Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
150 Flagship Stormwater
F Design Consultants, lnc° 12-B Manor Parkway m Salem, NH 03079 ^TEL (603)893-0720 a FAX(603) 893-0733 DRAINAGE ANALYSIS FOR PROPOSED SITE DEVELOPMENT ASSESSORS 25 LOT 82 150 FLAGSHIP DRIVE NORTH ANDOVER, MASSACHUSETTS Prepared By MET DESIGN CONSULTANTS, INC. 12-B MANOR PARKWAY SALEM,NEW HAMPSHIRE 03079 PROJECT#40996 Prepared For CHANNEL BUILDING COMPANY, INC. 242 NECK ROAD HAVERBILL, MASSACHUSETTS C April 26, 1996 ;s` Revised May 10, 1996 Revised June 13, 1996 f'� Revised June 24, 1996 ENGINEERS PLANNERS SURVEYORS TABLE OF CONTENTS Page PART I NARRATIVE I PART II HYDROLOGY 3-4 PART III HYDRAULICS 5-6 APPENDICES A PRE-DEVELOPMENT CONDITIONS B POST-DEVELOPMENT CONDITIONS C DETENTION FACILITY AND ROUTING TABLES D PIPE ANALYSIS E MISCELLANEOUS CHARTS, REFERENCE MATERIALS I. NARRATfVE A. Objective The project site is situated on a undeveloped 9.735 acre lot in the North Andover Business Park Extension in the Town of North Andover. (See Figure 1) The parcel is known as Lot 82, Map 25 and is located within the I-1 Industrial zone. The proposed development will consist of the construction of a 62,600 SF printing facility along with the associated parking and drainage facilities. The objective of this drainage analysis is to evaluate the impact of the proposed improvements with respect to on and off-site drainage, and to provide calculations for the proposed on-site drainage system as planned for in the original subdivision plan for the North Andover Business Park Extension. The original plan known as "Definitive Subdivision Plan, North Andover Business Park Extension, Willow Street -Flagship Drive", prepared by Thomas E. Neve Associates, Inc, dated December 1, 1989 called for the runoff for Lot 82 and a portion of lot 75 to be mitigated during the development of lot 82. This drainage analysis will analyze the proposed drainage system to include future development of lot 75. The proposed stormwater management plan will utilize the SCS TR20 methodology to calculate runoff peaks, runoff volumes and analyze the proposed drainage system for the estimated runoff in order to follow the design standards of the Town of North Andover Site Plan Regulations for the two, ten and one- hundred year storm events. The design of the proposed interior drainage system is based on common engineering routing techniques and hydraulic laws. 1 � • J fe 3.5 • • Il 38 m o v� ® -............. Lb 4 - • • • 86 _ v - .�- Ak- 00;-R t i : ; II HYDROLOGY A. Existing Conditions (see Appendix A) The existing lot is partially developed with moderate to steep topography. The existing topography produces one major drainage area which drains into a large wetland located to the east of the site(E 1). The runoff from the site consists of sheet flow and shallow concentrated flow towards the wetland. Hydrographs for the two, ten and one hundred year design storms under existing conditions can be found in Appendix A. Summary of Existing Hydrologic Conditions Design Storm Runoff Peak(cfs) Runoff Volume(Ac-Ft) 2-Year 4.80 0.82 10-Year 13.07 2.02 100-Year 28.00 4.18 B. Proposed Conditions (See Appendix B) The proposed development will consist of the construction of a 62,600 SF printing facility along with the associated parking and an interior drainage system. The proposed development will utilize a majority of the upland portions of this lot and will maintain the overall drainage master plan of the North Andover Business Park Extension as originally designed by Thomas E. Neve Associates, Inc.. The development will create three overall drainage patterns. Drainage area P 1 will consist of lot 82 and a portion of the developed lot 75. The proposed interior drainage system will collect a majority of the surface runoff from this area, and will detain the peak flow so that the peak runoff rates will be equal to or smaller than the pre-development conditions. The proposed drainage system will take into consideration the interception and bypass of the existing drainage patterns from any upland off-site areas via bypass swales(P2,P3). The southerly swale(P2)will collect the upstream runoff and direct it through the detention basin while the northerly swale (P3)will direct the off-site upstream runoff around the site and through a culvert under the proposed driveway. The runoff of the off-site uphill terrain will be bypassed around the site by the grass swales,no runoff hydro graphs were developed for these off-site areas. The proposed drainage system will provide a balance for the increase in runoff from the addition of impervious areas, via routing and reduced discharge from the proposed detention facility. Drainage area P4 will consist of the runoff from the first 360ft+/- of the entrance driveway. The runoff from drainage area P4 will be directed toward the drainage system of Flagship Drive via catch basins and concrete pipe as planned for in the original overall drainage master plan for the North Andover Business Park Extension. See appendix B for post development hydro graphs and appendix C for basin routing. 3 Summary of Proposed Hydrologic Conditions Pre-Detention Runoff(areas that will flow into the basin) Desi Storm RunoffPeak(cfs) Runoff Volume (Ac -Ft) 2-Year 10.68 1.05 10-Year 18.22 1.90 100-Year 29.71 3.28 Pre-Detention Runoff(areas that will not flow into the basin) Design Storm RunoffPeak(cfs) Runoff Volume (Ac -Ft) 2-Year 1.27 0.20 10-Year 3.32 0.49 100-Year 6.96 0.99 Post-Detention Runoff from the Detention Basin Design Storm RunoffPeak(cfs) 2-Year 3.66 10-Year 8.00 100-Year 15.89 (note: Summaries do not contain drainage area P4) C. Summary of Results The proposed drainage patterns are similar to the existing The total proposed site runoff peak during the two, ten and one hundred year design storms will be marginally less than the existing peaks due to the proposed detention basin and the outlet control structure. SUMMARY OF PEAK RUNOFFS Q2(cfs) Qio (cfs) Qioo (cfs) Pre-development Conditions 4.80 13.07 28.00 Post-development Conditions 4.93 11.32 22.85 NET DEFFERENCE 0.13 -1.75 -5.15 4 III.HYDRAULICS A. Introduction The proposed closed interior drainage system as well as the proposed collection system were designed in accordance with the Drainage Design Criteria and Standards of the Town of North Andover for the two, ten and one hundred year design storms. The design of the proposed drainage system will include water quality, and make provisions for erosion protection and sediment control to insure that minimum surface water quality standards are met. B. Existing Drainage System The existing on-site drainage system consists of sheet flows, small ditches, small swales and natural depressions which discharge naturally into the existing wetland located to the east of the site. C. Proposed Drainage System The proposed drainage system will consist of catch basins, manholes, RCP, drainage swales, a detention basin and an outlet control structure. A system of catch basins, manholes and concrete pipes will collect the runoff from the site and direct it into the detention basin. The detention basin will control the volumes of the storms and discharge the runoff at a rate equal to or less than the preexisting rate of runoff from the site. A system of catch basins will collect the runoff from the driveway and direct it into the pre-existing drainage system in Flagship Drive. A system of grass swales will direct a portion of the upland off-site runoff around the development site so the detention basin need not be sized to accommodate the total off-site runoff. D. Proposed Pipe System The pipes are sized to handle the 100-year design storm. This is necessary in order to convey the storm water into the basin from areas not directly upland of the detention basin. The pipe sizes and slopes were then checked using"STCRMCAD For Windows"by Haestad Methods. (See Appendix D for Calculations) E. Proposed Detention Facili The proposed detention facility will consist of an aboveground detention basin with an outlet control structure. The outlet control structure will mitigate the outflow from the basin for the two, ten and one hundred year design storms and direct it into a grass swale which outlets into the existing wetland area located to the east of the proposed construction. 5 The outlet control structure of the detention basin will utilize a 10 inch PVC pipe at elevation 244.00 to mitigate the outflow from the detention basin during the two year design storm. A rectangular weir set at elevation 246.50 will mitigate the outflow from the 10 year design storm. The outflow from the one hundred year design storm will be mitigated by the concrete box structure acting as a weir. The detention facility will have a twenty five foot emergency spillway with riprap located at the southern end of the detention basin. This spillway will prevent the deterioration of the berm around the basin should a storm larger than 100 year storm event occur. The proposed side slopes of the detention basin berm will be at a maximum of two to one, horizontal to vertical on the downslope side and three to one on the upslope side. The pond was analyzed utilizing the hydrographs produced by the SCS TR-20 computer program provided by Haestad Methods. The pond routing was performed utilizing the POND2 program also provided by Haestad Methods. D. Erosion Control Best management practices for erosion control and site stabilization during construction will be employed on the site to minimise soil erosion and to protect the adjacent areas from impacts associated with the proposed development during and after construction. The Proposed project will utilize both temporary and permanent erosion control and treatment measures for control of stormwater runoff. Temporary erosion control measures such as silt fence, hay bales and mulch will be used during construction of the project to minimize intrusion of soil erosion. These measures will remain in place until permanent stabilization is accomplished. Other measures for sedimentation and erosion control as well as water quality will include provisions for sumps in all catch basin structures along with riprap m areas were the flow merits it. The grass swales will prevent runoff from terrain upland of the site from flowing across the site and into the catch basins and detention basin. This will maintain water quality in the upland runoff and minimise the water that must be detained in the detention basin- E. Water Oualitv The bypass swales along the westerly and southerly property lines will direct upstream overland runoff around the site. This will prevent a mixing of clean natural runoff with the parking lot runoff. The parking lot runoff will be directed into the detention basin which will outlet through a grass treatment swale prior to discharging into the wetland. 6 i l APPEND A o s r ® t s �r p 1 2 i L W' - r p ******************************************************************************** * * TR 20 SIN * * HMVersion 3.40 * TR 20 * Date 6/25/96 * * Time 7:45:00 * Project Formulation Hydrology * Input file 409e100y.t20 * * Output file 409e100y.out A * i XXXXXXX XXXXXX xxxxx XXXXX X X X X X X XX X X X X X X X X XXXXXX X X X X X X X X X X X X X X X XX X X X X XXXXXXX XXXXX . .. . . . . . . . . .. . . . .. . . . . . .. . ... . . .. . . .. . . . . . . . . . . . . . . .. . ... . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . .. .. . .. . .. . . . . . . ... . .... . . .. . .. .. . . . . . . . . . . . . .. .... .. . . . . . . . . . . . .. . .... . .. . . . . . . Full Microcomputer Implementation by Haestad Methods, Inc. . .. ... . . . . ... . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . .. . .. . . ... . . .. . . . . ... ..... . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . .. ... . . . . . .. . . . . . ... . . . . . . .. . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . .. . . . . . . 37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666 ******************80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY****************** JOB TR-20 10 TITLE 001 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN revised 6/11/96 20 TITLE EXISTING 2 10 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 5 RAINFL 7 .1 8 0.000 0.001 0.002 0.003 0.004 e 0 y0, 8 0.005 0.006 0.007 0.008 0.009 8 0.010 0.011 0.012 0.013 0.014 8 0.015 0.016 0.017 0.018 0.019 8 0.020 0.021 0.022 0,023 0.024 ` r g 8 0.026 0.027 0.028 0,029 0.030 1 8 0.031 0.032 0.034 0.035 0.036 8 0.037 0.038 0.040 0.041 0.042 ' d` 8 0.043 0.045 0.046 0.047 0.049 8 0.050 0.051 0.053 0.054 0.055 8 0.057 0.058 0.060 0.061 0.063 / 8 0.064 0.066 0.067 0.069 0.070 / 8 0.072 0.074 0.075 0.077 0.079 8 0.080 0.082 0.084 0,085 0.087 8 0.089 0.091 0.093 0.095 0.097 8 0.100 0.103 0.106 0.109 0.112 8 0.115 0.118 0.121 0.124 0.127 8 0.130 0.134 0.137 0.140 0.144 8 0.14B 0.151 0.155 0.159 0.163 8 0.167 0.171 0.176 0.180 0.185 8 0.189 0.194 0.199 0.205 0.210 8 0.216 0.222 0.228 0.235 0.242 8 0.250 0.258 0.266 0.276 0.287 8 0.298 0.312 0.328 0.363 0.416 8 0.500 0.584 0.638 0.673 0.689 8 0.702 0.714 0.725 0.734 0.743 8 0.751 0.758 0.766 0.772 0.779 B 0.785 0.790 0.796 0.801 0.806 8 0.811 0.816 0.821 0.825 0.829 8 0.834 0.838 0.842 0.845 0.849 8 0.853 0.657 0.860 0.864 0.867 8 0.870 0.874 0.877 0.880 0.883 8 0.886 0.889 0.892 0.895 0.898 B 0.900 0.903 0.906 0.908 0.910 8 0.911 0.913 0.915 0.917 0.919 8 0.920 0.922 0.924 0.925 0.927 B 0.929 0.930 0.932 0.933 0.935 8 0.936 0.938 0.939 0.941 0.942 8 0.944 0.945 0.946 0.948 0.949 8 0.951 0.952 0.953 0.955 0.956 8 0.957 0.958 0.960 0.961 0.962 8 0.963 0.965 0.966 0.967 0.968 G 8 0.969 0.971 0.972 0.973 0.974 8 0.975 0.976 0.977 0.978 -0.979 8 0.981 0.982 0.983 0.984 0.985 8 0.986 0.987 0.988 0.989 0.990 8 0.991 0.992 0.993 0.994 0.995 8 0.996 0.997 0.998 0.999 1.000 8 1.000 1.000 1.000 1.000 1.000 9 ENDTBL 6 RUNOFF 1 001 1 0.021675 70. 0.741 1 1 1 140 6 RUNOFF 1 002 2 0.021675 70 0.7411 1 1 1 141 6 RUNOFF 1 003 3 0.021675 70 0.741 1 1 1 142 ENDATA 210 7 INCREM 6 0.10 220 7 COMPUT 7 001 001 0.0 3.0 17 2 01 01 230 7 COMPUT 7 002 002 0.0 4.6 17 2 01 02 235 7 COMPUT 7 003 003 0.0 7.0 17 2 01 03 237 ENDCMP 1 240 ENDJOB 2 250 OF 80-80 LIST**** **+++a+ ++*a***++tea* +** TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN revised 6/11/96 20 JOB 1 PASS 1 REV 09/01/83 EXISTING 2, 10, 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 2 EXECUTIVE CONTROL OPERATION INCREM RECORD ID 220 MAIN TIME INCREMENT = .10 HOURS EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 230 FROM XSECTION 1 TO XSECTION 1 STARTING TIME _ .00 RAIN DEPTH = 3.00 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 1 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.59 4.80 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .02 SQ.MI. 11.00 DISCHG .00 .00 .00 .00 .00 .00 .01 .02 .07 .19 12.00 DISCHG .49 1.08 1.99 3.08 4.05 4.66 4.80 4.54 4.06 3.53 13.00 DISCHG 3.05 2.67 2.35 2.10 1.90 1.73 1.60 1.48 1.38 1.30 14.00 DISCHG 1.22 1.16 1.11 1.07 1.03 .99 .96 .94 .91 .88 15.00 DISCHG .85 .83 .81 .80 .7B .77 .75 .74 .72 .71 16.00 DISCHG .70 .69 .67 .66 .65 .65 .64 .62 .61 .60 17.00 DISCHG .57 .54 .51 .48 .45 .44 .42 .41 .40 .39 18.00 DISCHG .38 .38 .37 .37 .36 .36 .35 .34 .34 .34 19.00 DISCHG .34 .33 .33 .33 .32 .32 .32 .32 .32 .31 20.00 DISCHG .31 .30 .30 .29 .29- .29 .29 .28 .29 .28 21.00 DISCHG .28 .28 .27 .28' .28 .27 .27 .26 .25 .24 22.00 DISCHG .24 .25 .26 .27 .27 .26 .26 .25 .24 .24 23.00 DISCHG .24 .24 .23 .23 .23 .23 .23 .23 .23 .23 24.00 DISCHG .23 .22 .19 .16 .13 .09 .07 .05 .03 .02 25.00 DISCHG .02 .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = .71 WATERSHED INCHES, 9.98 CFS-HRS, .82 ACRE-FEET; BASEFLOW = .00 CFS a EXECUTIVE CONTROL OPERATION COMPUT I RECORD ID 235 FROM XSECTION 2 TO XSECTION 2 STARTING TIME _ .00 RAIN DEPTH = 4.60 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 2 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 2 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.54 13.07 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .02 SQ.MI. 10.00 DISCHG .00 .00 .00 .01 .02 .04 .06 .09 .13 .17 11.00 DISCHG .22 .27 .34 .41 .50 .61 .74 .92 1.20 1.75 12.00 DISCHG 2.81 4.60 7.07 9.74 11.89 12.97 12.85 11.82 10.33 8.81 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN revised 6/11/96 20 JOB 1 PASS 2 REV 09/01/83 EXISTING 2, 10, 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 4 EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID 240 COMPUTATIONS COMPLETED FOR PASS 1 EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID 250 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------- -------- -------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 1 RUNOFF .02 7 2 .10 .0 3.00 23.90 .71 --- 12.59 4.80 221.9 YK ALTERNATE 1 STORM 2 0 XSECTION 2 RUNOFF .02 7 2 .10 .0 4.60 23.90 1.74 --- 12.54 13.07 602.8 ALTERNATE 1 STORM 3 W XSECTION 3 RUNOFF .02 7 2 .10 .0 7.00 23.90 3.61 --- 12.52 28.00 1291.7 CIO SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES KSECTION/ DRAINAGE STRUCTURE AREA STORM NUMBERS.. .. . . .. . . ID (SQ MI) 1 2 3 XSECTION 1 .02 ALTERNATE 1 4.80 .00 .00 XSECTION 2 .02 ALTERNATE 1 .00 13.07 .00 XSECTION 3 .02 ALTERNATE 1 .00 .00 28.00 ❑ END OF 1 JOBS IN THIS RUN Stop - Program terminated. TR20 XEQ 6/25/96 MHE 1f 40996 CHANNEL LOT If 1 TR-20 RUN revised 6/11/96 20 JOB 1 PASS 1 REV 09/01/83 EXISTING 2, 10, 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 3 13.00 DISCHG 7.48 6.42 5.58 4.91 4.37 3.94 3.59 3.30 3.05 2.84 14.00 DISCHG 2.67 2.52 2.40 2.29 2.20 2.11 2.04 1.98 1.92 1.85 15.00 DISCHG 1.79 1.74 1.70 1.67 1.63 1.60 1.57 1.53 1.50 1.48 16.00 DISCHG 1.45 1.42 1.39 1.36 1.34 1.33 1.30 1.28 1.25 1.22 17.00 DISCHG 1.17 1.11 1.03 .97 .92 .89 .86 .84 .81 .80 18.00 DISCHG .78 .76 .76 .75 .73 .72 .71 .69 .69 .68 19.00 DISCHG .68 .67 .67 .66 .64 .64 .64 .64 .63 .63 20.00 DISCHG .62 .61 .59 .59 .58 .58 .57 .57 .57 .57 21.00 DISCHG .56 .55 .55 .55 .55 .55 .53 .52 .50 .49 22.00 DISCHG .49 .50 .Sl .53 .53 .52 .51 .50 .48 .48 23.00 DISCHG .47 .47 .46 .46 .46 .46 .46 .46 .46 .46 24.00 DISCHG .45 .43 .38 .32 .25 .18 .13 .09 .07 .05 25.00 DISCHG .03 .02 .02 .