendix E- Page 6 of 7 Wheelabrator Environmental Systems, Inc.—Wheelabrator N.Andover, Inc. Compliance Test Program on Unit Nos. 1 &2 Test Dates: October 18-18,2022&October25-28,2022 THIS IS THE LAST PAGE OF THIS DOCUMENT If you have any questions, please contact one of the following individuals by email or phone. Name: Mr. Michael Bruni Title: Client Project Manager Region; Northeast Region Email: mbruni@montrose-env.com Phone: 978.499.9300 x11306 NE013AS-021420-RT-1303 Appendix E-Page 7 of 7