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 1.74 WATERSHED INCHES, 24.38 CFS-HRS, 2.02 ACRE-FEET; BASEFLOW = .00 CFS EXECUTIVE CONTROL OPERATION COMPUT (p RECORD ID 237 FROM XSECTION 3 TO XSECTION 3 STARTING TIME _ .00 RAIN DEPTH = 7.00 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 3 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 3 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.52 28.00 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .02 SQ.MI. 8.00 DISCHG .00 .00 .00 .00 .00 .00 .01 .02 .03 .05 9.00 DISCHG .08 .11 .14 .17 .21 .25 .30 .34 .39 .45 10.00 DISCHG .50 .56 .62 .69 .76 .84 .93 1.03 1.13 1.25 11.00 DISCHG 1.38 1.53 1.70 1.69 2.11 2.37 2.70 3.13 3.82 5.12 12.00 DISCHG 7.55 11.50 16.74 22.17 26.26 27.96 27.17 24.57 21.16 17.83 13.00 DISCHG 14.99 12.74 10.98 9.57 6.46 7.57 6.86 6.27 5.77 5.35 14.00 DISCHG 5.00 4.71 4.46 4.26 4.08 3.91 3.76 3.65 3.53 3.41 15.00 DISCHG 3.29 3.19 3.11 3.05 2.99 2.93 2.86 2.79 2.74 2.69 16.00 DISCHG 2.63 2.57 2.52 2.47 2.44 2.40 2.36 2.31 2.26 2.20 17.00 DISCHG 2.11 2.00 1.87 1.75 1.66 1.60 1.55 1.51 1.47 1.43 18.00 DISCHG 1.40 1.38 1.36 1.34 1.31 1.29 1.26 1.24 1.23 1.22 19.00 DISCHG 1.21 1.21 1.19 1.17 1.15 1.14 1.14 1.14 1.13 1.12 20.00 DISCHG 1.11 1.09 1.06 1.04 1.04 1.03 1.02 1.01 1.02 1.01 21.00 DISCHG .99 .98 .97 .98 .98 .97 .95 .92 .89 .87 22.00 DISCHG .66 .88 .91 .94 .94 .93 .91 .88 .86 .84 23.00 DISCHG .84 .83 .82 .82 .82 .82 .81 .81 .81 .81 24.00 DISCHG .80 .75 .67 .56 .44 .33 .24 .17 .12 .09 25.00 DISCHG .06 .04 .03 .02 .02 .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 3.61 WATERSHED INCHES, 50.57 CFS-HRS, 4.18 ACRE-FEET; BASEFLOW = .00 CFS lV ppy� APPENDIX � *******wwwwwwww*wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww*ww*wwwwwwwww*wwwwww****wwwww * * TR 20 SIN * * HMVersion 3.40 * TR 20 * Date 6/25/96 * * Time 8:29:53 * Project Formulation Hydrology * Input file 409p2yrd.t20 * * Output file 409p2yrd.out * w * * w * xxxxxxx xxxxxx XXXXX XXXXX x x x x x x xx x x x x x x x x xxxxxx x x x x x x x x x x x x x x x xx x x x x xxxxxxx XXXXX . ..... . .. .. . . . .. . . . ... . . .. . . .. . .. . . . . . . . .. . . .. .. . . . . . . . . . . ... . ... .. . . . . . . . . . . . .. . . . . . . ... . . . .. . . . .. . . . . . .. . . . . . .. . . . . . . . .. . .. . . . . . ..... . . .. . . .. .. . .. .. . . . . . . ... . .. .. . . . . . . . . Full Microcomputer Implementation by Haestad Methods, Inc. . .. . .. ..... .... . .... .. .. . .. . .. .... . . . . . . . .. ... ............. . .. . . . . . . ... .. . . . . . . . . . . . . . . .. . .. ... .... ... . . . . .. . . ... . . .. .... . .. . . . . . 37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666 LIST OF INPUT DATA FOR TR-20 HYDROLOGY****************** V6s-t-- D,�-v J®/J JOB TR-20 10 TITLE 001 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 '' C yA- ( TITLE PO T-DEVELOPMENT 2-YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30_ 5 RAIN 8 0.000 0.001 0.002 0.003 0.004 1 8 0.005 0.006 0.007 0.008 0.009 8 0.010 0.011 0.012 0.013 0.014 8 0.015 0.016 0.017 0.018 0.019 8 0.020 0.021 0.022 0.023 0.024 8 0.026 0.027 0.028 0.029 0.030 8 0.031 0.032 0.034 0.035 0.036 8 0.037 0.03E 0.040 0.041 0.042 8 0.043 0.045 0.046 0.047 0.049 8 0.050 0.051 0.053 0.054 0.055 8 0.057 0.058 0.060 0.061 0.063 8 0.064 0.066 0.067 0.069 0.070 8 0.072 0.074 0.075 0.077 0.079 8 0.080 0.082 0.064 0.085 0.087 8 0.089 0.091 0.093 0.095 0.097 8 0.100 0.103 0.106 0.109 0.112 8 0.115 0.118 0.121 0.124 0.127 8 0.130 0.134 0.137 0.140 0.144 8 0.148 0.151 0.155 0.159 0.163 8 0.167 0.171 0.176 0.180 0.185 8 0.189 0.194 0.199 0.205 0.210 8 0.216 0.222 0.228 0.235 0.242 8 0.250 0.258 0.266 0.276 0.287 8 0.298 0.312 0.328 0.363 0.416 8 0.500 0.584 0.638 0.673 0.689 8 0.702 0.714 0.725 0.734 0.743 8 0.751 0.758 0.766 0.772 0.779 8 0.785 0.790 0.796 0.801 0.806 8 0.811 0.816 0.821 0.825 0.829 8 0.834 0.838 0.842 0.845 0.849 8 0.853 0.857 0.860 0.864 0.867 8 0.670 0.874 0.877 0.880 0.883 8 0.886 0.889 0.892 0.895 0.898 8 0.900 0.903 0.906 0.908 0.910 8 0.911 0.913 0.915 0.917 0.919 8 0.920 0.922 0.924 0.925 0.927 8 0.929 0.930 0.932 0.933 0.935 8 0.936 0.938 0.939 0.941 0.942 8 0.944 0.945 0.946 0.948 0.949 8 0.951 0.952 0.953 0.955 0.956 8 0.957 0.958 0.960 0.961 0.962 8 0.963 0.965 0.966 0.967 0.968 ^-® 8 0.969 0.971 0.972 0.973 0.974 C7- 8 0.975 0.976 0.977 0.978 0.979 8 0.981 0.982 0.983 0.984 0.985 8 0.986 0.987 0.988 0.989 0.990 8 0.991 0.992 0.993 0.994 0.995 8 0.996 0.997 0.998 0.999 1.000 8 1.000 1.000 1.000 1.000 1.000 9 ENDTBL 6 RUNOFF 1 001 1 0.007484 92.5 0.101 1 1 1 140 6 RUNOFF 1 002 2 0.004375 70 0.691 1 1 1 141 6 ADDHYD 4 003 1 2 3 1 1 1 1 142 ENDATA 210 7 INCREM 6 0.10 220 7 COMPUT 7 001 003 0.0 3.0 17 2 01 01 230 ENDCMP 1 240 ENDJOB 2 250 OF 80-80 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 2-YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 2 EXECUTIVE CONTROL OPERATION INCREM RECORD ID 220 MAIN TIME INCREMENT = .10 HOURS EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 230 FROM XSECTION 1 TO XSECTION 3 STARTING TIME _ .00 RAIN DEPTH = 3.00 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 1 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.08 10.45 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 5.00 DISCHG .00 .00 .01 .01 .01 .01 .02 .01 .02 .02 6.00 DISCHG .03 .04 .02 .04 .04 .03 .04 .05 .03 .05 7.00 DISCHG .06 .06 .07 .07 .07 .10 .12 .12 .13 .14 8.00 DISCHG .14 .15 .15 .16 .16 .17 .21 .19 .18 .23 9.00 DISCHG .25 .21 .25 .27 .28 .29 .29 .35 .32 .37 10.00 DISCHG .34 .39 .41 .48 .45 .50 .53 .54 .62 .65 11.00 DISCHG .73 .77 .78 .95 1.09 1.14 1.39 1.67 3.33 5.53 12.00 DISCHG 9.11 10.41 7.89 5.26 2.78 1.87 1.63 1.49 1.27 1.20 13.00 DISCHG 1.10 .97 1.04 .87 .91 .84 .71 .77 .70 .68 14.00 DISCHG .67 .67 .67 .57 .54 .64 .57 .54 .44 .51 15.00 DISCHG .54 .54 .44 .51 .44 .41 .51 .44 .41 .41 16.00 DISCHG .41 .41 .41 .41 .41 .31 .38 .41 .31 .28 17.00 DISCHG .17 .24 .27 .27 .27 .17 - .24 .27 .17 .24 18.00 DISCHG .27 .17 .24 .17 .24 .17 .24 .17 .24 .17 19.00 DISCHG .24 .17 .14 .24 .17 .24 .17 .14 .24 .17 20.00 DISCHG .14 .14 .24 .17 .14 .14 .24 .17 .14 .14 21.00 DISCHG .14 .24 .17 .14 .14 .14 .14 .14 .14 .14 22.00 DISCHG .24 .17 .14 .14 .14 .14 .14 .14 .14 .14 23.00 DISCHG .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 24.00 DISCHG .03 .00 RUNOFF VOLUME ABOVE BASEFLOW = 2.20 WATERSHED INCHES, 10.64 CFS-HRS, .88 ACRE-FEET; BASEFLOW = .00 CFS OPERATION RUNOFF CROSS SECTION 2 *** WARNING-NO PEAK FOUND, MAXIMUM DISCHARGE _ .05 CFS. PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 23.80 .05 (RUNOFF) 12.50 1.01 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .00 SQ.MI. TR20 XEQ 6/25/96 MHF $ 40996 CHANNEL LOT $ 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 2-YEAR DESIGN.STORM HYDROGRAPH DEVELOPMENT 30 PAGE 3 11.00 DISCHG .00 .00 .00 .00 .00 .00 .00 .00 .01 .04 12.00 DISCHG .11 .25 .46 .70 .90 1.01 1.00 .92 .80 .68 13.00 DISCHG .59 .51 .45 .40 .36 .33 .31 .29 .27 .25 14.00 DISCHG .24 .23 .22 .21 .20 .20 .19 .19 .18 .18 15.00 DISCHG .17 .17 .16 .16 .16 .15 .15 .15 .15 .14 16.00 DISCHG .14 .14 .13 .13 .13 .13 .13 .12 .12 .12 17.00 DISCHG .11 .11 .10 .09 .09 .09 .08 .08 .08 .08 18.00 DISCHG .08 .08 .08 .07 .07 .07 .07 .07 .07 .07 19.00 DISCHG .07 .07 .07 .07 .06 .06 .06 .06 .06 .06 20.00 DISCHG .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 21.00 DISCHG .06 .06 .06 .06 .06 .06 .05 .05 .05 .05 22.00 DISCHG .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 23.00 DISCHG .05 O5 .05 .05 .05 .05 .05 .05 .05 .05 24.00 DISCHG .05 .04 .04 .03 .02 .02 .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = .71 WATERSHED INCHES, 2.02 CFS-HRS, .17 ACRE-FEET; BASEFLOW = .00 CFS OPERATION ADDHYD CROSS SECTION 3 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.09 10.68 (NULL) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 5.00 DISCHG .00 .00 .01 .01 .01 .01 .02 .01 .02 .02 6.00 DISCHG .03 .04 .02 .04 .04 .03 .04 .05 .03 .05 7.00 DISCHG .06 .06 .07 .07 .07 .10 .12 .12 .13 .14 8.00 DISCHG .14 .15 .15 .16 .16 .17 .21 .19 .18 .23 9.00 DISCHG .25 .21 .25 .27 .28 .29 .29 .35 .32 .37 10.00 DISCHG .34 .39 .41 .48 .45 .50 .53 .54 .62 .65 11.00 DISCHG .73 .77 .78 .95 1.09 1.14 1.39 1.67 3.35 5.58 12.00 DISCHG 9.22 10.66 8.35 5.95 3.68 2.87 2.63 2.41 2.06 1.89 13.00 DISCHG 1,69 1.48 1.49 1.27 1.27 1.17 1.02 1.06 .97 .93 14.00 DISCHG .91 .90 .89 .78 .75 .84 .76 .73 .62 .69 15.00 DISCHG .71 .71 .60 .67 .60 .56 .66 .59 .56 .55 16.00 DISCHG 55 .55 .54 .54 .54 .44 .50 .53 .43 .39 17.00 DISCHG .29 .35 .37 .37 .36 .26 .33 .35 .25 .32 18.00 DISCHG .35 .25 .32 .24 .31 .24 .31 .24 .31 .24 19.00 DISCHG .31 .24 .21 .30 .23 .31 .23 .20 .30 .23 20,00 DISCHG .20 .20 .30 .23 .20 .20 .30 .23 .20 .19 21.00 DISCHG .19 .29 .22 .20 .19 .19 .19 .19 .19 .19 22.00 DISCHG .29 .22 .19 .19 .19 .19 .19 .19 .19 .19 23.00 DISCHG .19 .18 .18 .18 .18 .18 .18 .18 .18 .18 24.00 DISCHG .08 .04 .04 .03 .02 .02 .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 1.65 WATERSHED INCHES, 12.65 CFS-HRS, 1.05 ACRE-FEET; BASEFLOW = .00 CFS TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 2 REV 09/01/83 POST-DEVELOPMENT 2-YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 4 EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID 250 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 1 RUNOFF .01 7 2 .10 .0 3.00 23.90 2.20 --- 12.08 10.45 1396.9 XSECTION 2 RUNOFF .00 7 2 .10 .0 3.00 23.90 .71 --- 12.50 1.01 229.9 XSECTION 3 ADDHYD .01 7 2 .10 .0 3.00 23.90 1.65 --- 12.09 10.68 900.6 SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES XSECTION/ DRAINAGE STRUCTURE AREA STORM NUMBERS. . . . . . .. . . ID (SQ MI) 1 f� XSECTION 1 .01 ALTERNATE 1 10.45 XSECTION 2 .00 ALTERNATE 1 1.01 XSECTION 3 .01 ALTERNATE 1 10.68 END OF 1 JOBS IN THIS RUN Stop - Program terminated. * * TR 20 SIN * * HMVersion 3.40 * TR 20 * Date 6/25/96 * * Time 8:29:36 * Project Formulation Hydrology * Input file : 409p10yd.t20 * * Output file 409p10yd.out * * * * * * xxxxxxx xxxxxx xxxxx xxxxx x x x x x x xx x x x x x x x x xxxxxx x x x x x x x x x x x x x x x xx x x x x xxxxxxx xxxxx . .. . .. ... .. .. ... . . . . . . . . .. . . . . .. . .. .. . . . . . . ... . .. ... . .. ... .. .. . . . . . . .. . . .. . . .. . . . ... . . ...... ... .. . . . . . . . . . . . . .. . . . . . ... .. .. . . . .. . . .. . . .. .. . .. ... . . ... . .. .. . .. . .. .. .... . . .. . . Full Microcomputer Implementation by Haestad Methods, Inc. . .. . . . .. . .. . . . . . . . . . . . . .. . . . . . . . . ... . . . . . . . . .. .. . . . . ... . . . . . . .. . . .. . .. . .. . .... . . .. . . . . 37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666 q ******************80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY****************** JOB TR-20 10 TITLE 001 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 TITLE POST-DEVELOPMENT 10 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 5 RAINF 8 0.000 0.001 0.002 0.003 0.004 8 0.005 0.006 0.007 0.008 0.009 8 0.010 0.011 0.012 0.013 0.014 8 0.015 0.016 0.017 0.018 0.019 8 0.020 0.021 0.022 0.023 0.024 8 0.026 0.027 0.028 0.029 0.030 8 0.031 0.032 0.034 0.035 0.036 8 0.037 0.038 0.040 0.041 0.042 8 0.043 0.045 0.046 0.047 0.049 8 0.050 0.051 0.053 0.054 0.055 8 0.057 0.058 0.060 0.061 0.063 8 0.064 0.066 0.067 0.069 0.070 8 0.072 0.074 0.075 0.077 0.079 8 0.080 0.082 0.084 0.085 0.087 8 0.089 0.091 0.093 0.095 0.097 8 0.100 0.103 0.106 0.109 0.112 8 0.115 0.118 0.121 0.124 0.127 8 0.130 0.134 0.137 0.140 0.144 8 0.148 0.151 0.155 0.159 0.163 8 0.167 0.171 0.176 0.180 0.185 8 0.189 0.194 0.199 0.205 0.210 8 0.216 0.222 0.228 0.235 0.242 8 0.250 0.258 0.266 0.276 0.287 8 0.298 0.312 0.328 0.363 0.416 8 0.500 0.584 0.638 0.673 0.689 8 0.702 0.714 0.725 0.734 0.743 8 0.751 0.758 0.766 0.772 0.779 8 0.785 0.790 0.796 0.601 0.806 8 0.811 0.816 0.821 0.825 0.829 8 0.834 0.838 0.842 0.845 0.649 8 0.853 0.857 0.860 0.864 0.867 8 0.870 0.874 0.877 0.880 0.683 8 0.886 0.889 0.892 0.895 0.698 8 0.900 0.903 0.906 0.908 0.910 8 0.911 0.913 0.915 0.917 0.919 8 0.920 0.922 0.924 0.925 0.927 8 0.929 0.930 0.932 0.933 0.935 8 0.936 0.938 0.939 0.941 0.942 8 0.944 0.945 0.946 0.948 0.949 8 0.951 0.952 0.953 0.955 0.956 8 0.957 0.95E 0.960 0.961 0.962 w , 8 0.963 0.965 0.966 0.967 0.968 1v 8 0.969 0.971 0.972 0.973 0.974 ® 8 0.975 0.976 0.977 0.978 0.979 8 0.981 0.982 0.983 0.984 0.985 8 0.986 0.987 0.988 0.989 0.990 8 0.991 0.992 0.993 0.994 0.995 8 0.996 0.997 0.998 0.999 1.000 8 1.000 1.000 1.000 1.000 1.000 9 ENDTBL 6 RUNOFF 1 001 1 0.007484 92.5 0.101 1 1 1 140 6 RUNOFF 1 002 2 0.004375 70 0.691 1 1 1 141 6 ADDHYD 4 003 1 2 3 1 1 1 1 142 ENDATA 210 7 INCREM 6 0.10 220 7 COMPUT 7 001 003 0.0 4.6 17 2 01 01 230 ENDCMP 1 240 ENDJOB 2 250 *** a ++**+* ** ++ *++SEND OF 80-80 LIST**k+ +*++ * + *+ + a+** TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT 9 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 10 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 2 EXECUTIVE CONTROL OPERATION INCREM RECORD ID 220 MAIN TIME INCREMENT = .10 HOURS EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 230 FROM XSECTION 1 TO XSECTION 3 STARTING TIME _ .00 RAIN DEPTH = 4.60 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 1 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.08 17.26 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 3.00 DISCHG .00 .00 .00 .00 .00 .00 .00 .01 .01 .01 4.00 DISCHG .02 .03 .03 .03 .05 .04 .03 .06 .05 .04 5.00 DISCHG .08 .06 .09 .06 .10 .07 .10 .08 .11 .08 6.00 DISCHG .12 .14 .09 .13 .15 .10 .14 .17 .11 .16 7.00 DISCHG .18 .18 .19 .19 .20 .28 .31 .32 .33 .34 8.00 DISCHG .34 .35 .36 .37 .37 .38 .48 .42 .40 .51 9.00 DISCHG .55 .45 .53 .57 .58 .59 .60 .72 .65 .74 10.00 DISCHG .67 .76 .80 .94 .86 .96 1.01 1.02 1.16 1.21 11.00 DISCHG 1.36 1.41 1.43 1.72 1.96 2.03 2.47 2.93 5.80 9.46 12.00 DISCHG 15.28 17.14 12.85 8.50 4.48 3.00 2.62 2.40 2.03 1.93 N 13.00 DISCHG 1.76 1.55 1.66 1.39 1.45 1.33 1.13 1.23 1.12 1.08 14.00 DISCHG 1.07 1.07 1.07 .91 .86 1.02 .91 .86 .70 .81 15.00 DISCHG .86 .86 .70 .81 .70 .65 .81 .70 .65 .65 16.00 DISCHG .65 .65 .65 .65 .65 .49 .60 .64 .49 .44 17.00 DISCHG .27 .38 .43 .43 .43 .27 .38 .43 .27 .38 18.00 DISCHG .43 .27 .38 .27 .38 .27 .38 .27 .38 .27 19.00 DISCHG .38 .27 .22 .38 .27 .38 .27 .22 .38 .27 20.00 DISCHG .22 .22 .38 .27 .22 .22 .38 .27 .22 .22 21.00 DISCHG .22 .38 .27 .22 .22 .22 .22 .22 .22 .22 22.00 DISCHG .38 .27 .22 .22 .22 .22 .22 .22 .22 .22 23.00 DISCHG .22 .22 .22 .22 .22 .22 .22 .22 .22 .22 24.00 DISCHG .05 .00 RUNOFF VOLUME ABOVE BASEFLOW = 3.74 WATERSHED INCHES, 18.09 CFS-HRS, 1.49 ACRE-FEET; BASEFLOW = .00 CFS OPERATION RUNOFF CROSS SECTION 2 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.51 2.77 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .00 SQ.MI. 10.00 DISCHG .00 .00 .00 .00 .00 .01 .01 .02 .03 .04 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 10 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 3 11.00 DISCHG OS .06 .07 .09 .11 .13 .16 .19 .26 .38 12.00 DISCHG .62 1.03 1.59 2.17 2.60 2.77 2.66 2.36 2.00 1.68 13.00 DISCHG 1.42 1.21 1.05 .93 .83 .75 .69 .63 .59 .55 14.00 DISCHG .52 .49 .47 .45 .43 .42 .40 .39 .38 .37 15.00 DISCHG .36 .35 .34 .33 .33 .32 .31 .31 .30 .30 16.00 DISCHG .29 .28 .28 .27 .27 .27 .26 .26 .25 .24 17.00 DISCHG .23 .22 .20 .19 .18 .18 .17 .17 .16 .16 18.00 DISCHG .16 .15 .15 .15 .15 .14 .14 .14 .14 .14 19.00 DISCHG .14 .14 .13 .13 .13 .13 .13 .13 .13 .13 20.00 DISCHG .12 .12 .12 .12 .12 .12 .11 .11 .12 .11 21.00 DISCHG .11 .11 .11 .11 .11 .11 .11 .10 .10 .10 22.00 DISCHG .10 .10 .10 .11 .11 .11 .10 .10 .10 .10 23.00 DISCHG .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 24.00 DISCHG .09 .09 .07 .06 .05 .03 .02 .02 .01 .01 25.00 DISCHG .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 1.74 WATERSHED INCHES, 4.92 CFS-HRS, .41 ACRE-FEET; BASEFLOW = .00 CFS OPERATION ADDHYD CROSS SECTION 3 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.09 18.22 (NULL) N TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 3.00 DISCHG .00 .00 .00 .00 .00 .00 .00 .01 .01 .01 4.00 DISCHG .02 .03 .03 .03 OS .04 .03 .06 .05 .04 5.00 DISCHG .08 .06 .09 .06 .10 .07 .10 .08 .11 .08 6.00 DISCHG .12 .14 .09 .13 .15 .10 .14 .17 .11 .16 7.00 DISCHG .18 .18 .19 .19 .20 .2B .31 .32 .33 .34 8.00 DISCHG .34 .35 .36 .37 .37 .38 .48 .42 .40 .51 9.00 DISCHG .55 .45 .53 .57 .58 .59 .60 .72 .65 .74 10.00 DISCHG .67 .76 .80 .94 .86 .97 1.02 1.04 1.19 1.25 11.00 DISCHG 1.41 1.47 1.51 1.81 2.06 2.16 2.63 3.12 6.05 9.84 12.00 DISCHG 15.89 18.17 14.44 10.67 7.09 5.77 5.27 4.75 4.03 3.61 13.00 DISCHG 3.18 2.77 2.71 2.31 2.2B 2.08 1.81 1.87 1.71 1.63 14.00 DISCHG 1.59 1.56 1.54 1.36 1.30 1.44 1.31 1.26 1.08 1.18 15.00 DISCHG 1.21 1.21 1.04 1.14 1.02 .97 1.12 1.00 .95 .94 16.00 DISCHG .94 .93 .92 .92 .92 .75 .86 .90 .74 .68 17.00 DISCHG .50 .60 .63 .62 .61 .45 .55 .59 .43 .54 18.00 DISCHG .58 .42 .53 .42 .53 .41 .52 .41 .52 .40 19.00 DISCHG .52 .40 .35 .51 .40 .51 .39 .35 .51 .39 20.00 DISCHG .35 .34 .50 .38 .34 .33 .49 .38 .34 .33 21.00 DISCHG .33 .49 .38 .33 .33 .33 .32 .32 .32 .31 22.00 DISCHG .48 .37 .33 .32 .32 .32 .32 .32 .31 .31 23.00 DISCHG .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 24.00 DISCHG .15 .09 .07 .06 .05 .03 .02 .02 .01 .01 25.00 DISCHG .01 .00 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 10 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 4 RUNOFF VOLUME ABOVE BASEFLOW = 3.01 WATERSHED INCHES, 23.01 CFS-HRS, 1.90 ACRE-FEET; BASEFLOW = .00 CFS EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID 240 COMPUTATIONS COMPLETED FOR PASS 1 EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID 250 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT. ) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 1 RUNOFF .01 7 2 .10 .0 4.60 23.90 3.74 --- 12.08 17.26 2306.5 XSECTION 2 RUNOFF .00 7 2 .10 .0 4.60 23.90 1.74 --- 12.51 2.77 633.1 XSECTION 3 ADDHYD .01 7 2 .10 .0 4.60 23.90 3.01 --- 12.09 18.22 1536.2 SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES XSECTION/ DRAINAGE STRUCTURE AREA STORM NUMBERS.. . .. . . . . . ID (SQ MI) 1 XSECTION 1 .01 ALTERNATE 1 17.26 XSECTION 2 .00 ALTERNATE 1 2.77 XSECTION 3 .01 ALTERNATE 1 18.22 ❑ END OF 1 JOBS IN THIS RUN Stop - Program terminated. p * * TR 20 SIN * * HMVersion 3.40 * TR 20 * Date 6/25/96 * * Time 8:21:44 * Project Formulation Hydrology * Input file 409100yd.t20 * * Output file 409100yd.out # # # # * * xxxxxxx xxxxxx xxxxx xxxxx x x x x x x xx x x x x x x x x xxxxxx x x x x x x x x x x x x x x x xx x x x x xxxxxxx xxxxx . .. .. . ... ..... . . . . . . .. .. . . ... . . . . . ... . . .. . . . . .. . . . . . . . .. ... . . .. . . .. . .... ... . . . .. .. . . . . . .. . . . . .. .. . . . . . . . . . . . .. . . . .. . . .. .. . . . .. . . . . ... ... .. .. .... .. . . .. . . . .. . . . . . . . .. . . . .. .. . Full Microcomputer Implementation by Haestad Methods, Inc. 37 Brookside Road * Waterbury, Connecticut 06706 * (203) 755-1666 LIST OF INPUT DATA FOR TR-20 HYDROLOGY****************** JOB TR-20 10 TITLE 001 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 TITLE POST-DEVELOPMENT 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 5 RAINFL 7 0.1 8 0.000 0.001 0.002 0.003 0.004 8 0.005 0.006 0.007 0.008 0.009 8 0.010 0.011 0.012 0.013 0.014 8 0.015 0.016 0.017 0.018 0.019 8 0.020 0.021 0.022 0.023 0.024 8 0.026 0.027 0.028 0.029 0.030 8 0.031 0.032 0.034 0.035 0.036 8 0.037 0.038 0.040 0.041 0.042 8 0.043 0.045 0.046 0.047 0.049 8 0.050 0.051 0.053 0.054 0.055 8 0.057 0.058 0.060 0.061 0.063 B 0.064 0.066 0.067 0.069 0.070 8 0.072 0.074 0.075 0.077 0.079 8 0.080 0.082 0.084 0.085 0.087 8 0.089 0.091 0.093 0.095 0.097 8 0.100 0.103 0.106 0.109 0.112 8 0.115 0.118 0.121 0.124 0.127 8 0.130 0.134 0.137 0.140 0.144 8 0.148 0.151 0.155 0.159 0.163 8 0.167 0.171 0.176 0.180 0.185 8 0.189 0.194 0.199 0.205 0.210 8 0.216 0.222 0.228 0.235 0.242 8 0.250 0.258 0.266 0.276 0.287 8 0.298 0.312 0.328 0.363 0.416 8 0.500 0.584 0.638 0.673 0.689 8 0.702 0.714 0.725 0.734 0.743 8 0.751 0.758 0.766 0.772 0.779 8 0.785 0.790 0.796 . 0.801 0.806 8 0.811 0.816 0.821 0.825 0.829 8 0.834 0.838 0.842 0.845 0.849 8 0.853 0.857 0.860 0.864 0.867 8 0.870 0.874 O.B77 0.880 0.883 8 0.886 0.889 0.892 0.895 0.898 8 0.900 0.903 0.906 0.908 0.910 8 0.911 0.913 0.915 0.917 0.919 8 0.920 0.922 0.924 0.925 0.927 8 0.929 0.930 0.932 0.933 0.935 8 0.936 0.938 0.939 0.941 0.942 8 0.944 0.945 0.946 0.948 0.949 8 0.951 0.952 0.953 0.955 0.956 8 0.957 0.958 0.960 0.961 0.962 8 0.963 0.965 0.966 0.967 0.968 �q 8 0.969 0.971 0.972 0.973 0.974 \" 8 0.975 0.976 0.977 0.978 0.979 B 0.981 0.982 0.983 0.984 0.985 8 0.986 0.987 0.988 0.989 0.990 8 0.991 0.992 0.993 0.994 0.995 8 0.996 0.997 0.998 0.999 1.000 8 1.000 1.000 1.000 1.000 1.000 9 ENDTBL 6 RUNOFF 1 001 1 0.007484 92.5 0.101 1 1 1 140 6 RUNOFF 1 002 2 0.004375 70 0.691 1 1 1 141 6 ADDHYD 4 003 1 2 3 1 1 1 1 142 ENDATA 210 7 INCREM 6 0.10 220 7 COMPUT 7 001 003 0.0 7.0 17 2 01 01 230 ENDCMP 1 240 ENDJOB 2 250 * * * +** +**** * + + +END OF 80-80 LIST******************************** TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 2 EXECUTIVE CONTROL OPERATION INCREM RECORD ID 220 MAIN TIME INCREMENT = .10 HOURS EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 230 FROM XSECTION 1 TO XSECTION 3 STARTING TIME _ .00 RAIN DEPTH = 7.00 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 1 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.08 27.32 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 2.00 DISCHG .00 .00 .00 .00 .00 .01 .02 .02 .03 .03 3.00 DISCHG .04 .04 .09 .07 .06 .06 .07 .13 .10 .09 4.00 DISCHG .09 .16 .12 .11 .19 .14 .12 .21 .15 .13 5.00 DISCHG .23 .17 .25 .18 .26 .19 .27 .19 .29 .20 6.00 DISCHG .30 .34 .22 .31 .36 .23 .33 .38 .24 .35 7.00 DISCHG .39 .40 .41 .41 .42 .59 .65 .66 .67 .68 8.00 DISCHG .69 .70 .71 .72 .73 .73 .93 .81 .76 .96 9.00 DISCHG 1.02 .85 .99 1.05 1.07 1.08 1.08 1.30 1.16 1.32 y 10.00 DISCHG 1.18 1.34 1.41 1.64 1.50 1.67 1.74 1.76 1.99 2.07 11.00 DISCHG 2.31 2.39 2.41 2.88 3.26 3.37 4.09 4.82 9.46 15.29 12.00 DISCHG 24.39 27.09 20.18 13.29 6.99 4.68 4.08 3.73 3.15 2.99 13.00 DISCHG 2.73 2.41 2.58 2.15 2.25 2.07 1.75 1.91 1.74 1.67 14.00 DISCHG 1.66 1.66 1.66 1.41 1.34 1.58 1.41 1.34 1.08 1.25 15.00 DISCHG 1.32 1.33 1.08 1.25 1.08 1.01 1.25 1.08 1.01 1.00 16.00 DISCHG 1.00 1.00 1.00 1.00 1.00 .75 .92 .99 .75 .67 17.00 DISCHG .42 .59 .66 .67 .67 .42 .59 .66 .42 .59 18.00 DISCHG .66 .42 .59 .41 .59 .41 .59 .41 .59 .41 19.00 DISCHG .59 .41 .34 .58 .41 .59 .41 .34 .58 .41 20.00 DISCHG .34 .34 .58 .41 .34 .34 .58 .41 .34 .33 21.00 DISCHG .33 .58 .41 .34 .33 .33 .33 .33 .33 .34 22.00 DISCHG .58 .41 .34 .33 .33 .33 .33 .33 .33 .33 23.00 DISCHG .33 .33 .33 .33 .33 .33 .33 .33 .33 .33 24.00 DISCHG .08 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 6.10 WATERSHED INCHES, 29.46 CFS-HRS, 2.43 ACRE-FEET; BASEFLOW = .00 CFS OPERATION RUNOFF CROSS SECTION 2 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.49 5.90 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .00 SQ.MI. TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 3 8.00 DISCHG .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 9.00 DISCHG .02 .02 .03 .04 .05 .05 .06 .07 .08 .09 10.00 DISCHG .11 .12 .13 .14 .16 .18 .19 .21 .24 .26 11.00 DISCHG .29 .32 .35 .39 .44 .49 .56 .65 .80 1.09 12.00 DISCHG 1.65 2.55 3.73 4.89 5.68 5.90 5.56 4.86 4.08 3.39 13.00 DISCHG 2.83 2.40 2.07 1.80 1.60 1.44 1.31 1.20 1.11 1.03 14.00 DISCHG .97 .92 .87 .84 .80 .77 .75 .73 .70 .68 15.00 DISCHG .65 .63 .62 .61 .60 .59 .57 .56 .55 .54 16.00 DISCHG .53 .51 .50 .50 .49 .48 .47 .46 .45 .44 17.00 DISCHG .42 .40 .37 .34 .33 .32 .31 .30 .29 .28 18.00 DISCHG .28 .28 .27 .27 .26 .26 .25 .25 .25 .25 19.00 DISCHG .24 .24 .24 .24 .23 .23 .23 .23 .23 .23 20.00 DISCHG .22 .22 .21 .21 .21 .21 .20 .20 .21 .20 21.00 DISCHG .20 .20 .20 .20 .20 .20 .19 .18 .18 .17 22.00 DISCHG .17 .18 .19 .19 .19 .19 .18 .18 .17 .17 23.00 DISCHG .17 .17 .17 .17 .16 .16 .16 .16 .16 .16 24.00 DISCHG .16 .15 .13 .11 .08 .06 .04 .03 .02 .01 25.00 DISCHG .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 3.62 WATERSHED INCHES, 10.21 CPS-HRS, .84 ACRE-FEET; BASEFLOW = .00 CFS OPERATION ADDHYD CROSS SECTION 3 A} PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) lam' 12.09 29.71 (NULL) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 2.00 DISCHG .00 .00 .00 .00 .00 .01 .02 .02 .03 .03 3.00 DISCHG .04 .04 .09 .07 .06 .06 .07 .13 .10 .09 4.00 DISCHG .09 .16 .12 .11 .19 .14 .12 .21 .15 .13 5.00 DISCHG .23 .17 .25 .18 .26 .19 .27 .19 .29 .20 6.00 DISCHG .30 .34 .22 .31 .36 .23 .33 .38 .24 .35 7.00 DISCHG .39 .40 .41 .41 .42 .59 .65 .66 .67 .68 8.00 DISCHG .69 .70 .71 .72 .73 .73 .93 .81 .77 .97 9.00 DISCHG 1.04 .87 1.02 1.09 1.11 1.13 1.15 1.37 1.25 1.42 10.00 DISCHG 1.29 1.46 1.54 1.78 1.66 1.84 1.93 1.97 2.22 2.33 11.00 DISCHG 2.59 2.71 2.76 3.27 3.70 3.87 4.65 5.47 10.26 16.38 12.00 DISCHG 26.04 29.65 23.91 18.17 12.68 10.58 9.64 8.59 7.24 6.39 13.00 DISCHG 5.57 4.82 4.64 3.96 3.85 3.51 3.06 3.12 2.85 2.70 14.00 DISCHG 2.63 2.58 2.53 2.25 2.14 2.35 2.15 2.06 1.78 1.93 15.00 DISCHG 1.98 1.96 1.70 1.86 1.67 1.59 1.82 1.63 1.55 1.54 16.00 DISCHG 1.53 1.51 1.50 1.49 1.49 1.23 1.40 1.45 1.20 1.11 17.00 DISCHG .84 .99 1.03 1.01 .99 .74 .90 .96 .71 .87 18.00 DISCHG .94 .69 .86 .68 .85 .67 .84 .66 B4 .66 19.00 DISCHG .83 .65 .58 .82 .64 .82 .64 .57 .81 .64 20.00 DISCHG .56 .55 .80 .62 .55 .54 .79 .61 .55 .54 21.00 DISCHG .53 .78 .61 .54 .53 .53 .52 .52 .51 .51 22.00 DISCHG .76 .59 .53 .52 .52 .52 .52 .51 .51 .50 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 4 23.00 DISCHG .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 24.00 DISCHG .24 .16 .13 .11 .08 .06 .04 .03 .02 .01 25.00 DISCHG .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 5.18 WATERSHED INCHES, 39.68 CFS-HRS, 3.28 ACRE-FEET; BASEFLOW = .00 CFS EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID 240 COMPUTATIONS COMPLETED FOR PASS 1 EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID 250 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN THROUGH BASIN 20 JOB 1 SUMMARY REV 09/01/83 POST-DEVELOPMENT 100 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 5 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT. ) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 1 RUNOFF .01 7 2 .10 .0 7.00 23.90 6.10 --- 12.08 27.32 3651.0 XSECTION 2 RUNOFF .00 7 2 .10 .0 7.00 23.90 3.62 --- 12.49 5.90 1349.5 XSECTION 3 ADDHYD .01 7 2 .10 .0 7.00 23.90 5.18 --- 12.09 9.71 2505.0 SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES XSECTION/ DRAINAGE STRUCTURE AREA STORM NUMBERS.. .. . . . . . . ID (SQ MI) 1 XSECTION 1 .01 ALTERNATE 1 27.32 XSECTION 2 .00 ALTERNATE 1 5.90 XSECTION 3 .01 ALTERNATE 1 29.71 ❑ END OF 1 JOBS IN THIS RUN Stop - Program terminated. * * TR 20 SIN * * HMVersion 3.40 * TR 20 * Date 6/25/96 * * Time 8:21:55 * Project Formulation Hydrology * Input file 409p100y.t20 * * Output file 409p100y.out xxxxxxx xxxxxx xxxxx xxxxx x x x x x x xx x x x x x x x x xxxxxx x x x x x x x x x x x x x x x xx x x x x xxxxxxx xxxxx . .. . .... . .. . . .. . . . .. . . . .. .. . . . . . . . . . ... .. . . . .. . ... . . . ... .. . . . . . . . .. . . . . . . . .. .. . . ... . .. . ... .. . . . .... . .. .. . .. . . . . . . . . . . . . . . . ... . . .. . . . ... . . ... . .. . . . . . ... .. ... . . . . . . .. . . . .. . . . Full Microcomputer Implementation by Haestad Methods, Inc. . ... . . . . . .. .. . . . . . . . . . . . . .. . . . .. . . . ... . .. . . . .. . . .. . . . . .. . . . . . . . . . . . . . . . ... . . . .. .. . . . . . 37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666 D ******************80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY****************** JOB TR-20 10 TITLE 001 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN NOT THROUGH BASIN 20 po TITLE POST-DEVELOPMENT 2 10 100 YEAR DESIGN STORM HYDROGRAPH 30 `P.. 5 RAINFL 7 07 8 0.000 0.001 0.002 0.003 0.004 8 0.005 0.006 0.007 0.008 0.009 8 0.010 0.011 0.012 0.013 0.014 t% Ca 8 0.015 0.016 0.017 0.018 0.019 8 0.020 0.021 0.022 0.023 0.024 8 0.026 0.027 0.028 0.029 0.030 8 0.031 0.032 0.034 0.035 0.036 8 0.037 0.038 0.040 0.041 0.042 8 0.043 0.045 0.046 0.047 0.049 K. 8 0.050 0.051 0.053 0.054 0.055 8 0.057 0.058 0.060 0.061 0.063 1 8 0.064 0.066 0.067 0.069 0.070 8 0.072 0.074 0.075 0.077 0.079 8 0.080 0.082 0.084 0.085 0.087 6 0.089 0.091 0.093 0.095 0.097 8 0.100 0.103 0.106 0.109 0.112 8 0.115 0.118 0.121 0.124 0.127 8 0.130 0.134 0.137 0.140 0.144 8 0.148 0.151 0.155 0.159 0.163 8 0.167 0.171 0.176 0.180 0.185 6 0.169 0.194 0.199 0.205 0.210 8 0.216 0.222 0.228 0.235 0.242 8 0.250 0.258 0.266 0.276 0.287 8 0.298 0.312 0.328 0.363 0.416 8 0.500 0.584 0.638 0.673 0.689 8 0.702 0.714 0.725 0.734 0.743 8 0.751 0.758 0.766 0.772 0.779 8 0.785 0.790 0.796 0.801 0.806 8 0.811 0.816 0.821 0.825 0.829 8 0.834 0.838 0.842 0.845 0.849 8 0.853 0.857 0.860 0.864 0.867 8 0.870 0.874 0.877 0.880 0.883 8 0.886 0.889 0.892 0.895 0.898 8 0.900 0.903 0.906 0.908 0.910 8 0.911 0.913 0.915 0.917 0.919 8 0.920 0.922 0.924 0.925 0.927 8 0.929 0.930 0.932 0.933 0.935 8 0.936 0.938 0.939 0.941 0.942 8 0.944 0.945 0.946 0.948 0.949 8 0.951 0.952 0.953 0.955 0.956 8 0.957 0.958 0.960 0.961 0.962 8 0.963 0.965 0.966 0.967 0.968 ®^ 8 0.969 0.971 0.972 0.973 0.974 8 0.975 0.976 0.977 0.978 0.979 8 0.981 0.982 0.983 0.984 0.985 8 0.986 0.987 0.988 0.989 0.990 8 0.991 0.992 0.993 0.994 0.995 8 0.996 0.997 0.998 0.999 1.000 8 1.000 1.000 1.000 1.000 1.000 9 ENDTBL 6 RUNOFF 1 001 1 0.00500625 71.0 0.691 1 1 1 140 6 RUNOFF 1 002 2 0,00500625 71.0 0.691 1 1 1 141 6 RUNOFF 1 003 3 0.00500625 71 0.691 1 1 1 142 ENDATA 210 7 INCREM 6 0.10 220 7 COMPUT 7 001 001 0.0 3.0 17 2 01 01 230 7 COMPUT 7 002 002 0.0 4.6 17 2 01 02 231 7 COMPUT 7 003 003 0.0 7.0 17 2 01 03 232 ENDCMP 1 P40 ENDJOB 2 250 ** *** ***** * * ** **END OF 80-80 LIST* +*+***++ *+* + *** ***a+ ** * TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN NOT THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 2, 10, 100 YEAR DESIGN STORM HYDROGRAPH 30 PAGE 2 EXECUTIVE CONTROL OPERATION INCREM RECORD ID 220 MAIN TIME INCREMENT = .10 HOURS EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 230 FROM XSECTION 1 TO XSECTION 1 STARTING TIME _ .00 RAIN DEPTH = 3.00 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 1 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 1 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.54 1.27 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 11.00 DISCHG .00 .00 .00 .00 .00 .00 .00 .01 .03 .07 12.00 DISCHG .16 .34 .59 .89 1.13 1.25 1.24 1.13 .98 .84 13.00 DISCHG .72 .62 .55 .49 .44 .40 .37 .35 .32 .30 14.00 DISCHG .29 .27 .26 .25 .24 .24 .23 .22 .22 .21 15.00 DISCHG .20 .20 .19 .19 .19 .18 .18 .18 .17 .17 16.00 DISCHG .17 .16 .16 .16 .16 .15 .15 .15 .15 .14 17.00 DISCHG .14 .13 .12 .11 .11 .10 .10 .10 .10 .09 18.00 DISCHG .09 .09 .09 .09 .09 .08 .08 .08 OB .08 19.00 DISCHG .08 .08 .08 .08 .08 .08 .08 .08 .08 .07 20.00 DISCHG .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 21.00 DISCHG .07 .07 .07 .07 .07 .07 .06 .06 .06 .06 22.00 DISCHG .06 .06 .06 .06 .06 06 .06 .06 .06 .06 23.00 DISCHG .06 .06 .06 .06 .06 .06 .06 .06 .06 .06 24.00 DISCHG .05 .05 .04 .04 .03 .02 .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = .76 WATERSHED INCHES, 2.45 CFS-HRS, .20 ACRE-FEETi& BASEFLOW = .00 CFS EXECUTIVE CONTROL OPERATION COMPUT RECORD ID 231 FROM XSECTION 2 TO XSECTION 2 STARTING TIME _ .00 RAIN DEPTH = 4.60 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 2 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 2 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.51 3.32 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 10.00 DISCHG .00 .00 .00 .01 .01 .02 .03 .04 .05 .06 11.00 DISCHG .07 .09 .10 .12 .15 .17 .21 .25 .33 .48 12.00 DISCHG .77 1.27 1.94 2.63 3.14 3.32 3.18 2.82 2.39 2.00 13.00 DISCHG 1.69 1.44 1.25 1.10 .98 .89 .81 .75 .69 .65 TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN NOT THROUGH BASIN 20 JOB 1 PASS 1 REV 09/01/83 POST-DEVELOPMENT 2, 10, 100 YEAR DESIGN STORM HYDROGRAPH 30 PAGE 3 14.00 DISCHG .61 .58 .55 .53 .51 .49 .48 .46 .45 .43 15.00 DISCHG .42 .41 .40 .39 .38 .38 .37 .36 .35 .35 16.00 DISCHG .34 .33 .33 .32 .32 .31 .31 .30 .29 .29 17.00 DISCHG .27 .26 .24 .22 .21 .21 .20 .20 .19 .19 18.00 DISCHG .18 .18 .18 .17 .17 .17 .17 .16 .16 .16 19.00 DISCHG .16 .16 .16 .15 .15 .15 .15 .15 .15 .15 20.00 DISCHG .15 .14 .14 .14 .14 .14 .13 .13 .13 .13 21.00 DISCHG .13 .13 .13 .13 .13 .13 .13 .12 .12 .11 22.00 DISCHG .11 .12 .12 .13 .13 .12 .12 .12 .11 .11 23.00 DISCHG .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 24.00 DISCHG .11 .10 .09 .07 .05 .04 .03 .02 .01 .01 25.00 DISCHG .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 1.82 WATERSHED INCHES, 5.87 CFS-HRS, .49 //AyyCRE-FEET; BASEFLOW = .00 CFS EXECUTIVE CONTROL OPERATION COMPUT 10 YPI RECORD ID 232 FROM XSECTION 3 TO XSECTION 3 STARTING TIME _ .00 RAIN DEPTH = 7.00 RAIN DURATION= 1.00 RAIN TABLE NO.= 7 ANT. MOIST. COND= 2 ALTERNATE NO.= 1 STORM NO.= 3 MAIN TIME INCREMENT = .10 HOURS OPERATION RUNOFF CROSS SECTION 3 PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) 12.49 6.96 (RUNOFF) TIME(HRS) FIRST HYDROGRAPH POINT = .00 HOURS TIME INCREMENT = .10 HOURS DRAINAGE AREA = .01 SQ.MI. 8.00 DISCHG .00 .00 .00 .00 .00 .00 .01 .01 .02 .03 9.00 DISCHG .03 .04 .05 .06 .07 .08 .09 .10 .11 .13 10.00 DISCHG .14 .15 .17 .19 .20 .22 .25 .27 .30 .33 11.00 DISCHG .36 .40 .44 .49 .54 .61 .69 .79 .97 1.32 12.00 DISCHG 1.98 3.04 4.43 5.79 6.71 6.95 6.54 5.72 4.79 3.98 13.00 DISCHG 3.32 2.81 2.42 2.11 1.87 1.68 1.53 1.40 1.29 1.21 14.00 DISCHG 1.13 1.07 1.01 .97 .93 .90 .67 .84 .82 .79 15.00 DISCHG .76 .74 .72 .71 .70 .68 .66 .65 .64 .62 16.00 DISCHG .61 .60 .59 .58 .57 .56 .55 .54 .52 .51 17.00 DISCHG .49 .46 .43 .40 .38 .37 .36 .35 .34 .33 18.00 DISCHG .32 .32 .32 .31 .31 .30 .29 .29 .29 .28 19.00 DISCHG .28 .28 .28 .27 .27 .27 .27 .27 .27 .26 20.00 DISCHG .26 .25 .25 .24 .24 .24 .24 .24 .24 .24 21.00 DISCHG .23 .23 .23 .23 .23 .23 .22 .21 .21 .20 22.00 DISCHG .20 .21 .21 .22 .22 .22 .21 .20 .20 .20 23.00 DISCHG .19 .19 .19 .19 .19 .19 .19 .19 .19 .19 24.00 DISCHG .19 .17 .15 .12 .09 .07 .05 .03 .02 .02 25.00 DISCHG .01 .01 .01 .00 RUNOFF VOLUME ABOVE BASEFLOW = 3.72 WATERSHED INCHES, 12.03 CFS-HRS, .99y ACRE-FEET; BASEFLOW = .00 CFS TR20 XEQ 6/25/96 MHF # 40996 CHANNEL LOT # 1 TR-20 RUN NOT THROUGH BASIN 20 JOB 1 PASS 2 REV 09/01/83 POST-DEVELOPMENT 2, 10, 100 YEAR DESIGN STORM HYDROGRAPH 30 PAGE 4 EXECUTIVE CONTROL OPERATION ENDCMP RECORD ID 240 COMPUTATIONS COMPLETED FOR PASS 1 EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID 250 SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT. ) SECTION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE STRUCTURE CONTROL DRAINAGE TABLE MOIST TIME ------------------------- RUNOFF -------------------------------------- ID OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE (SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM) ALTERNATE 1 STORM 1 XSECTION 1 RUNOFF .01 7 2 .10 .0 3.00 23.90 .76 --- 12.54 1.27 252.8 ALTERNATE 1 STORM 2 XSECTION 2 RUNOFF .01 7 2 .10 .0 4.60 23.90 1.82 --- 12.51 3.32 663.7 ALTERNATE 1 STORM 3 XSECTION 3 RUNOFF .01 7 2 .10 .0 7.00 23.90 3.72 --- 12.49 6.96 1389.9 SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES XSECTION/ DRAINAGE STRUCTURE AREA STORM NUMBERS. . . .. . . . . . ID (SQ MI) 1 2 3 XSECTION 1 .01 ALTERNATE 1 1.27 .00 .00 XSECTION 2 .01 ALTERNATE 1 .00 3.32 .00 XSECTION 3 .01 ALTERNATE 1 .00 .00 6.96 ❑ END OF 1 JOBS IN THIS RUN Stop - Program terminated. APPEND C OND-2 Version: 5 .20 SIN: Page 1 IXECUTED: 06-25-1996 10 :37 :16 STORM #1 Return Freq: 2 years ********************************************************************** * * CHANNEL BUILDING CO. INC. DETENTION POND ROUTING FOR THE TWO, T * AND 100 YEAR DESIGN STORMS REVISED 6/24/96 * MHF #40996 * MAP 25 LOT 82 * ********************************************************************** ****************** SUMMARY OF ROUTING COMPUTATIONS ****************** Pond File: C: \409\DRAINAGE\409PND6 PND Inflow Hydrograph: C: \409\DRAINAGE\409P2YRD.HYD Outflow Hydrograph: C: \409\DRAINAGE\2YR-OUT HYD Starting Pond W.S. Elevation = 244 . 00 ft ***** Summary of Peak Outflow and Peak Elevation ***** Peak Inflow = 10 . 66 cfs Peak Outflow - 3 . 66 cfs Peak Elevation = 246 .44 ft ***** Summary of Approximate Peak Storage ***** Initial Storage = 0 . 00 ac-ft Peak Storage From Storm = 0 .28 ac-ft --------------- Total Storage in Pond = 0 . 28 ac-ft V POND-2 Version: 5 . 20 SIN: Page 3 STORM #1 Return Freq: 2 years Pond File: C: \409\DRAINAGE\409PND6 PND Inflow Hydrograph: C:\409\DRAINAGE\409P2YRD.HYD Outflow Hydrograph: C: \409\DRAINAGE\2YR-OUT HYD EXECUTED: 06-25-1996 Peak Inflow = 10 .66 cfs 10 :37 :16 Peak outflow = 3 . 66 cfs Peak Elevation = 246 .44 ft Flow (cfs) 0 . 0 1.5 3 . 0 4 .5 6 . 0 7 .5 9 . 0 10 .5 12 . 0 13 .5 15 . 0 16 .5 . ------ I ----- I ----- i ----- I ----- i ----- I ----- I ----- I ----- I ----- I ----- I - . .3 - X* X* . .4 - X* X* _ .5 - X X . . 6 - X X _ . 7 - x X X x _ . 9 - x x ? . 0 - x x ? .1 - x x ? .2 - x X ? .3 - x X 2 .4 - x * X x * X 2 . 6 - * x * X x * x 2 . 8 - * X * X 2 .9 - * x * X 3 . 0 - * x * x 3 .1 - * x * X 3 .2 - * x TIME (hrs) * File : C: \409\DRAINAGE\409P2YRD.HYD Qmax = 10 . 7 cfs x File : C: \409\DRAINAGE\2YR-OUT HYD Qmax = 3 . 7 cfs OND-2 Version: 5 .20 SIN: Page 1 XECUTED: 06-25-1996 10 :37 : 16 STORM #2 Return Freq: 10 years * * CHANNEL BUILDING CO. INC. DETENTION POND ROUTING FOR THE TWO, T * AND 100 YEAR DESIGN STORMS REVISED 6/24/96 * MHF #40996 * MAP 25 LOT 82 * ********************************************************************** ****************** SUMMARY OF ROUTING COMPUTATIONS ****************** Pond File: C: \409\DRAINAGE\409PND6 PND Inflow Hydrograph: C:\409\DRAINAGE\409P10YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\10YR-OUT.HYD Starting Pond W.S . Elevation— 244 . 00 ft ***** Summary of Peak Outflow and Peak Elevation ***** Peak Inflow = 18 .17 cfs Peak Outflow = 8 . 00 cfs Peak Elevation = 247 .50 ft ***** Summary of Approximate Peak Storage ***** Initial Storage = 0 . 00 ac-ft Peak Storage From Storm = 0 .48 ac-ft --------------- Total Storage in Pond = 0 .48 ac-ft 3 POND-2 Version: 5 .20 SIN: Page 3 STORM #2 Return Freq: 10 years Pond File: C:\409\DRAINAGE\409PND6 PND Inflow Hydrograph: C:\409\DRAINAGE\409P10YD.HYD Outflow Hydrograph: C:\409\DRAINAGE\10YR-OUT.HYD EXECUTED: 06-25-1996 Peak Inflow = 18 . 17 cfs 10 :37 : 16 Peak Outflow = 8 . 00 cfs Peak Elevation = 247 .50 ft Flow (cfs) 0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 10 . 0 12 . 0 14 . 0 16 . 0 18 . 0 20 . 0 22 . 0 . ------ I ----- I ----- I ----- I ----- I ----- I ----- I ----- I ----- I ----- I ----- I - Ll .3 - X* X L1 .4 - X X L1.5 - X X L1 .6 - x x L1 . 7 - x X L1 . 8 - x x L1 . 9 - x X L2 . 0 - x X L2 . 1 - X x L2 .2 - x x L2 . 3 - x X L2 .4 - * x * x L2 .5 - * x * X L2 . 6 - * x * X L2 . 7 - * x * x L2 . 8 - * x * x L2 .9 - * x * x L3 . 0 - * x * x L3 . 1 - * x * x L3 .2 - * x TIME (hrs) * File: C: \409\DRAINAGE\409P10YD.HYD Qmax = 18 .2 cfs x File: C: \409\DRAINAGE\10YR-OUT.HYD Qmax = 8 . 0 cfs g POND-2 Version: 5 .20 SIN: Page 1 EXECUTED: 06-25-1996 10 : 37 : 16 STORM #3 Return Freq: 100 years ********************************************************************** * * * CHANNEL BUILDING CO. INC. DETENTION POND ROUTING FOR THE TWO, T * AND 100 YEAR DESIGN STORMS REVISED 6/24/96 * MHF #40996 * MAP 25 LOT 82 * * ********************************************************************** ****************** SUMMARY OF ROUTING COMPUTATIONS ****************** Pond File: C: \409\DRAINAGE\409PND6 PND Inflow Hydrograph: C:\409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\100YROUT.HYD Starting Pond W. S . Elevation = 244 . 00 ft ***** Summary of Peak Outflow and Peak Elevation ***** Peak Inflow = 29 . 65 cfs Peak Outflow = 15 . 89 cfs Peak Elevation = 248 .54 ft ***** Summary of Approximate Peak Storage ***** Initial Storage = 0 . 00 ac-ft Peak Storage From Storm = 0 . 75 ac-ft --------------- Total Storage in Pond = 0 . 75 ac-ft POND-2 Version: 5 .20 SIN: Page 3 STORM #3 Return Freq: 100 years Pond File: C: \409\DRAINAGE\409PND6 PND Inflow Hydrograph: C:\409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C:\409\DRAINAGE\100YROUT.HYD EXECUTED: 06-25-1996 Peak Inflow = 29 .65 Cfs 10 :37 :16 Peak Outflow = 15 .89 cfs Peak Elevation = 248 .54 ft Flow (cfs) 0 . 0 3 . 0 6 . 0 9 . 0 12 . 0 15 . 0 18 . 0 21. 0 24. 0 27 . 0 30 . 0 33 . 0 L1.3 - x X L1 .4 - X X L1.5 - X x L1. 6 - x X L1 . 7 - x X L1 . 8 - x x L1.9 - x X L2 . 0 - x x L2 .1 - x x L2 .2 - x x L2 . 3 - x *X L2 .4 - * x * x L2 .5 - * x * x L2 . 6 - * x * X L2 . 7 - * x * x L2 . 8 - * x * x L2 .9 - * x * x L3 . 0 - * x * x L3 .1 - * x * X L3 .2 - * X TIME (hrs) * File : C: \409\DRAINAGE\409100YD.HYD Qmax = 29 . 6 cfs x File : C: \409\DRAINAGE\100YROUT.HYD Qmax = 15 .9 cfs 91 Outlet Structure File: 409OUT6 STR '� +`� ' POND-2 Version: 5 . 20 SIN: Date Executed: Time Executed: ***** COMPOSITE OUTFLOW SUMMARY **** Elevation (ft) Q (cfs) Contributing Structures -------------- ------- ------------------------ 244 . 00 0 . 0 1 244.20 0 .2 1 244 .40 0 .6 1 244 . 60 1 .1 1 244 . 80 1 .4 1 245 . 00 2 . 0 2 245 . 20 2 .3 2 245 .40 2 .6 2 245 . 60 2 . 8 2 245 . 80 3 . 0 2 246 . 00 3 .3 2 246 .20 3 .4 2 246 .40 3 . 6 2 246 . 60 3 .9 2 +3 246 . 80 4 . 6 2 +3 247 . 00 5 .4 2 +3 247 . 20 6 .4 2 +3 247 .40 7 .4 2 +3 247 . 60 8 .6 2 +3 247 . 80 9 .9 2 +3 248 . 00 11.2 2 +3 248 .20 12 .6 2 +3 248 .40 14 .1 2 +4 +3 248 . 60 16 . 6 2 +4 +3 248 . 80 19 .6 2 +4 +3 249 . 00 23 . 0 2 +4 +3 249 .20 26 .7 2 +4 +3 249 .40 30 .7 2 +4 +3 249 . 60 35 . 0 2 +4 +3 249 . 80 39 .5 2 +4 +3 250 . 00 44 .3 2 +4 +3 250 .20 49 .2 2 +4 +3 250 .30 51.8 2 +4 +3 ✓i Z Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: Outlet Structure File: C: \409\DRAINAGE\409OUT6 STR Planimeter Input File: C: \409\DRAINAGE\409STOR2 .VOL Rating Table Output File: C: \409\DRAINAGE\409PND6 PND Min. Elev. (ft) = 244 Max. Elev. (ft) = 250 .3 Incr. (ft) _ .2 Additional elevations (ft) to be included in table: SYSTEM CONNECTIVITY Structure No. Q Table Q Table ---------- --- ------ ------- ORIFICE-VC 2 -> 2 TABLE 1 -> 1 INLET BOX 4 -> 4 WEIR-VR 3 -> 3 Outflow rating table summary was stored in file: C: \409\DRAINAGE\409PND6 PND 113 Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: >>>>>> Structure No. 2 <<<<<< (Input Data) ORIFICE-VC Orifice - Vertical Circular E1 elev. (ft) ? 244 . 8333 E2 elev. (ft) ? 250 .301 Orifice coeff .? . 59 Invert elev. (ft) ? 244 . 00 Datum elev. (ft) ? 244 .415 Diameter (ft) ? . 8333 Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: >>>>>> Structure No. 1 <<<<<< (Input Data) TABLE Input your own rating table. E1 (ft) =244 . 0 E2 (ft) =244 . 9999 Constant (ft) added to each elevation was : 244 Elev. (ft) Q (cfs) ---------- ------- 244 0 244 . 1 . 04 244 .2 . 16 244 . 3 .35 244 .4 .59 244 . 5 . 85 244 . 6 1 .1 244 . 7 1 .29 244 . 8 1 .35 Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: >>>>>> Structure No. 4 <<<<<< (Input Data) INLET BOX Weir & orifice defined by length and area El elev. (ft) ? 248 .33 E2 elev. (ft) ? 250. 301 Crest elev. (ft) ? 248 .33 Weir length (ft) ? 13 .40 Weir coefficient? . 6 Orifice area (sq.ft) ? 7 . 8 Orifice coefficient? . 6 Start transition elev. (ft) @ ? Transition height (ft) ? Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: >>>>>> Structure No. 3 <<<<<< (Input Data) WEIR-VR Weir - Vertical Rectangular El elev. (ft) ? 246 .50 E2 elev. (ft) ? 250 .301 Weir coefficient? 0 . 60 Weir elev. (ft) ? 246 .50 Length (ft) ? 6 Contracted/Suppressed (C/S) ? C Outlet Structure File: 409OUTG STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: Outflow Rating Table for Structure #1 TABLE Input your own rating table. Elevation (ft) Q (cfs) Computation Messages -------------- ------- ------------------------ 244 . 00 0 . 0 244.20 0 .2 244 .40 0 . 6 244 . 60 1 .1 244 . 80 1 .4 245 . 00 0 . 0 E = or > E2=244 . 9999 245 .20 0 . 0 E = or > E2=244 . 9999 245 .40 0 . 0 E = or > E2=244 . 9999 245 . 60 0 . 0 E = or > E2=244 . 9999 245 . 80 0 . 0 E = or > E2=244 . 9999 246 . 00 0 . 0 E = or > E2=244 . 9999 246 .20 0 . 0 E = or > E2=244 . 9999 246 .40 0 . 0 E = or > E2=244 . 9999 246 . 60 0 . 0 E = or > E2=244 . 9999 246 . 80 0 . 0 E = or > E2=244 . 9999 247 . 00 0 . 0 E = or > E2=244 . 9999 247 .20 0 . 0 E = or > E2=244 . 9999 247 .40 0 . 0 E = or > E2=244 .9999 247 . 60 0 . 0 E = or > E2=244 . 9999 247 . 80 0 . 0 E = or > E2=244 . 9999 248 . 00 0 . 0 E = or > E2=244 . 9999 248 . 20 0 . 0 E = or > E2=244 . 9999 248 .40 0 . 0 E = or > E2=244 . 9999 248 . 60 0 . 0 E = or > E2=244 . 9999 248 . 80 0 . 0 E = or > E2=244 . 9999 249 . 00 0 . 0 E = or > E2=244 .9999 249 .20 0 . 0 E = or > E2=244 . 9999 249 .40 0 . 0 E = or > E2=244 . 9999 249 . 60 0 . 0 E = or > E2=244 . 9999 249 . 80 0 . 0 E = or > E2=244 .9999 250 . 00 0 . 0 E = or > E2=244 .9999 250.20 0 . 0 E = or > E2=244 .9999 250 .30 0 . 0 E = or > E2=244 . 9999 'l Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: Outflow Rating Table for Structure #4 INLET BOX Weir & Orifice defined by length and area ***** INLET CONTROL ASSUMED ***** Elevation (ft) Q (cfs) Computation Messages -------------- ------- ------------------------ 244 . 00 0 . 0 E < Inv.El . = 248 .33 244 .20 0 . 0 E < E1=248 .33 244 .40 0 . 0 E < E1=248 . 33 244 . 60 0 . 0 E < E1=248 .33 244 . 80 0 . 0 E < E1=248 .33 245 . 00 0 . 0 E < E1=248 .33 245 .20 0 . 0 E < E1=248 .33 245 .40 0. 0 E < E1=248 .33 245 . 60 0 . 0 E < E1=248 .33 245 . 80 0 . 0 E < E1=248 .33 246 . 00 0 . 0 E < E1=248 .33 246 .20 0 . 0 E < E1=248 . 33 246 .40 0 . 0 E < E1=248 .33 246 . 60 0 . 0 E < E1=248 .33 246 . 80 0 . 0 E < E1=248 . 33 247 . 00 0 . 0 E < E1=248 . 33 247 .20 0 . 0 E < E1=248 . 33 247 .40 0 . 0 E < E1=248 .33 247 . 60 0 . 0 E < E1=248 .33 247 . 80 0 . 0 E < E1=248 .33 248 . 00 0 . 0 E < E1=248 .33 248 . 20 0 . 0 E < E1=248 .33 248 .40 0 .1 Weir: H =. 07 248 .60 1.1 Weir: H =. 27 248 . 80 2 . 6 Weir: H = .47 249 . 00 4 .4 Weir: H =. 67 249 .20 6.5 Weir: H =. 870 249 .40 8 .9 Weir: H =1. 07 249 .60 11.5 Weir: H =1.27 249 . 80 14 .3 Weir: H =1 .47 250 . 00 17 .4 Weir: H =1.67 250 .20 20 . 6 Weir: H =1. 87 250 .30 22 .2 Weir: H =1.97 Weir Cw = . 6 Weir length = 13 .4 ft Orifice Co = . 6 Orifice- area = 7 . 8 sq. ft. Q (cfs) = (Cw * L * H**1 .5) or (Co * A * sgr(2*g*H) ) No transition used, transition height = 0 . 0 Weir equation = Orifice equation @ elev.= 253 . 0013 ft Outlet Structure File: 409OUT6 STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: Outflow Rating Table for Structure #3 WEIR-VR Weir - Vertical Rectangular ***** INLET CONTROL ASSUMED ***** Elevation (ft) Q (cfs) Computation Messages -------------- ------- ------------------------ 244 . 00 0 . 0 E < Inv.El.= 246 .5 244 .20 0 . 0 E < Inv.El. = 246 .5 244 .40 0 . 0 E < Inv.El. = 246 .5 244 . 60 0 . 0 E < Inv.El. = 246 .5 244. 80 0 . 0 E < Inv.E1.= 246 .5 245 . 00 0 . 0 E < Inv.El . = 246.5 245 .20 0 . 0 E < Inv.El. = 246 .5 245 .40 0 . 0 E < Inv.El.= 246 .5 245 .60 0 . 0 E < Inv.E1 . = 246 .5 245 . 80 0 . 0 E < Inv.El .= 246 .5 246 . 00 0 . 0 E < Inv.El .= 246 .5 246 .20 0 . 0 E < Inv.El. = 246 .5 246 .40 0 . 0 E < Inv.El. = 246 .5 246 . 60 0 .1 H =. 1 246 . 80 0 . 6 H =.3 247 . 00 1.3 H = . 5 247 .20 2 .1 H =. 7 247 .40 3 .0 H =. 9 247 . 60 4 . 0 H =1. 1 247 . 80 5 .1 H =1. 3 248 . 00 6 .3 H =1.5 248 .20 7 .5 H =1 . 7 248 .40 8 .8 H =1. 9 248 . 60 10 .2 H =2 . 1 248 . 80 11 .6 H =2 .3 249 . 00 13 . 0 H =2 . 5 249 .20 14 .5 H =2 . 7 249 .40 16 .1 H =2 .9 249 . 60 17 .6 H =3 . 1 249 . 80 19 .2 H =3 . 3 250 . 00 20 . 8 H =3 . 5 250 .20 22 .5 H =3 . 7 250 .30 23 .3 H =3 . 8 C = . 6 L (ft) = 6 H (ft) = Table elev. - Invert elev. ( 246 .5 ft ) Q (cfs) = C * (L- . 2H) * (H**1 .5) -- Contracted Weir POND-2 Version: 5 .20 SIN: Page 1 EXECUTED: 06-25-1996 10 :55 :40 ********************************************************************* * * * CHANNEL BUILDING CO. INC. DETENTION POND ROUTING FOR THE 100 YR * DESIGN STORM ROUTED THROUGH THE EMERGENCY SPILLWAY ONLY * MHF #40996 * MAP #25 LOT 82 * * Inflow Hydrograph: C:\409\DRAINAGE\409100YD.HYD Rating Table file: C: \409\DRAINAGE\409OUTSP.PND ----INITIAL CONDITIONS---- Elevation = 244 . 00 ft Outflow = 0 . 00 cfs Storage = 0 . 00 ac-ft INTERMEDIATE ROUTING GIVEN POND DATA COMPUTATIONS ------------------------------- -------------------------- ELEVATION OUTFLOW STORAGE 2S/t 2S/t + 0 (ft) (cfs) (ac-ft) (cfs) (cfs) --------- --------- ---------- ------------ ------------- 244 . 00 0 . 0 0 . 000 0 . 0 0 . 0 244 . 20 0 . 0 0 . 016 3 . 9 3 . 9 244 .40 0 . 0 0 . 033 8 .1 8 .1 244 . 60 0 . 0 0 . 052 12 . 5 12 .5 244 . 80 0 . 0 0 . 071 17 .2 17 .2 245 . 00 0 . 0 0 . 092 22 . 2 22 .2 245 .20 0 . 0 0 . 114 27 .5 27 .5 245 .40 0 . 0 0 . 137 33 .1 33 .1 245 . 60 0 . 0 0 . 161 39 . 0 39 . 0 245 . 80 0 . 0 0 . 187 45 .3 45 . 3 246 . 00 0 . 0 0 .214 51 . 8 51. 8 246 .20 0 . 0 0 . 243 58 . 8 58 . 8 246 .40 0 . 0 0 .274 66 .2 66 .2 246 . 60 0 . 0 0 .307 74 .2 74 .2 246 . 80 0. 0 0 .342 82 . 7 82 .7 247 . 00 0 . 0 0 . 379 91 .7 91 . 7 247 .20 0 . 0 0 .419 101 .3 101.3 247 .40 0 . 0 0 .461 111 .5 111.5 247 . 60 0 . 0 0 .505 122 .3 122 . 3 247 . 80 0 . 0 0 .552 133 . 7 133 . 7 248 . 00 0 . 0 0 . 602 145 . 7 145 . 7 248 .20 0 . 0 0 . 654 158 .3 158 .3 248 .40 0 . 0 0 . 709 171.5 171.5 248 . 60 0 . 0 0 . 766 185 .4 185 .4 248 . 80 6 . 0 0 . 826 199 . 8 205 . 8 249 . 00 19. 1 0 . 888 214 . 9 234 . 0 249 .20 37 . 8 0 . 953 230 . 6 268 .4 249 .40 61.2 1 . 021 247 . 0 308.2 249 . 60 89 .2 1. 091 264 .1 353 .3 249 . 80 121.4 1.165 281 . 9 403 .3 250 . 00 141. 0 1 .241 300 .3 441 . 3 ------------------------------ -------------------------- r EXECUTED 06-25-1996 10 : 55 :40 Page 2 DISK FILES : 409100YD.HYD 409OUTSP.PND INTERMEDIATE ROUTING GIVEN POND DATA COMPUTATIONS ------------------------------ -------------------------- ELEVATION OUTFLOW STORAGE 2S/t 2S/t + 0 (ft) (cfs) (ac-ft) (cfs) (cfs) --------- --------- ---------- ------------ ------------- 250 .20 160 .5 1 .320 319 . 6 480 . 1 250 .30 170 .2 1 .361 329 .5 499 . 7 ------------------------------ -------------------------- Time increment (t) = 0 .100 hrs . S-3 POND-2 Version: 5 . 20 SIN: Page 3 EXECUTED: 06-25-1996 10 :55 :40 Pond File: C:\409\DRAINAGE\409OUTSP.PND Inflow Hydrograph: C:\409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\OUT HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS ------------------ ------------------------------------------------------ TIME INFLOW I1+I2 2S/t - 0 2S/t + 0 OUTFLOW ELEVATION (hrs) (cfs) (cfs) (cfs) (cfs) (cfs) (ft) -------- --------- --------- ------------ ----------- --------- --------- 2 . 000 0 . 00 ----- 0 . 0 0 . 0 0 . 00 244 . 00 2 .100 0 . 00 0 . 0 0 . 0 0 . 0 0 . 00 244 . 00 2 .200 0 . 00 0 . 0 0 . 0 0 . 0 0 . 00 244 . 00 2 .300 0 . 00 0 . 0 0 . 0 0 . 0 0 . 00 244 . 00 2 .400 0 . 00 0 . 0 0 . 0 0 . 0 0 . 00 244 . 00 2 .500 0 . 01 0 . 0 0 . 0 0 . 0 0 . 00 244. 00 2 . 600 0 . 02 0 . 0 0 . 0 0 . 0 0 . 00 244 . 00 2 . 700 0 . 02 0 . 0 0 .1 0.1 0 . 00 244 . 00 2 . 800 0 . 03 0 . 1 0 .1 0 .1 0 . 00 244 . 01 2 . 900 0 . 03 0 . 1 0 .2 0 .2 0 . 00 244 . 01 3 . 000 0 . 04 0 .1 0 .3 0 .3 0 . 00 244 . 01 3 . 100 0 . 04 0 . 1 0 .3 0 .3 0 . 00 244 . 02 3 .200 0 . 09 0 .1 0 .5 0 .5 0 . 00 244 . 02 3 .300 0 . 07 0 .2 0 . 6 0 .6 0 . 00 244 . 03 3 .400 0 . 06 0 . 1 0 . 8 0 .8 0 . 00 244 . 04 3 .500 0 . 06 0.1 0 . 9 0 .9 0 . 00 244 . 05 3 .600 0 . 07 0 .1 1. 0 1. 0 0 . 00 244 . 05 3 .700 0 . 13 0 .2 1.2 1 .2 0 . 00 244 . 06 3 . 800 0 . 10 0 .2 1.4 1 .4 0 . 00 244 . 07 3 . 900 0 . 09 0 .2 1.6 1.6 0 . 00 244 . 08 4 . 000 0 . 09 0 .2 1 . 8 1.8 0 . 00 244 . 09 4 . 100 0 . 16 0 .3 2 . 1 2 .1 0 . 00 244 . 11 4 .200 0 .12 0 .3 2 .3 2 .3 0 . 00 244. 12 4 .300 0 . 11 0 .2 2 . 6 2 .6 0 . 00 244 .13 4.400 0 .19 0 .3 2 .9 2 .9 0. 00 244 .15 4 .500 0 . 14 0 .3 3 . 2 3 .2 0 . 00 244 .16 4 . 600 0 . 12 0 .3 3 .5 3 .5 0 . 00 244 .18 4 . 700 0 .21 0 .3 3 . 8 3 .8 0 . 00 244 .19 4 .800 0 . 15 0 .4 4 .2 4.2 0 . 00 244.21 4 .900 0 . 13 0 .3 4 .4 4 .4 0 . 00 244 .23 5 . 000 0 .23 0 .4 4 . 8 4 .8 0 . 00 244.24 5 . 100 0 . 17 0 .4 5 .2 5 .2 0 . 00 244 .26 5 .200 0 .25 0 .4 5 . 6 5 . 6 0 . 00 244 .28 5 .300 0 . 18 0.4 6 . 0 6 . 0 0 . 00 244 .30 5 .400 0 .26 0 .4 6 .5 6 .5 0 . 00 244 .32 5 .500 0 .19 0 .5 6 .9 6 .9 0 . 00 244 .34 5 .600 0 .27 0 .5 7 .4 7 .4 0 . 00 244 .37 5 . 700 0 .19 0 .5 7 .9 7 .9 0 . 00 244 .39 5 . 800 0 .29 0 .5 8 .3 8 .3 0 . 00 244 .41 5 . 900 0 .20 0 . 5 8 . 8 8 .8 0 . 00 244 .43 6 . 000 0 . 30 0 . 5 9 .3 9 .3 0 . 00 244 .46 6.100 0 .34 0 . 6 10 . 0 10 . 0 0 . 00 244.48 6 .200 0 .22 0 . 6 10 .5 10 .5 0 . 00 244 .51 6 .300 0 .31 0 .5 11 .1 11 .1 0 . 00 244 .53 6 .400 0 .36 0 . 7 11 .7 11 .7 0 . 00 244 .56 ------------------ ------------------------------------------------------ POND-2 Version: 5 .20 SIN: Page 4 EXECUTED: 06-25-1996 10 :55 :40 Pond File: C: \409\DRAINAGE\409OUTSP.PND Inflow Hydrograph: C: \409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\OUT HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS ------------------ ------------------------------------------------------ TIME INFLOW I1+I2 2S/t - 0 2S/t + 0 OUTFLOW ELEVATION (hrs) (cfs) (cfs) (cfs) (cfs) (cfs) (ft) -------- --------- --------- ------------ ----------- --------- --------- 6 .500 0 .23 0 . 6 12 .3 12 .3 0 . 00 244.59 6 . 600 0 .33 0 . 6 12 .9 12 . 9 0 . 00 244 .62 6 .700 0 .38 0 . 7 13 . 6 13 . 6 0 . 00 244 . 65 6 .800 0 .24 0 .6 14 .2 14 .2 0 . 00 244 . 67 6 . 900 0 .35 0 . 6 14 . 8 14 . 8 0 . 00 244 .70 7 . 000 0 .39 0 .7 15 . 5 15 . 5 0 . 00 244 . 73 7 . 100 0 .40 0 . 8 16 .3 16 .3 0 . 00 244 .76 7 .200 0 .41 0 . 8 17 . 1 17 .1 0 . 00 244 . 80 7 .300 0 .41 0 . 8 18 . 0 18 . 0 0 . 00 244 . 83 7 .400 0 .42 0 . 8 18 . 8 18 . 8 0 . 00 244 . 86 7 .500 0 .59 1 . 0 19 . 8 19 . 8 0 . 00 244 . 90 7 . 600 0 . 65 1 .2 21 . 0 21 . 0 0 . 00 244 . 95 7 .700 0 .66 1 .3 22 .3 22 .3 0 . 00 245 . 00 7 . 800 0 . 67 1 .3 23 . 7 23 . 7 0 . 00 245 . 05 7 .900 0 .68 1 .4 25 . 0 25 . 0 0 . 00 245 .11 8 . 000 0 . 69 1 .4 26 .4 26 .4 0 . 00 245 .16 8 .100 0 . 70 1 .4 27 . 8 27 . 8 0 . 00 245 .21 8 .200 0 . 71 1 .4 29 .2 29 .2 0 . 00 245 .26 8 .300 0 . 72 1 .4 30 . 6 30 . 6 0 . 00 245 .31 8 .400 0 .73 1.5 32 . 1 32 .1 0 . 00 245 .36 8 .500 0 . 73 1.5 33 .5 33 .5 0 . 00 245 .41 8 . 600 0 . 93 1 . 7 35 . 2 35 .2 0 . 00 245 .47 8 . 700 0 .81 1. 7 36 . 9 36.9 0 . 00 245 .53 8 . 800 0 . 77 1 . 6 38 .5 38 .5 0 . 00 245 .58 8 . 900 0 . 97 1 .7 40 .3 40.3 0 . 00 245 . 64 9 . 000 1. 04 2 . 0 42 .3 42 .3 0 . 00 245 . 70 9 .100 0 . 87 1.9 44 .2 44 .2 0 . 00 245 . 76 9 .200 1. 02 1 .9 46 .1 46 . 1 0 . 00 245 . 82 9 . 300 1 .09 2 . 1 48 .2 48 .2 0 . 00 245 . 89 9 .400 1. 11 2 .2 50 .4 50 .4 0 . 00 245 . 96 9 .500 1. 13 2 .2 52 . 6 52 . 6 0 . 00 246 . 02 9 . 600 1 .15 2 .3 54 .9 54 .9 0 . 00 246 . 09 9 .700 1. 37 2 . 5 57 .4 57 .4 0 . 00 246 . 16 9 . 800 1.25 2 . 6 60 . 0 60 . 0 0 . 00 246 .23 9 .900 1.42 2 .7 62 . 7 62 . 7 0 . 00 246 .30 10 . 000 1.29 2 . 7 65 .4 65 .4 0 . 00 246 .38 10 . 100 1.46 2 . 8 68 .2 68 .2 0 . 00 246 .45 10 .200 1 .54 3 . 0 71. 2 71.2 0 . 00 246 .52 10 .300 1.78 3 .3 74 .5 74 .5 0 . 00 246 . 61 10 .400 1 . 66 3 .4 77 . 9 77 .9 0 . 00 246 . 69 10 .500 1 . 84 3 .5 81 .4 81.4 0 . 00 246 . 77 10 . 600 1. 93 3 . 8 85 .2 85 .2 0 . 00 246 . 85 10 . 700 1.97 3 . 9 89 .1 89 .1 0 . 00 246 . 94 10 . 800 2 .22 4 .2 93 .3 93 . 3 0 . 00 247 . 03 10 . 900 2 . 33 4 .6 97 . 8 97 . 8 0 . 00 247 . 13 11. 000 2 .59 4 . 9 102 . 8 102 . 8 0 . 00 247 .23 ------------------ ------------------------------------------------------ 5"�, POND-2 Version: 5 .20 SIN: Page 5 EXECUTED: 06-25-1996 10 :55 :40 Pond File: C: \409\DRAINAGE\409OUTSP.PND Inflow Hydrograph: C: \409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\OUT HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS ------------------ ------------------------------------------------------ TIME INFLOW I1+I2 2S/t - 0 2S/t + 0 OUTFLOW ELEVATION (hrs) (cfs) (cfs) (cfs) (cfs) (cfs) (ft) -------- --------- --------- ------------ ----------- --------- --------- 11.100 2 . 71 5 .3 108 . 1 108 . 1 0 . 00 247 .33 11.200 2 .76 5 .5 113 .5 113 .5 0 . 00 247 .44 11 .300 3 .27 6 . 0 119 . 6 119 . 6 0 . 00 247 .55 11.400 3 . 70 7 . 0 126 .5 126 .5 0 . 00 247 . 67 11.500 3 . 87 7 . 6 134 . 1 134 . 1 0 . 00 247 . 81 11.600 4 . 65 8 .5 142 . 6 142 . 6 0 . 00 247 .95 11 . 700 5 .47 10 . 1 152 . 7 152 . 7 0 . 00 248 . 11 11 . 800 10 .26 15 . 7 168 .5 168 .5 0 . 00 248 . 35 11. 900 16 .38 26 . 6 189 .4 195 . 1 2 . 86 248 . 70 12 . 000 26 . 04 42 .4 195 . 6 231 . 8 18 . 08 248 . 98 12 . 100 29 . 65 55 .7 194 . 3 251.3 28 . 51 249 . 10 12 .200 23 . 91 53 . 6 194 . 6 247 .9 26 . 63 249 . 08 12 .300 18 . 17 42 .1 195 . 6 236 .7 20 . 56 249 . 02 12 .400 12 . 68 30 .9 195 .3 226 .4 15 .58 248 . 95 12 .500 10 .58 23 .3 194 . 7 218 .5 11. 91 248 . 89 12 . 600 9 . 64 20 .2 194 .4 214 . 9 10 .24 248 . 86 12 . 700 8 .59 18 .2 194 .3 212 . 7 9 .19 248 . 85 12 . 800 7 .24 15 . 8 194 . 1 210 . 1 8 . 01 248 . 83 12 . 900 6 .39 13 . 6 193 .9 207 .7 6 . 90 248 . 81 13 . 000 5 .57 12 . 0 193 . 8 205 .9 6 . 04 248 . 80 13 .100 4 . 82 10 .4 193 . 1 204 .2 5 . 53 248 . 78 13 .200 4 . 64 9 .5 192 .5 202 . 6 5 . 06 248 .77 13 .300 3 .96 8 . 6 191. 8 201. 1 4 . 61 248 .75 13 .400 3 . 85 7 . 8 191 .3 199 . 7 4 .20 248 . 74 13 .500 3 .51 7 .4 190 . 8 198 . 6 3 . 89 248 . 73 13 . 600 3 . 06 6 . 6 190 .3 197 .4 3 .54 248 . 72 13 .700 3 .12 6 .2 190 . 0 196 .5 3 .27 248 . 71 13 . 800 2 . 85 6 . 0 189 . 7 195 .9 3 . 10 248 .70 13 . 900 2 .70 5 . 6 189 .5 195.3 2 . 91 248 . 70 14 . 000 2 . 63 5 .3 189 .2 194 . 8 2 . 77 248 . 69 14.100 2 .58 5 .2 189 . 1 194 .5 2 . 67 248 . 69 14 .200 2 .53 5 . 1 189 . 0 194.2 2 . 60 248 . 69 14 .300 2 .25 4 . 8 188 . 8 193 . 8 2 .48 248 . 68 14 .400 2 .14 4 .4 188 . 6 193 .2 2 .31 248 .68 14 .500 2 .35 4 .5 188 .6 193 .1 2 . 27 248 . 68 14 . 600 2 .15 4 .5 188 .5 193 .1 2 .26 248 . 68 14 .700 2 . 06 4 .2 188 .4 192 .7 2 . 17 248 . 67 14. 800 1. 78 3 . 8 188 .2 192 .2 2 . 02 248 . 67 14 . 900 1. 93 3 . 7 188 . 1 191. 9 1 . 92 248 . 66 15 . 000 1 .98 3 . 9 188 .1 192 . 0 1 . 94 248 . 66 15 . 100 1. 96 3 . 9 188 .1 192 . 0 1. 96 248 . 67 15 .200 1 . 70 3 . 7 188 . 0 191 . 8 1 . 88 248 . 66 15 .300 1. 86 3 . 6 187 .9 191. 6 1 . 82 248 . 66 15 .400 1 . 67 3 .5 187 .9 191.4 1 . 79 248 . 66 15 .500 1. 59 3 .3 187 . 7 191. 1 1 . 70 248 . 66 15 . 600 1. 82 3 .4 187 . 7 191. 1 1 . 70 248 . 66 ------------------ ---------------------------/--------------------------- �v POND-2 Version: 5 .20 SIN: Page 6 EXECUTED: 06-25-1996 10 :55 :40 Pond File: C:\409\DRAINAGE\409OUTSP.PND Inflow Hydrograph: C: \409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\OUT HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS ------------------ ------------------------------------------------------ TIME INFLOW I1+I2 2S/t - 0 2S/t + 0 OUTFLOW ELEVATION (hrs) (cfs) (cfs) (cfs) (cfs) (cfs) (ft) -------- --------- --------- ------------ ----------- --------- --------- 15 . 700 1. 63 3 .5 187 . 8 191 .2 1. 72 248 . 66 15 . 800 1.55 3 .2 187 . 7 190 .9 1. 64 248 . 65 15 .900 1 .54 3 .1 187 . 6 190 . 8 1.58 248 . 65 16. 000 1 .53 3 .1 187.5 190 . 7 1 .56 248 .65 16 . 100 1.51 3 . 0 187 . 5 190 . 6 1.53 248 . 65 16 .200 1 .50 3 . 0 187 .5 190 .5 1 .52 248 . 65 16 .300 1 .49 3 . 0 187 .5 190 .5 1.50 248 . 65 16 .400 1 .49 3 . 0 187 .5 190 .4 1.50 248 . 65 16 .500 1.23 2 .7 187 .3 190 . 2 1 .42 248 .65 16 . 600 1 .40 2 . 6 187 .3 190 . 0 1. 36 248 . 65 16 . 700 1 .45 2 .9 187 .3 190 .1 1 .40 248 . 65 16 . 800 1.20 2 .7 187 . 3 190 . 0 1 . 35 248 . 65 16 .900 1 . 11 2 .3 187 . 1 189 . 6 1.24 248 .64 17 . 000 0 . 84 2 . 0 186 . 9 189 . 0 1 . 08 248 .64 17 .100 0 . 99 1. 8 186 . 7 188 .7 0 .98 248 .63 17 . 200 1 . 03 2 . 0 186 . 8 188 . 8 1 . 00 248 . 63 17 .300 1. 01 2 . 0 186 . 8 188 . 8 1. 01 248 . 63 17 .400 0 .99 2 . 0 186 .8 188 . 8 1. 00 248 .63 17 .500 0 . 74 1 .7 186 . 6 188 .5 0 . 92 248 . 63 17 . 600 0 . 90 1. 6 186 . 6 188 . 3 0 . 86 248 . 63 17. 700 0 . 96 1. 9 186 . 6 188 .4 0 . 90 248 . 63 17 . 800 0 . 71 1 .7 186 . 6 188 .3 0 . 86 248 . 63 17 .900 0 . 87 1 .6 186 .5 188 .1 0 . 82 248 . 63 18 . 000 0 . 94 1. 8 186 . 6 188 . 3 0 . 87 248 .63 18 .100 0 . 69 1. 6 186 .5 188 .2 0 . 84 248 . 63 18 .200 0 . 86 1. 6 186 .5 188 .1 0 . 80 248 . 63 18 .300 0 . 68 1.5 186 .5 188 . 0 0 .78 248 .63 18 .400 0 . 85 1 .5 186 .4 188 . 0 0 . 77 248 . 63 18 .500 0 . 67 1 .5 186 .4 188 . 0 0 . 77 248 . 63 18 . 600 0 . 84 1.5 186 .4 187 .9 0 . 76 248 . 63 18 . 700 0 .66 1.5 186 .4 187 . 9 0 . 75 248 .63 18 . 800 0 . 84 1.5 186 .4 187 . 9 0 . 75 248 .63 18 . 900 0 . 66 1.5 186 .4 187 . 9 0 .75 248 . 63 19 . 000 0 . 83 1.5 186 .4 187 . 9 0 . 75 248 . 62 19 .100 0 . 65 1.5 186 .4 187 . 9 0 . 74 248 . 62 19 .200 0 .58 1.2 186 .3 187 . 6 0 . 67 248 . 62 19 .300 0 . 82 1.4 186 . 3 187 . 7 0 . 69 248 . 62 19 .400 0 . 64 1.5 186 .4 187 . 8 0. 71 248 .62 19 .500 0 . 82 1.5 186 .4 187 . 8 0 . 72 248 . 62 19 . 600 0 . 64 1.5 186.4 187 . 8 0 . 73 248 . 62 19 . 700 0 .57 1.2 186 .3 187 . 6 0 . 66 248 . 62 19 . 800 0 . 81 1.4 186 .3 187 .7 0 . 68 248 . 62 19 .900 0 . 64 1.5 186 .3 187 . 8 0 . 70 248 . 62 20 . 000 0 . 56 1.2 186 .3 187 . 5 0 . 64 248 . 62 20 .100 0 .55 1 . 1 186 .2 187 .4 0 . 59 248 . 62 20 . 200 0 . 80 1.4 186 .3 187 .5 0 . 64 248 .62 ------------------ ------------------------------------------------------ �l POND-2 Version: 5 .20 SIN: Page 7 EXECUTED: 06-25-1996 10 :55 :40 Pond File: C: \409\DRAINAGE\409OUTSP.PND Inflow Hydrograph: C: \409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C:\409\DRAINAGE\OUT HYD INFLOW HYDROGRAPH ROUTING COMPUTATIONS ------------------ ------------------------------------------------------ TIME INFLOW I1+I2 2S/t - 0 2S/t + 0 OUTFLOW ELEVATION (hrs) (cfs) (cfs) (cfs) (cfs) (cfs) (ft) -------- --------- --------- ------------ ----------- --------- --------- 20.300 0 . 62 1.4 186 .3 187 . 7 0 . 68 248. 62 20.400 0.55 1.2 186 .2 187 .5 0 .62 248 . 62 20 .500 0 .54 1. 1 186 .2 187 .3 0 .58 248 . 62 20 .600 0 . 79 1.3 186 .2 187 .5 0 .63 248 .62 20 .700 0 . 61 1 .4 186 .3 187 . 6 0 . 67 248 . 62 20 .800 0 .55 1.2 186 .2 187 . 5 0 .62 248 . 62 20 .900 0 .54 1.1 186 .2 187 .3 0 .57 248 . 62 21. 000 0 .53 1. 1 186 . 1 187 .2 0 .55 248 . 62 21 .100 0 . 78 1 .3 186 .2 187 .4 0 .61 248 . 62 21 .200 0 . 61 1 .4 186 .3 187 . 6 0 . 66 248 . 62 21 .300 0 .54 1 . 2 186 .2 187 .4 0 . 61 248 . 62 21 .400 0 .53 1 .1 186 .1 187 .3 0 .57 248 . 62 21.500 0 .53 1 .1 186 .1 187 .2 0 .54 248 . 62 21. 600 0 .52 1.1 186 .1 187 .2 0 .53 248 . 62 21 .700 0 .52 1 . 0 186 .1 187 . 1 0 . 53 248 . 62 21 . 800 0 .51 1 . 0 186 .1 187 . 1 0 .52 248 . 62 21.900 0 .51 1. 0 186 .1 187 .1 0 .51 248 . 62 22 . 000 0 .76 1 .3 186 .2 187 .3 0 .58 248 . 62 22 .100 0 .59 1 .4 186 .2 187 .5 0 . 64 248 . 62 22 .200 0 .53 1 . 1 186 .2 187 .4 0 .59 248 . 62 22 .300 0 .52 1. 1 186 .1 187 .2 0 .55 248 . 62 .22 .400 0 .52 1 . 0 186 . 1 187 .2 0 . 53 248 . 62 22 .500 0 .52 1. 0 186 .1 187 .1 0 .53 248 . 62 22 . 600 0 .52 1 . 0 186 .1 187 . 1 0 . 52 248 . 62 22 . 700 0 .51 1. 0 186 .1 187 . 1 0 .52 248 . 62 22 .800 0 .51 1. 0 186 .1 187 .1 0 .51 248 . 62 22 .900 0 .50 1. 0 186 .1 187 .1 0 .51 248 . 62 23 . 000 0 .50 1 . 0 186 . 1 187 .1 0 .50 248 . 62 23 .100 0 .50 1 . 0 186 .1 187 .1 0 .50 248 . 62 23 .200 0 .50 1. 0 186 . 1 187 .1 0 .50 248 . 62 23 .300 0 .50 1 . 0 186 .1 187 .1 0 .50 248 . 62 23 .400 0 .50 1. 0 186.1 187 .1 0 .50 248 . 62 23 . 500 0 .50 1 . 0 186 .1 187 . 1 0 .50 248 . 62 23 . 600 0 .50 1 . 0 186 .1 187 . 1 0 .50 248 . 62 23 .700 0 .50 1. 0 186 .1 187 .1 0 . 50 248 . 62 23 . 800 0 .50 1. 0 186.1 187 .1 0 .50 248 . 62 23 .900 0 .50 1 . 0 186 .1 187 .1 0 . 50 248 . 62 24 . 000 0 .24 0 . 7 185 .9 186 . 8 0 .42 248 . 61 24 .100 0 .16 0 .4 185 . 8 186 .3 0 .29 248 . 61 24 .200 0 .13 0 .3 185 . 6 186 .1 0 .21 248 . 61 24 .300 0 . 11 0 .2 185 . 6 185 .9 0 . 16 248 . 61 24 .400 0 . 08 0 .2 185 .5 185 . 8 0 .12 248 . 60 24 .500 0 . 06 0 . 1 185 .5 185 .7 0 . 09 248 . 60 24 . 600 0 . 04 0 .1 185 .4 185 . 6 0 . 07 248 . 60 24 . 700 0 . 03 0 . 1 185 .4 185 .5 0 . 05 248 . 60 24 . 800 0 . 02 0 . 1 185 .4 185 .5 0 . 03 248 . 60 ------------------ ------------------------------------------------------ S POND-2 Version: 5 .20 SIN: Page 10 Pond File: C:\409\DRAINAGE\409OUTSP.PND Inflow Hydrograph: C:\409\DRAINAGE\409100YD.HYD Outflow Hydrograph: C: \409\DRAINAGE\OUT HYD EXECUTED: 06-25-1996 Peak Inflow = 29 . 65 cfs 10 :55 :40 Peak Outflow = 28 .51 cfs Peak Elevation = 249 . 10 ft Flow (cfs) 0 . 0 3 . 0 6 . 0 9 . 0 12 . 0 15 . 0 18 . 0 21 . 0 24 . 0 27 . 0 30 . 0 33 . 0 x x 11.4 - x x 11 .5 - x X 11 .6 - x x 11 . 7 - x x 11 . 8 - x x 11. 9 - X X 12 . 0 - x X 12 .1 - X *X 12 .2 - * x * X 12 .3 - * x * X 12.4 - * x * x 12 .5 - * x * X 12 . 6 - *X *X 12 . 7 - *X *X 12 . 8 - * X *X 12 . 9 - *X *X 13 . 0 - *X * X 13 .1 - *X * X 13 .2 - *x TIME (hrs) * File: C:\409\DRAINAGE\409100YD.HYD Qmax = 29 . 6 cfs x File: C: \409\DRAINAGE\OUT HYD Qmax = 28 . 5 cfs 61 Page 1 of 2 Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: 409SPILLWAY Description: DISCHARGE OUT OF SPILLWAY Solve For Discharge Given Constant Data; Bottom Width. . . . . . . 25 . 00 Z-Left . . . . . . . . . . . . . 2 . 00 Z-Right. . . . . . . . . . . . 2 . 00 Mannings 'n' . . . . . . . 0 . 030 Channel Slope. . . . . . 0 . 0050 Tariable Input Data Minimum Maximum Increment By Channel Depth 0 . 00 1 .20 0 . 10 Open Channel Flow Module, Version 3 .42 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 6� Page 2 of 2 VARIABLE COMPUTED COMPUTED --------------------------- --------------------------- Bottom Z-Left Z-Right Mannings Channel Channel Channel Velocity Width (H:V) (H:V) In' Slope Depth Discharge fps ft ft/ft ft cfs Unable to compute this instance. 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 .10 1 . 89 0 . 75 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 .20 6 . 01 1 . 18 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 .30 11. 83 1. 54 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 .40 19 .14 1 . 85 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 .50 27 . 81 2 . 14 25 . 00 2 . 00 2 .00 0 . 030 0 . 0050 0 . 60 37 .76 2 .40 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 .70 48 . 91 2 . 65 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 . 80 61 .23 2 . 88 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 0 . 90 74 . 67 3 . 10 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 1. 00 89 .20 3 . 30 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 1. 10 104 . 80 3 .50 25 . 00 2 . 00 2 . 00 0 . 030 0 . 0050 1.20 121 .43 3 . 69 Open Channel Flow Module, Version 3 .42 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 63 r^ Outlet Structure File: 409OUTSP.STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: ***** COMPOSITE OUTFLOW SUMMARY **** Elevation (ft) Q (cfs) Contributing Structures -------------- ------- ------------------------ 244 . 00 0 . 0 244 .20 0 . 0 244 .40 0 . 0 244 . 60 0 . 0 244 . 80 0 . 0 245 . 00 0 . 0 245 . 20 0 . 0 245 .40 0 . 0 245 . 60 0 . 0 245 . 80 0 . 0 246 . 00 0 . 0 246 .20 0 . 0 246 .40 0 . 0 246 . 60 0 . 0 246 . 80 0 . 0 247 . 00 0 . 0 247 .20 0 . 0 247 .40 0 . 0 247 . 60 0 . 0 247 . 80 0 . 0 248 . 00 0 . 0 248 .20 0 . 0 248 .40 0 . 0 248 . 60 0 . 0 1 248 . 80 6 . 0 1 249 . 00 19 . 1 1 249 .20 37 . 8 1 249 .40 61.2 1 249 .60 89 . 2 1 249 .80 121 .4 1 250 . 00 141 . 0 1 250 .20 160 .5 1 250 . 30 170 .2 1 6 � Outlet Structure File: 409OUTSP.STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: Outlet Structure File: C: \409\DRAINAGE\409OUTSP.STR Planimeter Input File: C: \409\DRAINAGE\409STOR2 .VOL Rating Table Output File: C:\409\DRAINAGE\409OUTSP.PND Min. Elev. (ft) = 244 Max. Elev. (ft) = 250 .3 Incr. (ft) _ .2 Additional elevations (ft) to be included in table: SYSTEM CONNECTIVITY Structure No. Q Table Q Table ---------- --- ------ ------- TABLE 1 -> 1 Outflow rating table summary was stored in file: C: \409\DRAINAGE\409OUTSP.PND Outlet Structure File: 409OUTSP.STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: >>>>>> Structure No. 1 <<<<<< (Input Data) TABLE Input your own rating table. E1 (ft) =248 . 6 E2 (ft) = 250 . 301 Constant (ft) added to each elevation was : 248 . 6 Elev. (ft) Q (cfs) ---------- ------- 248 . 6000061035156 0 248 . 7000061035156 1. 89 248 . 8000061035156 6 . 01 248 .9000061035156 11 . 83 249 . 0000061035156 19 . 14 249 . 1000061035156 27 . 81 249 .2000061035156 37 . 76 249 .3000061035156 48 . 91 249 .4000061035156 61.23 249 .5000061035156 74 . 67 249 . 6000061035156 89 .2 249 . 7000061035156 104 . 8 249 . 8000061035156 121.43 250 .4000061035156 180 Outlet Structure File: 409OUTSP. STR POND-2 Version: 5 .20 SIN: Date Executed: Time Executed: Outflow Rating Table for Structure #1 TABLE Input your own rating table. Elevation (ft) Q (cfs) Computation Messages -------------- ------- ------------------------ 244 . 00 0 . 0 E < E1=248 . 6 244 .20 0 . 0 E < E1=248 . 6 244 .40 0 . 0 E < E1=248 . 6 244 . 60 0 . 0 E < E1=248 . 6 244 . 80 0 . 0 E < E1=248 . 6 245 . 00 0 . 0 E < E1=248 . 6 245 .20 0 . 0 E < E1=248 . 6 245 .40 0 . 0 E < E1=248 . 6 245 . 60 0 . 0 E < E1=248 . 6 245 . 80 0 . 0 E < E1=248 . 6 246 . 00 0 . 0 E < E1=248 . 6 246 .20 0 . 0 E < E1=248 . 6 246 .40 0 . 0 E < E1=248 . 6 246 . 60 0 . 0 E < E1=248 . 6 246 . 80 0 . 0 E < E1=248 . 6 247 . 00 0 . 0 E < E1=248 . 6 247 .20 0 . 0 E < E1=248 . 6 247 .40 0 . 0 E < E1=248 . 6 247 . 60 0 . 0 E < E1=248 . 6 247 . 80 0 . 0 E < E1=248 . 6 248 . 00 0 . 0 E < E1=248 . 6 248 .20 0 . 0 E < E1=248 . 6 248 .40 0 . 0 E < E1=248 . 6 248 . 60 0 . 0 248 . 80 6 . 0 249 . 00 19 . 1 249 .20 37 . 8 249 .40 61 . 2 249 . 60 89 .2 249 . 80 121 .4 250 . 00 141 . 0 Interpolated from input table 250 .20 160.5 Interpolated from input table 250 .30 170 . 2 Interpolated from input table APPENDIX Pipe Report Upstream Downstream Inlet Weighted inlet Inlet System System Discharge Length Constructed Section Roughness Capacity Upstream Downstream Description Node Node Area Roughness CA TC Flow Intensity (cfs) (ft) Slope Size (cfs) Invert Invert (acres) Coefficient (acres) (min) Time (in/hr) (ft/ft) Elevation Elevation (min) (ft) (ft) CB#7 DMH#4 0.215 0.95 0.204 6.00 6.00 7.09 1.46 20.00 0.010 12 inch 0.013 3.56 252.80 252.60 RCP CB#5 CB#6 0.172 0.95 0.163 6.00 6.00 7.09 1.17 165.00 0.010 12 inch 0.013 3.62 256.70 255.00 RCP CB#6 DMH#3 0.195 0.95 0.185 6.00 7.73 6.73 2.36 165.00 0.010 12 inch 0.013 3.62 256.70 255.00 RCP C13#3 CB#4 0.179 0.95 0.170 6.00 6.00 7.09 1.22 20.00 0.010 12 inch 0.013 3.56 254.00 253.80 RCP CB#4 DMH#2 0.207 0.95 0.197 6.00 6.19 7.05 2.61 25.00 0.008 12 inch 0.013 3.19 253.70 253.50 RCP LOT 75 DMH#2 1.200 0.84 1.008 6.00 6.00 7.09 7.20 50.00 0.010 18 inch 0.013 10.50 254.20 253,70 RCP DMH#2 DMH#3 NIA N/A N/A N/A 6.31 7.02 9.73 195.00 0.010 18 inch 0.013 10.50 253.40 251.45 RCP DMH#3 DMH#4 N/A NIA N/A N/A 8.33 6.60 11.47 125.00 0.010 18 inch 0.013 10.50 251.35 250.10 RCP DMH#4 FES#3 I N/A I N/A I N/A I N/A 1 8.64 6,541 12.70 125.00 0.007 24 inch 1 0.013 1 19.19 1 250.00 1 249.10 1 RCP 17 Project Title:CHANNEL BUILDING COMPANY Project Engineer:FCM/DPH c:\4091drainage\409cb5c7.stm mho design StormCAD v1.0 06/25/96 03:36:21 PM ®Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 Pipe Report Upstream Downstream Inlet Weighted Inlet Inlet System System Discharge Length Constructed Section Roughness Capacity Upstream Downstream Node Node Area Roughness CA TC Flow Intensity (cfs) (ft) Slope Size (cfs) Invert Invert (acres) Coefficient (acres) (min) Time (in/hr) (ft/ft) Elevation Elevation (min) (ft) (ft) CB#8 DMH#5 0.29 0.90 0.26 6.00 6.00 7.09 1.87 5.00 0.020 12 inch 0.013 5.04 250.00 249.90 ROOF DRAIN NORTF DMH#5 0.72 0.95 0.68 6.00 6.00 7.09 4.85 141.00 0.010 12 inch 0.013 3.56 251.31 249.90 ROOF DRAIN SOUTF DMH#5 0.72 0.95 0.68 6.00 6.00 7.09 4.85 116.00 0.010 12 inch 0.013 3.56 251.06 249.90 DMH#5 FES#4 N/A N/A N/A N/A 6.37 7.01 11.45 25.00 0.072 12 inch 0.013 9.56 249.80 248.00 Project Title:CHANNEL BUILDING CO.INC. LOT#1 Project Engineer: FCM/DPH c:\409\drainage\409cb#8.stm mhf design Storm CAD v1.0 06/25/96 03:20:28 PM Q Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 N DRAINROOF DRAIN SOUTH ROOF _7 N -5 Project Title:CHANNEL BUILDING CO.INC. LOT#1 Project Engineer:FCM/DPH c:\409\drainage\409cb#8.stm mhf design StormCAD v1.0 0625/96 03:18:22 PM ®Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 Pipe Report Upstream Downstream Inlet Weighted Inlet Inlet System System Discharge Length Constructed Section Roughness Capacity Upstream Downstream Description Node Node Area Roughness CA TC Flow Intensity (cfs) (ft) Slope Size (cfs) Invert Invert (acres) Coefficient (acres) (min) Time (in/hr) (ft/ft) Elevation Elevation (min) (ft) (ft) CB#9 FES#5 0.889 0.95 0.845 6.00 6.00 7.09 6.04 35.00 0.071429 12 inch 0.013 9.52 246.50 244.00 RCP Project Title:CHANNEL BUILDING CO.,INC. LOT#1 Project Engineer:FCM/DPH c:\409\drainage\409cb#9.stm mhf design StormCAD v1.0 06/25/96 03:28:31 PM 0 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 FES # 5 P � i CB34 Project Title:CHANNEL BUILDING CO., INC. LOT#1 Project Engineer:FCM/DPH c:\409\drainage\409cb#i9.stm mhf design StormCAD v1.0 06/25/96 03:25:48 PM ®Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 PROJECT No. 1 -1 1 1 A EMEMWEM 'M PROJECT NAME: CL gln e, Am= A== Ann= IF V- MHF Design Consultanfs, Inc. CAM BY. CHECKED BY. DATA: SHEET No. OF .......... ...... ....... .............. ......... ............ ........ .................. ........ ...... : 4L ............ -1A :-4-- ....................------------- ...... ........ .... ............. ....... . ............. ......... ............ . . ............. ..... ....... :0 LM 4 P . . . ........ ............. .0.. ...... P ... ......... ....... ...... .. ..... ........... ............. ........ ....... ... ........ 4) -7 .......... ...... ....... ................ ...................... ... ............ -........... .... ...... ... -0, '10 .... .... ................... ........................... ................. ........ ......... ............. .. .. .. ............. ...... ....... ............ ....... ........... .......... . .... .. ........... .... ... ... .... ................ ....... ............ a w ....... ..... ...... ........ .......... ...... ....... ........... ........................... ..........w ...... ......... ....... ........... ... ............... .......... ......... .............. ................... ......... 2 . .................. . .......... ........... ....... ...... . ..... .... ......................... ................ ................ ................. .............. . ..... .......... .... ............ ................. .................. ......... ................ .......... ...... ............. ........................................... .......... .................. ....... &.7.......... ...... ........... ......... .......... ........... ............... . ....... ......... .......... ------- .......... . ..... .................>........... ........... . ........ . .....r .......... ....... ................... ......... ............... .................. ......... ............... . .. . ....... ... . .....................% ......... V .... ...... .......... .......... ......... ..... ....... ........ ........ ............... .......... ............ ....... ................... ......... L4 ............. ......... ........ - ............. ...... ......... ................... ................ ......... ........... ... .............. ............... 12- .............. ............. ........ . ...... .......... ........ .................. ...... ............. ............. .... ......... ................ .......... .......................... ................ ................. ........... .......... . ...... .................. ................ ......... ........... .......-...... .............. .................. .............. ...... !DC)o ddce (� ♦ o • ♦ J R • / • ��G, •�` �" ems® . o ® � 38 4,8 all 86 OJT- x dii �' _. ) _ — - 'II�—•fir(\. ..J -� t � J � I • ♦ • �� /� / ° _ Ab- 00 1 CHART lu ISO lOtGOO 166 — 8,000 EXAMPLE t S) t2) (3) 156 6 0.42 laehas(3.5 toot) 5' 0.120 of a 5. '4 S. 5. —4,000 s m 13 4. 3® (1) 2.5 ILI 4. 120 (2) 2.1, 7.4 2® (3) 2.2 7.7 106 3. aD is f 3° 96 1 3. e 000 — 600 54 600 500 / 72 400 / 2. 300 ��jr 1.5 1.5 z / z 60 200 / W 1.5 54 W 100 60 9L 1.0 1.0 _._ u /2 a U. 50 NW ENTRANCE 0 ® 40 CALE TYPE 1.0 UJ 9 ►— 36 30 (1) square ado*with 9 w haadwan 9 33 Q (2) Groove awd with LU LU headwall � .® 30 ���$S .9 (3) araars and 27 Projecting 10 .T 7- 24 ° .7 6 To use scale(2)Of(3)pre)act 2l 5 horlsontafly to basis(1).then use straight inclined Tina through D and 0 seslss,Of Marto 66 6 .6 3 illustrated. 1 2 15 .5 5 5 1.0 12 HEADWATER DEPTH FOR CONCRETEICULVERTS KEAOWATER SCALES 253 VISED SAY S64 $' BUREAU OF"LIC ROADS JAK 1993 WITH INLET CONTROL APPENDIX Quick TR-55 Ver. 5 .46 SIN: Executed: 09 :42 :42 06-11-1996 c: \409\drainage\409TC.TCT SUMMARY SHEET FOR Tc or Tt COMPUTATIONS (Solved for Time using TR-55 Methods) TIME OF CONCENTRATION FOR PRE-DEVELOPMENT CONDITIONS LOT 82 MAP 25 PREPARED FOR CHANNEL BUILDING COMPANY, INC. MHF 40996 Subarea descr. Tc or Tt Time (hrs) -------------- -------- ---------- EXISTING Tc 0 . 17 '71 PROJECT No. PROJECTAN maw m MMERAMMERME I`d�'' E: g MHF Design Consultants, Inc. cam. BY- CHECKED BY: DAT& 2l' V SHEET No. OF v. c _....: ......: .... ............ ....:........ ...__.... .... .... .............. .:....__..:.. .....__.................... ... ...... " ..... ........... ............ ...... . . ... _.... ... ......_ . _. ... ..._ ..�. .. : . ...-... .:... ...:.. .. : : .- ..:_........... . -... ........... .. -......:......... ...... ... _ .. ...._ .. : ................... _ .1f. ........ ...t...4i!.. .....:... ..�-,..... .....i.._. -i...... k..J-..g....:Ss�...f.' <:-.4�.:�!a....... �.J.._C...............i...... .... �..1... - ............... .. .. ...... f'.....:.. ...(` ...rail Ct .�.s?�...t..t r....A 5..5..cn . .. ...:....... -.. ........ ............ .............. ............ ..........:.. ......................... ...........: ............. ............ ............. _........... . _......; _.._.:...... . -- ------- .......... _..............:.... ... ...�.: ..e� .. e .. c� e .......e�,..... Z. ..� ... ._:... ........ ...... ... ......... ..................................._......::.......... ........................ ... ... ... ... r.e� .� . --s r ------ ...- ......... ........._.................. ............. ............ . - ... ............. _ ... ... .... ............. . ..:... ...:... : ... ...�.. ..... ....... ............. . `. f`..t :..o ...t .. ...._ ." -..c�._ ...: .. .. ......... t.. ....c s _ .S. ---... ......_ ............ :......................... ....... .... - :. ............. ....._ .. ....._ ..... :. :... .. _. ....` '"...... .__ , e .. . ........ ..... _ _. ................. - ... ... - ... ... ... L....... ..cA: . . ... = * . . ;_... .........:.........:..................:.........:.........:....._................. .. ............. ........ ... ......... .. n ......... ............................................................. ... ... ... 4w Quick TR-55 Ver. 5 .46 SIN: Executed: 07 : 19 : 01 06-25-1996 c : \409\drainage\409TC.TCT TIME OF CONCENTRATION FOR PRE-DEVELOPMENT CONDITIONS LOT 82 MAP 25 PREPARED FOR CHANNEL BUILDING COMPANY, INC. MHF 40996 Tc COMPUTATIONS FOR: EXISTING SHEET FLOW (Applicable to Tc only) r e�- Segment ID 1 U.��' Surface description WOODS P Manning' s roughness coeff. , n 0 . 6000 Flow length, L (total < or = 300) ft 200 . 0 Two-yr 24-hr rainfall, P2 in 3 . 000 Land slope, s ft/ft 0 . 0400 0 . 8 . 007 * (n*L) T = -------------- hrs 0 . 67 = 0 . 67 0 .5 0 .4 P2 * s SHALLOW CONCENTRATED FLOW Segment ID 2 3 Surface (paved or unpaved) ? Unpaved Unpaved Flow length, L ft 300 . 0 470 . 0 Watercourse slope, s ft/ft 0 . 0500 0 . 0400 0 .5 Avg.V = Csf * (s) ft/s 3 . 6078 3 . 2269 where : Unpaved Csf = 16 . 1345 Paved Csf = 20 .3282 T = L / (3600*V) hrs 0 . 02 + 0 . 04 = 0 . 06 CHANNEL FLOW Segment ID Cross Sectional Flow Area, a sq.ft 0 . 00 Wetted perimeter, Pw ft 0 . 00 Hydraulic radius, r = a/Pw ft 0 . 000 Channel slope, s ft/ft 0 . 0000 Manning' s roughness coeff . , n 0 . 0000 2/3 1/2 1.49 * r * s V = -------------------- ft/s 0 . 0000 n Flow length, L ft 0 T = L / (3600*V) hrs 0 . 00 = 0 . 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 'TOTAL TIME (hrs) . . . . . . 0 . 74 . . �l MEMMEW MEOW Em MM PROJECT No. "V07 2 Immomr .4 INOW . EM MENEW -M MW .0 mm ELISOMMM mmummum amw low PROJECT NAME:-L-L aAneJ Lo-r4�1 49�ww mammon AMMM r am= mm= ANNE== NEWS= MHF Design Cons u i'ta nt--s-,- Inc. ' CAW. BY- CHECKED BY DAM SHEET No. OF .......... ........... ....... .. ..... ........ e. .......... ......... ................. .................. .................. ......................... ......... ....... ...... .... .... ........ ............ ............ ..... .................. ............ . ......... ... .............. .. ... ............. ............. ... ........ ....... ........ ........... ........... ............ ...... ........ ........... ..... .............. ................. .......... ......... .. ....... ... ....... .......... . . . . ... ... ............... ............. .... ... .......... ......... ......... ................. ......... .......... ....... ......... ........... ........... ................... ........•......... .A ....... ......... .... ... .............. ...... .......... t- PL . ......CA-.....-: ............ ............. ............ ........ ......... ......... ................... ............................ ........ ......... .. .............. ......... .......... ................... X-N. . ... ...... .. ............kr-: 0 ............... ................. ................. .............................. ....... .............. .. ...........— — .... ... ........ ...... ....... ...... ....... ............. .............. ........ .. ..... ...... ......... .......... ...... .... ..�-. ....r7—5. ....................... .......a............. ................... ................................. ......... ......... ............. ck.. ..... ....... ........ .... ... -S..: J-11....0 .............------- .............................. ........ .......... ....... .......... ...... . ...... ....... ...... -7 .......... . ......... L ................ ..... ...... . ..... ...... ...... J-J .......... ....... ........ .......... ......... .......... .. ........... . ...... ............ ............... ........... ..............4-............... ................ Table 2-2a.—Runoff curve numbers for urban areas] Curve numbers for Cover description hydrologic soil group— Average percent Cover type and hydrologic condition impervious areal A B C D Fully developed urban areas (vegetation established) Open space (lawns, parks,golf courses, cemeteries, e tc.)a: Poor condition (grass cover < 5M) ...... ........ 68 79 86 89 Fair condition (grass cover 50% to 75%)........... 49 69 4,4 84 Good condition (grass cover > 75%) .............. 39 61 80 Impervious areas: Paved parking lots, roofs, driveways, etc. (excluding right-of-way). ......................... 98 98 98 98 Streets and roads: -- Paved; curbs and storm sewers (excluding Tight-of-way).................................. 98 98 98 98 Paved; open ditches (including right-of-way) ....... 83 89 92 93 Gravel (including right-of-way) ................... 76 85 89 91 Dirt(including right-of-way) ..................... 72 82 87 89 Western desert urban areas: Natural desert landscaping(pervious areas only)'... 63 77 85 88 Artificial desert landscaping(impervious weed barrier, desert shrub with I- to 2-inch sand or gravel mulch and basin borders). .............. 96 96 96 96 Urban districts: Commercial and business.......................... 85 89 92 94 95 Industrial........................................ 72 81 88 91 93 Residential districts by average lot size: 1/8 acre or less (town houses)...................... 65 77 85 90 92 1/4 acre ......................................... 38 61 75 83 87 1/3 acre ......................................... 30 57 72 81 86 1/2 acre ......................................... 25 54 70 80 85 1 acre ........................................... 20 51 68 79 84 2 acres .......................................... 12 46 65 77 82 Developing urban areas Newly graded areas (pervious areas only, no vegetation)s................................... 77 86 91 94 Idle lands (CN's are determined using cover types similar to those in table 2-20. 'Average runoff condition. and I, =0.2S. The avenge percent imperious area shown was user) to develop the composite Ms.Other assumptions are as follows: impervious areas are directly connected to the drainage system,impervious areas have a CN of 98,and pmrti•ious areas arc considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-:1 or 2-4. 'CN's shown are equivalent to those of pasture.Composite CN's may be computed for other combinations of open space t over type. 'C'vm}w.ite CN's for natural desert landscaping should be computed using Gtnu•es 2-:3 or'24 based on the inpervious area percentage WN =98)and the pervious area C N.The pervious area CN's are re assumed equivalent to desert shrub in pxor hydrologic a ondition. sComposite CN's to use for the design of temporary measures during grading and construction should be curnputed using tigur•e'2-:3 or•'24. based on the degree of development(impervious area percentage)and the CN's for the newly graded pervious:areas. (210-VI-TR-55, Second Ed., June 1986) 2-5 Table 2-2c.—Runoff curve numbers for other agricultural lands, Curve numbers for Cover description hydrologic Soil group— Hydrologic Cover type condition A B C D Pasture, grassland, or range—continuous Poor 68 79 86 39 forage for grazing.2 Fair 49 69 79 84 Good 39 61 74 80 Meadow—continuous grass, protected from — 30 58 71 78 grazing and generally mowed for hay. Brush—brush-weed-grass mixture with brush Poor 48 tii 7-1 IM the major element.' Fair 35 56 70 77 Good 430 48 65 73 Woods—glass combination (orchard Poor 57 73 82 86 or tree farm).5 Fair 43 65 76 82 Good 32 58 72 79 Woods." Poor 45 (36 77 8:3 Fait- 36 lip 73 79 ` Good 430 55 70 77 Farmsteads—buildings, lanes, driveways, — 59 74 82 86 and surrounding lots. 'Average runoff condition, and I, = 0.25. zP,K)) <:5(t<.'( g,t,und cover nr heavih•gntzed with no mulch. Fa;r:• :�) to 75`6 gt•outnd cover and not heavil grazed_ GwH >75. ground euver and lighth' or only occasiunally gntzed. Poor: < ),(K; ground cover. F(rir: .51)to F:slr gr•otuui cover. Gurxl: >i5�r ground cover. 'Actual curve number is less than:30; use CN = 30 fur runoff computations. 'CN's shim n were computed for areas with-:V,4 wowds and 5N, grass(pasture)cover. other combinations of conditions nra.•he computed frrnn the C;I's fur%V(MHIs wtd pasuu•e. fi Po)r: Forest litter, small lrec•s,and brush are destrY,.N•ed b}• heavy grazing or regul:u•hunting. . Frrir: Wrwds are grazed but noL burned.and some forest litter cover-, the soil. t;orxl: Woods are protected front grazing,and litter and brush adetluatel cover the s)il. (210-VI-TR-55, Second Ed., June 1986) 2-7 Appendix A® Hydrologic sail groups Soils are classified into hydrologic soil groups In exhibit A-1, some of the listed soils have an added (HSG's) to indicate the minimum rate of infiltration modifier: for example, "Abr azo. gravelly." This obtained for bare soil after prolonged wetting. The refers to a gravelly phase of the Abrazo series that HSG's, which are A, B, C, and D. are one element is found in SCS soil map legends. used in determining runoff curve numbers (see chapter 2). For the convenience of TR-55 users, exhibit A-1 lists the HSG classification of United Disturbed soil profiles States soils. The infiltration rate is the rate at which water As a result of urbanization, the soil profile may be enters the soil at the soil surface. It is controlled by considerably altered and the listed group surface conditions. HSG also indicates the classification may no longer apply. In these transmission rate—the rate at which the water circumstances, use the following to determine HSG moves-within the soil. This rate is controlled by the according to the texture of the new surface soil, soil profile. Approximate numerical ranges for provided that significant compaction has not occu2-red transmission rates shown in the HSG definitions (Brakensiek and Rawls 1983): were first published by Musgrave (USDA 1955). The four groups are defined by SCS soil scientists as HSG Soil textio -es follows: A Sand, loamy sand, or sandy loam Group A soils have low runoff potential and high B Silt loam or loam infiltration rates even when thoroughly wetted. They C Sandy clay loam consist chiefly of deep, well to excessively drained D Clay loam. silt: clay loam, sandy clay, silty sands or gravels and have a high rate of water- clay, or clay transmission (greater than 0.30 in/hr). Group B soils have moderate infiltration rates when Drainage and group D soAs -- thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. Some .oils in the list are in group D because of a These soils have a moderate rate of water high water table that creates a drainage problem. transmission (0.15-0.30 in/hr). Once these soils are effectively drained, they are placed in a different group. For example. Ackerm Group C soils have low infiltration rates when soil is classified as ;VD. This indicates that the thoroughly wetted and consist chiefly of soils with a drained Ackerman soil is in group A and the layer that impedes downward movement of water undrained soil is in group D. and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr). Group D soils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay laver at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 irdhr). (210-VI-TR-55, Second Ed., June 1986) A-1 i�l (/r" flow does not exceed 300 feet and this is usually on very flat slopes. For small watersheds, the sheet flow length will normally not exceed 100 feet. Good judgement should be used in determining sheet flow length in a watershed. Manning's kinematic solution is used to compute travel time for sheet flow. Table 6-6 gives Manning's "n" values for sheet flow under various flow conditions. These "n" values should only be used in computing sheet flow. Manning's kinematic solution is: =1 0.007 (nL)0-8 Tt (p2)0.5 SO.4 where: Tt is travel time in hours n is Manning's roughness coefficient L is flow length in feet P2 is 2-year, 24-hour rainfall in inches s is land slope in feet per foot (ft/ft). TALE 6-6 -- ROUGHNESS COEFFICIENTS (MANNINGIS n) FOR SHEET FLOW Surface Description n Smooth surfaces (concrete, asphalt, gravel, or bare soil) 0. 011 Fallow (no residue) 0. 05 Cultivated soils: Residue cover :520% 0. 06 Residue cover >20% 0. 17 Grass: Short grasses 0. 15* Dense grasses 0.24 Woods: Light underbrush 0. 44 Dense underbrush 0. 80 Note: When selecting n, consider cover to a height of about 0. 1 ft. This is the only part of the plant cover that will obstruct sheet flow. Source: USDA Soil Conservation Service 6-25 momw MEN PROJECT No. A MIEW , MWAMMMIEW An MW .0 MEMMIMMM Ao= momr AM PROJECT NAME: on ri P MMW IF AM= WE= LAJ (X MHF Design Consultants, Inc. CALC. BY.—LL:L CHECKED BY- DATE. SHEET No. OF .. ... .. ........ ..... ....... ... .............. ....... ........ ....................... .... ....... ........... ..................................... 17 ............... ...... ..........�ksh- .... ..... . . . .......... .................. -ro"J.-C 4�- .. ........ AID. .. ......... ........... ----------- ............. ....... ............ ....... . .............. ....... ............. . ........ ............. ............ . . . . . . ................. ........ ............................... ................ ............ ..... ......t7 ................. .4- .............. ......... ..........4-1 .........0- ...... ............. .............. ..........: ............... .. ..... . ........ ....... a.... z........ ......... ........ 6.......... -5-6...... a ............. ........ ........ .......... r ............................ ........ ...... ......... ...........- .......... ------- ....... ................. .......... ............. ........... ......... .......... .............------ 77.............. ......... ......... ......... ....... w ............ ........... ................... ...... .... ..... ........ ....... ........ --------- .......................... LY-5........... ................ .... ... ............. .......... ...... ............. ........... .................. ............. ........ ............ ............ .......................... ............. ...... ....... .. ..... .......... ........ . ......... ........ .......... ............ ........ ......... ............ ............. ....... ......... .......... ......... --Pth- ..... ...... D.J ....... . ..... ........... 0:r ....... ..... ........ _A6...-.1J.0 ........ .. .........7.1--....... .......7 ......... ....... ..... .. ............ ....... .......... ..... .... ...... ........ ...... ................... ..... .... X ........... ....... -------- ....... ............----------- .. ............ ...................7- ...... ........... ....... YI . ........... ...... .......... ...... ...... ...... • , re a 'a •�• a � 'r a a X J • �. • 3 5aka \� • a 38 ® II oi ° 0. (/p 4 a r • ti • f kip ZQU ro a I. i I I r .MHE STORMWATER MANAGEMENT and EROSION AND SEDBmNT coNTRoL HANDBOOK r for URBAN AND DEVELOPING AREAS in NEW RI �r � t r i r 4r t NEW HAMIaSIME ironmental DEPARTMENT OF f Env Rockingham County Services o Conservation District i r USDA Soil Conservation e ice required. Normally the "B" retardance factor is used for determining cross section dimensions. Outlets Diversions shall have adequate outlets which will convey not waters without causing erosion. The outlet may be a natural or constructed grassed waterway, a grade stabilization structure, storm sewer, a stabilized open channel, etc. In all cases, the outlet shall be stabilized either mechanically or with vegetation prior to the operation of the diversion. Grade Channel grade for diversions may be uniform or variable. Grade is dependent on the maximum permissible velocity shown in Table 7-9. Normally diversion grades should not exceed 2 percent. Stabilization The diversion ridge and channel shall be vegetated to prevent erosion. For permanent diversions, a grassed filter strip should be maintained a minimum of 15 feet from the edge of the channel. Maintenance Diversions should be inspected after every major all. Sediment and debris should be removed from the channel and repairs made as necessary. Vegetation that has-been damaged should be reseeded as necessary. TABLE 7-9 MAXIMUM PERMISSIBLE DESIGN VELOCITIES FOR VEGETATED CHANNELS (Velocity - Ft/Sec) USDA Bare Channel Vegetation Soil Texture Channel Retardance Poor Fair Good Sand, silt, sandy B 2. 0 3 . 0 4 . 0 loam, and silty 1. 5 C 1.5 2 . 5 3 .5 loam D 1.5 2. 0 3 . 0 Silty clay loam B 3 . 0 4. 0 5. 0 Sandy clay loam 2 . 0 C 2 .5 3 . 5 4 .5 D 2. 0 3 . 0 4 . 0 B 3 .5 5. 0 6. 0 Clay 2 .5 C 3 . 0 4 .5 5.5 D 2.5 4. 0 5. 0 7-31 TABLE 7-10 -- SELECTION OF VEGETAL RETARDANCE Average length of Retardance vegetation (inches) Good Stand Fair Stand 11-24 B C 6-10 C D 2-6 D D 4' Yin. Ground 310 e T 7d 2 d YegetttiT, d 4 lining L Freeboard r' 0.5T A = (2/3)dT 0.75T PARABOLIC CROSS SECTION s 4' ]din. Ground Slo e T = B + 2(zd) 'Vegetative I d lining Freeboard A = (B +zd)d B TRAPEZOIDAL CROSS SECTION Ground slop e T = Z(zd) 4' Yin. Y egetative �5� lining Freeboard A — zd= J TRIANGULAR CROSS SECTION LEGEND T = design top width d = design depth z = side slope rttio h =design bottom width A = tret FIGURE 7-8 -- TYPICAL DIVERSION CROSS SECTIONS Source: Rockingham County Conservation District 7-32 l TABLE 7-11.4 ®® PARABOLIC DIVERSION DESIGN CHART - RETARDANCE D B V1 FOR RETARDANCE "D", TOP WIDTH (T), DEPTH ' (D) AND V2 FOR RETARDANCE "B" GRADE 1.00 PERCENT ® V1=2.0 V1=2.5 V1=3.0 V1=3.5 V1=4.0 V1=4.5 V1=5.0 V1=5.5 CFS T D V2 T D V2 T D V2 T D V2 T D V2 T D V2 T D V2 T D V2 5 10 9.7 1.6 1.0 X 6.2 2.0 1.2 15 14.8 1.5 1.0 10.2 1.7 1.3 6.5 2.2 1.5 20 20.2 1.5 1.0 13.8 1.7 1.3 9.6 1.9 1.6 25 25.1 1.5 1.0 17.4 1.7 1.3 12.2 1.9 1.6 8.5 2.2 2.0 30 30.1 1.5 1.0 21.0 1.6 1.3 14.9 1.8 1.7 10.6 2.1 2.1 35 35.1 1.5 1.0 24.7 1.6 1.3 17.5 1.8 1.7 12.6 2.0 2.1 8.9 2.4 2.5 40 40.1 1.5 1.0 28.2 1.6 1.3 20.0 1.8 1.7 14.5 2.0 2.1 10.5 2.3 2.5 45 45.1 1.5 1.0 31.7 1.6 1.3 22.5 1.8 1.7 16.4 2.0 2.1 12.1 2.2 2.5 8.2 2.8 2.9 -4 50 50.2 1.5 1.0 35.2 1.6 1.3 25.4 1.8 1.7 18.3 2.0 2.1 13.6 2.2 2.5 10.0 2.6 2.9 55 55.2 1.5 1.0 38.8 1.6 1.3 27.9 1.8 1.7 20.3 1.9 2.1 15.1 2.2 2.5 11.2 2.5 3.0 60 60.2 1.5 1.0 42.3 1.6 1.3 30.4 1.8 1.7 22.2 1.9 2.1 16.6 2.1 2.5 12.4 2.4 3.0 65 65.2 1.5 1.0 45.8 1.6 1.3 32.9 1.8 1.7 24.0 1.9 2.1 18.0 2.1 2.5 13.6 2.4 3.0 8.9 3.1 3.5 70 70.2 1.5 1.0 49.3 1.6 1.3 35.5 1.8 1.7 25.9 1.9 2.1 19.5 2.1 2.6 14.8 2.4 3.0 10.6 2.8 3.5 75 75.2 1.5 1.0 52.8 1.6 1.3 38.0 1.8 1.7 28.2 1.9 2.1 20.9 2.1 2.6 16.0 2.3 3.0 11.5 2.8 3.5 80 80.2 1.5 1.0 56.3 1.6 1.3 40.5 1.8 1.7 30.0 1.9 2.1 22.3 2.1 2.6 17.1 2.3 3.0 12.5 2.7 3.5 85 85.2 1.5 1.0 59.8 1.6 1.3 43.0 1.8 1.7 31.9 1.9 2.1 23.7 2.1 2.6 18.3 2.3 3.0 13.5 2.7 3.6 90 90.2 1.5 1..0 63.3 1.6 1.3 45.6 1.8 1.7 33.6 1.9 2.1 25.2 2.1 2.6 19.4 2.3 3.1 14.4 2.6 3.6 95 95.2 1.5 1.0 66.9 1.6 1.3 48.1 1.8 1.7 35.5 1.9 2.1 26.6 2.1 2.6 20.5 2.3 3.1 15.3 2.6 3.6 100 100.2 1.5 1.0 70.4 1.6 1.3 50.6 1.8 1.7 37.4 1.9 2.1 28.0 2.1 2.6 21.6 2.3 3.1 16.2 2.6 3.6 Sources USDA Soil 'Conservation Service TABLE 7-11. 6 -- PARABOLIC DIVERSION DESIGN CHART - RETARDANCE D & B V1 FOR RETARDANCE "D", TOP WIDTH (T), DEPTH 1 (D) AND V2 FOR RETARDANCE 118" GRADE 2.00 PERCENT Q V1=2.0 V1=2.5 V1=3.0 V1=3.5 V1=4.0 V1=4.5 V1=5.0 V1=5.5 CFS T D V2 T D V2 T D V2 T D V2 T D V2 T D V2 T D V2 T D V2 5 7.1 1.2 0.9' 10 14.7 1.2 0.9 9.5 1.3 1.2 7.0 1.4 1.5 15 22.0 1.2 0.9 14.5 1.3 1.2 10.8 1.4 1.5 8.0 1.5 1.9 5.5 1.9 2.1 20 29.3 1.2 0.9 19.6 1.2 1.2 14.6 1.3 1.5 10.9 1.5 1.9 8.1 1.6 2.3 5.5 2.1 2.6 25 36.6 1.2 0.9 24.4 1.2. 1.2 18.5 1.3 1.5 13.8 1.4 1.9 10.4 1.6 2.3 7.9 1.8 2.7 30 43.9 1.2 0.9 29.3 1.2 1.2 22.2 1.3 1.6 16.6 1.4 1.9 12.7 1.5 2.3 9.7 1.7 2.7 7.3 2.0 3.1 35 51.2 1.2 0.9 34.2 1.2 1.2 25.8 1.3 1.6 19.6 1.4 1.9 14.9 1.5 2.3 11.5 1.7 2.7 8.9 1.9 3.2 40 58.5 1.2 0.9 39.0 1.2 1.2 29.5 1.3 1.6 22.4 1.4 1.9 17.1 1.5 2.3 13.3 1.6 2.8 10.4 1.8 3.2 8.0 2.1 3.6 i' 45 65.8 1.2 0.9 43.9 1.2 1.2 33.2 1.3 1.6 25.2 1.4 1.9 19.3 1.5 2.3 15.0 1.6 2.8 11.8 1.8 3.2 9.2 2.0 3.7 � ) 50 73.1 1.2 0.9 48.8 1.2 1.2 36.8 1.3 1.6 28.0 1.4 1.9 21.7 1.5 2.3 16.7 1.6 2.8 13.2 1.8 3.2 10.5 1.9 3.7 55 80.4 1.2 0.9 53.6 1.2 1.2 40.5 1.3 1.6 30.7 1.4 1.9 23.9 1.5 2.3 18.5 1.6 2.8 14.6 1.7 3.2 11.7 1.9 3.7 60 87.7 1.2 0.9 58.5 1.2 1.2 44.2 1.3 1.6 33.5 1.4 1.9 26.0 1.5 2.3 20.2 1.6 2.8 16.0 1.7 3.2 12.8 1.9 3.7 65 95.0 1.2 0.9 63.4 1.2 1.2 47.9 1.3 1.6 36.3 1.4 1.9 28.2 1.5 2.3 22.1 1.6 2.8 17.4 1.7 3.3 14.0 1.9 3.7 70 102.3 1.2 0.9 68.2 1.2 1.2 51.6 1.3 1.6 39.1 1.4 1.9 30.3 1.5 2.3 23.8 1.6 2.8 18.8 1.7 3.3 15.2 1.9 3.7 75 109.6 1.2 0.9 73.1 1.2 1.2 55.2 1.3 1.6 41.9 1.4 1.9 32.5 1.5 2.3 25.5 1.6 2.8 20.1 1.7 3.3 16.2 1.8 3.7 80 116.9 1.2 0.9 78.0 1.2 1.2 58.9 1.3 1.6 44.7 1.4 1.9 34.6 1.5 2.3 27.2 1.6 2.8 21.5 1.7 3.3 17.4 1.8 3.8 85 124.2 1.2 0.9 82.9 1.2 1.2 62.6 1.3 1.6 47.4 1.4 1.9 36.8 1.5 2.3 28.9 1.6 2.8 22.9 1.7 3.3 18.5 1.8 3.8 90 131.5 1.2 0.9 87.7 1.2 1.2 66.3 1.3 1.6 50.2 1.4 1.9 39.0 1.5 2.3 30.6 1.6 2.8 24.6 1.7 3.2 19.6 1.8 3.8 95 138.8 1.2 0.9 92.6 1.2 1.2 69.9 1.3 1.6 53.0 1.4 1.9 41.1 1.5 2.3 32.3 1.6 2.8 25.9 1.7 3.3 20.8 1.8 3.8 100 146.1 1.2 0.9 97.5 1.2 1.2 73.6 1.3 1.6 55.8 1.4 1.9 43.3 1.5 2.3 34.0 1.6 2.8 27.3 1.7 3.3 21.9 1.8 3.8 Source: USDA Soil Conservation Service PROJECT No. 16 affiffmav 1,M MEW A EMOMMEMEM PROJECT NAME: Amm BMW AM AMMM MW AMU= F' AMU= ME= 11MINNEW BONN= MHF Design Consultants, Inc. CAW. BY. CHECKED BY. DATE: SHE= No. OF .......... ........... ............... ............ ... ........ ........... ...... ........ ........ ............. L�e . ........... . ...................... ....... .... ... ........... ..o ...................Q Nl- ......... ............. 2 , i .......... ............. ........ ......... .... .. .............. ............ ------- ............... ... ... .. . .. .... ..... .... ... ...4--........... L ....... ......... ....... .......... .. .............. ......... ....... .. .... .. .. .... ...... ...... .......... ...... ....................... .............. D ............ .... ... ....... .. ..... ...... .... .. ..... ..... .......... ....... .. .................. ................. ....... ......... ...... .......... ............ .. ..... ........ ......... .... .............. ....... .......... ............. .......... .. ....................... ...... ...... . ..... -T. IN.......... ...... . ..... ............... .............. ........... ........ ..... ........ -----........ .............. ............. ......... ...... .......................... ............ ............ .. ..... ....... ...... ...................... ............ .............. ...... .. .. ............ ...... ................................... ...........q... ...... .... ......... ......... ...... . ......... .0..... ........ ......... C), I .................. ................ry ....... ...... ........ 7 ..... ...... ........ ...... . .. ............. ..... ... .......... ..... .............. .......... ......... ............... ......... .............. .......... ...... ............. .............. ....... ........ .. ............. ............. ... ............ ........ .... ........... .......... ....... .............. ......... ............... ........... ............... .......... ................. .............. .......... .................. .................. ........ ............ ............................ .................... ............ ..... .. .... ....... ....... ..... ......... ..... ................... .......... ......... ................ ......................... PROJECT No. PROJECT ._ ��4 `. MHF Design Consultants, Inc® cALC. BY CHECKED BY: DAT&. -C'I.� SHMET No. OP` .. .....__..... ............. :.... ... ... ... ... .. ...... ... ... ... .._ .. .... ... __- ... 3 jl -: ... .. ....... ...:... _.. _.............. ..1...,..' ................................. ........_........................... ..........._......................................................... ............................`...... ...:... ....:.........:........:........ ........ ............... .... ....._...... ..; —...; ....._...... ............ ..... —....:......._:.... ............. ......... _. ... :.�... .. - _._...... ... s ........ ............. ... ..............................:.........:...................;....... ............. r _ -- :- � _......_..C .........__... ....3......._ .... ........:....._.... ... .................... _ ...... .... .. ...:... ...: . ...:... .:... ...... .... . .. ... ..... .............................Dc?......`.•..... .r...5......................... ... ... .............. .__ ....... _ . .... .......:......._.... ....._.... ....... .... ...... o...:........ :.: ... ... S - --- ..�...= ...0.0...:__ .'4.1_Ll �-- = .. _a_� S (.. :. 1.... .21..<.. ..... R- ._ ,. ...:.. ... .... _....-..... �: T 7- . • ry - ............................. ............. _. .._ ... : ....... ....... . ...... ...... g� MEOW Em PROJECT No. mmimmum in= WNW Am PROJECT NAME: aj 6 MHF Design Consuffanfs, Inc. CAW. BY CHECKED BY: DATE: SHEET No. or :A ............ s. .1 .. _. :. ... - _..... ...............:....._........_..._...............:............_...._..... _ ... __ ... ... ... ... ..._....: .......:. v� _ -- 5 .--- .r. .... .r� ....._ . ....- . ............:........ ..:................:.:.. .. -........_......... ... ... ... ........................................_................ ...... .2... ....l..L ....�. ` .b. . ...C... . t�2 (16 .. .......... .. 3.1. ........._.... - ... ............. ...-..... ......................._.... ...._......; .. .... . - .... _ ..... ......_ .............. .........[.........c..._._.5..._._,.i._-.....i........ ......_i.,....._T.......... p_ ........:_........!..:..1..�.. .............:.........c_......: . :r` ................._:.........i...... ... ... __.. ... ............. .._ .... _... ��` ...._.c..... _... ........_ _. ... ... ... .. ... .-. _._ --- _ ._. ... ....__... ..__ _. _... ... ... __ .... ... ..._............ ...._............ _ ... _.. ... ..........,.. ... ... ... ... ... ... ........._.. ... ... ... t i conduit and taper down to the channel bottom through the length of the apron. 7. The bottom grade of the apron shall be level (0% grade). No overfall is allowable at the end of the apron. 8. The apron shall be located so that there are no bends in the horizontal allgroment of the apron. Rock Riprap The following criteria shall be used to determine the dimensions of the rock riprap used for the apron: 1. The median stone diameter shall be determined using the formula: 0.02 Q4/3 d5o Tw Do Where: d is the median stone diameter in feet W '4 0 is the tailwater depth above the invert of the pipe channel in feet � Q is the discharge from the pipe or channel in cubic feet per second Do is the diameter of the pipe or width of the channel in feet 2. Fifty percent by weight of the riprap mixture shall be smaller than the median size stone designated as d50. The largest stone size in the mixture shall be 1.5 times the d50 size. 3. The quality and gradation of the rock, the thickness of the riprap lining, filter material and the quality of the stone shall meet the requirements in the Rock Riprap BNT. The minimum depth shall be 6 inches or 1.5 times the largest stone size in the mixture whichever is larger (d). Maintenance The outlet protection should be checked at least annually and after every major storm. If the riprap has been displaced, undermined or damaged, it should be repaired immediately. The channel immediately below the outlet should be checked to see that erosion is not occurring. The downstream channel should be kept clear of obstructions such as fallen trees, debris, and sediment that could change flow patterns and/or tailwater depths on the pipes. Repairs must be carried out immediately to avoid additional damage to the outlet protection apron. 7-115 De ign Criteria Apron Dimensions e dimensions of the apron at the outlet of the pipe shall be determined as follows: 1. The width of the apron at the outlet of the pipe or channel shall be 3 times the diameter of the pipe or width of the channel. 2. The length of the apron shall be determined from the following formula when the tailwater depth at the outlet of the pipe or channel is less than one-half the diameter of the pipe or one-half the width of the channel: 1.8 Q La + 7 Do 3/2 Where: R L is the length of the apron is the discharge from the pipe or channel Do is the diameter of pipe or width of channel 3. When the depth of the tailwater at the outlet of the pipe or channel is equal to or greater than one-half the diameter of the pipe or the width of the channel, then the following formula applies: 3.0 Q La D 3/2 4. Where there is no well defined channel downstream of the outlet, the width of the downstream end of the apron shall be determined as follows: a. For minimum tailwater conditions where the tailwater depth is less than the elevation of the center of the pipe: _ = Do + La . For maximum tailwater conditions where the tailwater depth is greater than the elevation of the center of the pipe: = D + .4La 5. Where there is a stable well-defined channel downstream of the apron, the bottom width of the apron shall be equal to the width of the channel. f 6. The side slopes of the apron in a well-defined channel shall -be 2:1 (horizontal to vertical) or flatter. The height of the structural lining along the channel sides shall begin at the elevation equal to the top of 7-114 FIGURE 7-45 -- P/R FOR TRAPEZOIDAL CHANNELS 70 60 Depth (d) 1 50711 Z ire" Z_i - --i Bottom Width (b) � 40 v 30 25 20 �� 15 C0 C-3 10 1 2 3 4 5 7 10 20 30 40 50 ijottom Width /-Depth ( b / ) Source: Rockingham County Conservation District O Median stone diameter (d50), in inches n tid 1 2 3 4 5 6 6 10 20 30 40 ----1�� ii. r_Il.,i L_ liH � i I II •ICI ' ' ii !'. i l ' _ ' I I _ ".! I _ ' !. i l .. /'�' I li.! ; .li..� '' .I I: i .i:. I .:' . .I!: q --� ! .i' 7d t�f I (III i O - - -- iJ u_ a tL 0y iii iii '!I -rll �:t 'i•ti .I ii. ?v I i I ;11 l: _ i :Ti--)I (�• I i ;11. i�: Ic _ liJ I II i I iii •'i !•'' ,I' !I,I '!. I! , _�l_1_ l ;Ijl l•I' �. Ilij ;idil;;III: a` I I ' I I '•i! I „ i' Ijil i; lit: j - :f: i I I I j I r II't :i I!li j ilf' -I :-f all n IC!I I i ii �., i is t �.I (,I I :I: ii' ! ' i� iu .,• r it Ili; i Pi I ! I 1 -i- ii i 1 .I Ij� 'I': II c ' I I i;. 11� ��� �I. III. i�il i I If�jlt 1 II i;,1•;I• I h�i) i Ij h , I Ii I j li I' i,ll IfI I' O O pd i i a I I I { ! ,I I!� I , Ili. ,.. 1 1 ! i„ i I I,; I I'• I ( I ,: I i � jil'� ! i � ,.;. � I :I I '•(Ijjl:i J a I' I _ 'ii: '1 •iii - - -ALL.i. ! I : ! _ ! i t L I A ! .li I' ' ,In ; {ii: .i!i :li I':.i. ! ' I' 'j Ili• '' '!1 ''' i. ' i I :� 'I; -! j, '!� •,!i ii: H _.�..' —'-1'-`i:)_�i._i -j-' it = - -i-(-�--•--� ' .L .1 i - ;I•' i T ____ •, T" i:l: t7 _ - i'ii . O I j ' !' i t 1 �{j1 itI ,) 1. C7 N ; Ii.l� I�u j!1,r�- lI � ;I� II iii!;r.!?ll .1 ' I I pit �' 'I• I I�rr I�i I! ;il1.i.' ! I T 1 ; ri 'i'llr-'l !':A •' 1 '"t �tU illi'il1 F' 00 N I I nt I I j 'I! !I!' I N P we to /� hy' o 'g lI 11 _ 'i �• l �; 11 jlrll il!j ij. I i I l f i. • ' I I I ! il' a;: l� is '!±i31 i'1 1111 ' ~i' M d 1 ,-� �x'� ::6. '' R z/' 7:P I il' Y j !j llli .i.. .I ,b' L 14: III.�'I _ I -� ti .�.I.i I! .Ilj ;�:'..I.i•!' .�-�-' ! �.,..: rl, Ij•. .1. { i l..'1 , •� i-�;1 r►j !ii ' i; (r i ;III i;�. ;i , '. i -i I I r , �I 'i' j;:l iii I I �, iii' I :� �'� ; t iill i l I,:i. ! i ilil i li I' I I Inn i I I I i � ! j! II'l III 111 II! I � jli III: il! .il.�lll j �i I NI i 001 .002. .003 .004 .006 .008 .01 .02 .03 .04 .06 .06 .1 Channel bottom slope(Sb), ft/fi Appendix A.-TABLES Table I.- arming rou»hness coetlletents,n! I tl t IV.Highway channels and swales with amirdatreJ vegetation at M y via shows orr flu velocities 2 and 0 Lp s): $ 1 A th of it0w uP to R7 foot; bfaaning4s s a L Caleram losed Concrete pipe------ .....».ROII-0 Oli 1'a.lti to 2 ; --«»...»•...» R 6T-0.0{b Cory tad••metaY Pipe P R 04 4L 06 B.1.21s 7 3S-ln.�rsvgatioa per:a 0.024 2 Good etusd. .._»........-...�. IL Plain or fully trd------- - b.P a I enBth anent 12 Qvl eirmMlerence payed):ed invert for 25 and 6D aw Lmi;b (I Flow full depth_---•». - ---0.021-0.018 L Farr Stand,any »___...._.....» 0.Y4 0. . Flow 0.6 depth_ ...»._-...M.»_» gth about 12 _. .-».. »..... y. 0.25413 Flaw 0.6 .0.OYU-0.0I1 b.1�. about 24 2.6 by 2_hL currap (&Id as03 B.Depth of R7-1.5 feet b tam bv1Ya C.Vi ed clay Pipe---- -------_---...------O.M2-0.0 8. 1.s r to,lnehes -._,_ R OS-0.035 , D.Cast.iro n pipe,ttnroated-_ -_.«-.� -._.__._ »»»__---_•__>___.. £.8ttt)pips_---.- ._.�-«_.__-__- 0.000-a ou b I cnCsh i to 6 incise».«.»...... .............. 0.06-0.04 F. Brick..___------_._»..•.-....___-- «._.0.0144017 2 Goad Stmt`l.an9 0.1270.0T G,Monolithio conrleete: a.Leath about 12 ffi -__- ».__.._-__«_-___ . 1.good forms,tough.._.----- li 016-b.oiT b.Lcaath abut 24 Sne4ea.- R�YO 2.Wood forms,smooth_.-________-_.-_ -.ROt2-•o.014 8 Fair stand,any gmsen. -------_ 0.10-0.06 3.Steel formL- _.__._--»._.0.M2-0.013 a.II e�about 12 fa -.»»-__ ;H.Cemented rubble masonry 24 is ---_. 0.17-0.09 L Concrete IIoor and top._.__.__ -.- R 0174.023 . 7_Natural floor-------__ti.___..-.._._._.___---~_ 0.014-0.025 V. AAreet and erpresawayrQuarer I. Laminated trtatod wood-------------O.M&A017 A.. Concrete ratter,trowe*1 finish_-_-___-_________-_-_ 0.M2 7. S'itroed clay It=plates »�.-.._..-_»_ (L otS B.Asphalt pavement __...._...-_ 0.01E • i.smooth texiare..........._.-......__ 2-Rough texture----------_.-.__-.--»__._-»«. Qo16 •11.Q>xR cllQnflels,lined I ts(raight altaam�t):1 C. Concrete gutter with asphalt Pscament: A. Canerete with ed I sty i indicated;-211no d 1.dmooth._-_---___._....«.___._._-_____._.... 0.011 1. Formed,no fin1s1L.______---_•_- .........0.013-0.017 2.Rouch_-_.-.-:-___._ --_______--------. 0.Dib 2 TraRal finbh.- _.._«_.-._____._.-..«._....__..0.0]2-0.014 D.Conerett pavement 3.TTowolttish_•............. -- ---•----....ROtSO.dl6 L Float9nisb-_-_-----_.--_________•-_-____----_--__-__ o.oli Float -.___ 0.015 {.Float ihtkh.come grace]on bottom,___- 0.016-0.017 2.Broom Ankh_______________________________________« ne,good section_- - ---.0.Q16 0 010 E Far gutters with scroll dopy,where sediment may aa4- 3.Dua0. Dunne,wary section----------------- - R018-O.0 R mnlat@.increase short ratan o(a by_ -__•------_-_- O.OOi B. Concrete,halt=foal,finished,aide as Indicated'.- --0.0t6-0.017 rL l atom 'i 1. Dressed atone In mortar__-------------_____. 2. Pandora stons in mortar_____--»-._-_--_____-0.017-0.MPA.Af]nor su ®(Surface xfdtts at flood Stags Ices than Y� L Cement rubble --_..-____- 0.�-tOZ 1 0.OIQ-0.Om .Fairly regular Section: �. 4.Cement rubble masonry.PIL ------ - a.Some grass sad weds,]If Lk-or no brush...........0.030 0.M 6.Dry rubble(ripprraap)�.___-_____._._-_----_•-----0.0 030 wth of wreds,depth of flow mats Wly C. Gravel bottom,sides as]ndtcated: b•Die t70 1. Formed concrete__--- •--- 0.017-0.am ter than wted belrht__ - -___.-_-_-t1.035--0.0 S 2. Randum stone in mortar__-.- --------- (111�-0.023 / e Sane wecds.l:tht buo_eh oa banks-- -_--0.M5-0.05 3. Dry rubble(riPrap)-_--------•-.------------Q023.0:033 d.Salsa weeds, scavy besrgh an imnts--------------- o.fi5 0.07 IEVrt-�017 E. rome.weeds,dense willows on banks______________ 0.Od-0.0S D.Brt:>y____------------------ ___---__. L For treys within channel,with br5nrlwtavbmergad I{ Asphalt 0.0I-0• l 1. Smooth_.--____ _.»----------_- 0.OIS at high state.iflcvr»aII atmr@ rebuts by-.__.._ 2 Rough-------------_--- __-_ ._..- 0.016 2.Irregular secdors with►cos,sllt t channel meander, F, \laud,pbane�dd,,akan_.__.-- »..-----'_.ROIL-0.01I tnatsso cntacs gieen Iris, a sbOnt-__- 0.0I-0.01 G. Concrete-lined 3 Mountain t- I t no reerbrushallm al ng banks 1, bsnks ub- 1. Goodataitoa --»__.._._-- --..._.-.0.02021-0.027 at1Y`tccp stets and brush clang banks sub - 1.Irregular section______-.. - merged at hiyhm:tsgt a..Bottom of era L cobbles,and few hould"s------- 0.9-0.05 b.Bottom of cobbles,with krge boulders_------------- 0.05-0.Cry M. Open chnnnela, execrated 1 (straight r Uatmeat,s natural B.Flood plohwx(nd)aant to natural streams): Rntnt): 1.pasture,no brush: e 0.030-0.035 A. Earth.uniform section: a. Short Crass_.___-------_--------_-•-------- Q OYd 0 018 b. Ilfah ._.._ -_• ____________________«-.0.035-a05 i. Ckaa,rrcentl�romPleted..-__--------...........0.01E-t cm 2.Cultirated auras 2. Clean,after weathering---------_--------------Q022-0.027 \0 crop R 404 3.With short gross,few weeds-_-»_---- n erow»_._____-_.__-- __-___--_---R035 0 045'. 4.In rally soli,uniform section,rat -»._._«.0. 0� {x._ -_-_______________________ ` � e. Slatltre Acid at0ps._.._.__._».---•-•_..----__-__ 0.0t-0.05 _- B.Earth,fairly uniform, .._....0.0224112E 3. flea"weeds.scattered brush_----_------------- 0.05-0.03 1.No2. Grass,some weeds_._rp.»-.-- 0 0 - 4.I.laht brush and trees:R 0.t�x05 3.Dram steeds a tie ]ant!in d d7aastah.._.-O O:iO-0 03b a. Winter-________________._.-_- - aqua _..0.025-0. b.Rummer-------------1;-- •----_-_--_.__- O.000 DS 4.Sides clean,gravel bottam_-_.�_____-_•«__---. S.Sidra clean,cobble bottom----------._..-._.-_._.0.030-0.040 S \trdlunr to dense brash:n _____________ 0.07•Q.11 C. Dratllne ezcarsted or dredged: a R iatn- --•-_._._._....._«.. 1. oveRstatiost_..-• ..-».•.«0.@25-0.033 b.Summu________________--- ----__ 0.10q Ib 2 Licht brush on _._ ....---0.015-0.050 EL Dense aiU;ws,S=mer.not bent over by current_.. 0.ib b 20 -' D.Rack•. ..-��»-�. 1.Cleared land with tree stamps,100-ib0 per acre:.-» 0.Of 0.OS 0{)36 to sprents_ -- R C5 R 08 1.Based on design section-_-_» ._..»....» With heavy R�wth of s;x,outs--------------------- 2.Based on actual tin : a few down trer�icicle under- Flood a. Smooth and antfatm..»..-_._.«_...»_._.. »»0.035-0.010 8 EIcnrcatond of timber, z_. . . b 3 and __ _ R040 0 04b - _--. >. ...»...and brush latent~ a Flood depth leR hran __. 0.10-0.I2 E.Chamte not m .. -.. 0.L"dL 16 1.Dense weeds,high as depth..__..».....-. O.Oti-0.12 b. Flood depth mdef 2. Clean bottom,brush on aides---___._._--_..»-.__ 0.03 0 C.Major IL).. (Surface width at tlaod stage more than 3. Clean bottom bxoah on sides,highest of fig ' R 1�0�t1 is imhlor streams of ddvXdruo^nit�nt�of Ifess q Dense> �lih .._.....««_.» rIIMlvr ftnistehee offs nd hr teregulw banks or vege- dr a d.Follor rreeomn�endationniin iwhllestlon cited t llorger strpoms of most .Vularsle The n,wILhinnt of*Iwu orhrush m3ybetothe • ragalatscetlo0. .. 0.02E-Q.033 Footnotes to Coble 1 appear at the top of page JOL Farrteat_--------•-- P - o® 'c*O 7.0 6.0 4.0 77 2.0 qcy - ---------- N < OG J� .05, III .03 f � 7 8 S 0 5 20 40 So 60 2 ,,..!NUTES) D' IRA TiON Picu!"S) E 0 r-7 P Figure 10-4. Intensity Dura'don Frequency Curve for Boston, MA 0 1 r 2-YEAR 24-HOUR RAINFALL (INCHES) 2 . . ; "I_.,`�i r �/ •',• '1 i .t• f' ,' .' ( �' , I •I i )I �. � i /' .LIB ', - -. � ,fir �,;• � "3 2/�, ' '. c .•,. .•I' ''� i. I. jl I I .I , , ( ! I I•.�5 .,,, +• .' •1' .� "( ` 7 ` ,f � t '� �' ' � � I L I I ( I I I i I � '' i• t �� F.. ' r '� I ) (( It ( I I I• �•,t F/' ` { 1 t '''r 3.5v [� ,n :� U H � ';' r 'I i .i it I I yl�i, .1! f i I I ; I i '�. t '1i,, � •t., 1 i i , ��T; .r '. a.. OGvt dd1. ArL'tS 2 AP !a2 ' I S p Yi ES , , r I � I I• ,' •t � 4 rl u. 4 VCCJi 4 5 1 ; ; �• L _ I I I I ! I I •`. t i i i t d, ',•i•I i' �t 4 3.500 t 25 I. I 'S5 6 35 •X 'n. ' .. �, 5 � , � � 5 5 r " 0 [Do 200 300 400 MI 6 {6 4 ALBERS EQUAL AREA PROJECTION 4, 5.5 I 4 5 STANDARD PARALLELS 25'AND 45' 5 •'� � 4A 394951 Fiartarc FS-;F.—TWo-year, 11-hotlr r;dlifltll. -e- 10-YEAr 24-HOUI RAINFALL:(INCHES) - (. ''F i• •I Y �f ' I i 3 ! II r / 3 5 J r 4 ' ,i '��, �� i �:r.•,'� rf�J y I J'• 4r' .. I i '�' � '' {-. /.�iI 'J3:S' 3• n �': 'A ,, �_. � ,, I'. 'I r �; ,� i j I y. � •,� .' I I r ��N; .I; '! �1,i� I i •i � i �' i �, i i ,_� I r I• i ( _l. l Ir�' `TI ./,fit �.t• ' (.,•. .�)r i �''� , T i i ; '' �'3' i .f ( �. ` f i �',' I ;?.mil'✓./( ' '' i'r i / 1 i 1 I I i (�� 1li(( I I�.i irt(}:x•.1 i, 3.. t''`:�'' t• y � ';1 '1u �....j-' �� �,I t,, l.;iY''', I � '' I I � / (I, (' ��. (r. } �LI J_i i 1.j 1 I �1. ,I�:. (I i y •• 'rr�;1� .�4��r• �.;�11: � � 6 o 'Alc�s.2 � (/ ;� .� .. r'.. �- j E �'R hrA x ( I ` ti .I. ��(�� � •r '�.,f'�� j .} y..- �• '`• o y 1 ' �.., f �' ( I q Tt•�1 ' r I � I i. ! . r`1 i, '�,�,.�%�.t ' I �' '� ` .-,' �w, / 6 '�, r ', I i I I I (� L•,'+!i. '1 �1 i�t 1! •'''S:t'`f��;� {,'� J` ,•1 '^• 7 lD n - I�\i ' l' ' r r ' 1 'i`.' 1 •;'` 1''-y t '1 7 .y Y , i t'L( '.Y \ 0 �! �'. I. I 1 i� 2i,1`I ( '.,h..♦: ,^.-� 1 i ' I'l i 'I i •'IIi• II �• l.- I i I ,i I ' ''-("' ,f.! '� �•�'�•('`' A ,�.L. t, 'F,• Sr4 C-r y ,•�_ ; •I 1 ( i I 1 I - i, i I , '.1 i ' r, ?' 5 ( �f.y'�( •' �,y •1 (�`)i, y'i tQ. / 10 t 0 IDO 200 300 400MI B� j`' 1 i •7 'f I ALBERS EQUAL AREA PROJECTION 9' ,.r(y .` (.�:• ( STANDARD PARALLELS 25'AND 45• ®! - 1 r Figure B-5.—'E'en-year, 21-hour rainfall. i 100-YE� 2 -N®UR RAINFALL (INCHES)' !. r a a �'1� i', � .� I l 'III ) i i•• �� Yl I�t !' ,� I I I I L, I'� \'I ( i�,1. •�i '�I '11 •• '�' I .l'v , 1.>, s• ( ! r � I I y .,.. I. I I i.'( ,I .�.� ,l ', �,,, i ,, t� �•1 9 e I "r I •� 1 ill 1 I ( 1 I (. � 1 (':i? � 'i �' ' ' Y 1r''•. }•�. '; W o '.. I.I. ', �J�; ••� �f,I. ," '•1 � C �t; { APS:pQR !I ,.. i 'I I J � p, ; ;'� '�'1. is �' ICI ,{ C:I :•�! .�' r 7 1 EST ; 9 O -',_ L. �•i-•I ! r jI ( I I ,�. r .1 j' ' I � i' ' ')'I `1'/i,'..,`,�(.tt; . '" �i rat`�,�, '� � � n :. :f `� i i i , I I I I ` r ••, .I , I' I :1 .\�.1 �� 1 1 txj �,.i Ili I I �. I. •1'i . '/'I �' i .l, A cam. �• i Il � r � I I%, I '�� I. ,� `L' L; v• —d— M 14 15 t •• i � 9 , I I � 13 i ' 3 u 1 W l'• /" ( I ' ' , 0 100 200 300 400 MI '2 } r. 110 14 ALBERS EQUAL AREA PROJECTION 11 a? 13 I ' STANDARD PARALLELS 25°AND 45' ti {% .. 4R 39495-6 cn Figure Ii-tt.—(4nc-hunthecl-scar, 2i-flour rainfall. Pond-2 Detention Pond Design & Analysis by Michael K. Glazner Copyright © 1986, 1987 1988 1989 b Michael , y a I K. Glazner l c0 i ® �- USDA, SOIL CONSERVATION SERVICE Draft TR-20 Project Formulation Hydrology Revised By Northeast NTC and Hydrology Unit Soil Conservation Service May 1982 Draft of Second Edition, May 1983 s ion TR20 XEQ 4/25/96 MHF#40996 CHANNEL LOT#I TR-20 RUN 20 JOB I PASS I REV 09/01/83 POST-DEVELOPMENT 10 YEAR DESIGN STORM HYDROGRAPH DEVELOPMENT 30 PAGE 1 FILE NO. I COMPUTER PROGRAM FOR PROJECT FORMULATION-HYDROLOGY USER NOTES THE USERS MANUAL FOR THIS PROGRAM IS THE MAY 1982 DRAFT OF TR-20. CHANGES FROM THE 2/14%74 VERSION INCLUDE: REACH ROUTING-THE MODIFIED ATT-KIN ROUTING PROCEDURE REPLACES THE CONVEX METHOD. INPUT DATA PREPARED FOR PREVIOUS PROGRAM VERSIONS USING CONVEX ROUTING COEFFICIENTS WILL NOT RUN ON THIS VERSION. THE PREFERRED TYPE OF DATA ENTRY IS CROSS SECTION DATA REPRESENTATIVE OF A REACH. IT IS RECOMMENDED THAT THE OPTIONAL CROSS SECTION DISCHARGE-AREA PLOTS BE OBTAINED WHENEVER NEW CROSS SECTION DATA IS ENTERED. THE PLOTS SHOULD BE CHECKED FOR REASONABLENESS.AND ADEQUACY OF INPUT DATA FOR THE COMPUTATION OF"M" VALUES USED IN THE ROUTING PROCEDURE. GUIDELINES FOR DETERMINING OR ANALYZING REACH LENGTHS AND COEFFICIENTS(X.M)ARE AVAILABLE IN THE USERS MANUAL. SUMMARY TABLE 2 DISPLAYS REACH ROUTING RESULTS AND ROUTING PARAMETERS FOR COMPARISON AND CHECKING. HYDROGRAPH GENERATION-THE PROCEDURE TO CALCULATE THE INTERNAL TIME INCREMENT AND PEAK TIME OF THE UNIT HYDROGRAPH HAVE BEEN IMPROVED. PEAK DISCHARGES AND TIMES MAY DIFFER FRONI THE PREVIOUS VERSION. OUTPUT HYDROGRAPHS ARE STILL INTERPOLATED,PRINTED,AND ROUTED AT THE USER SELECTED MAIN TIME INCREMENT. INTERMEDIATE PEAKS-METHOD.ADDED TO PROVIDE DISCHARGES AT INTERMEDIATE POINTS\WITHIN REACHES 1WITHOUT ROUTING. OTHER-THIS VERSION CONTAINS SOME ADDITIONS TO THE INPUT AND NUMEROUS MODIFICATIONS TO THE OUTPUT. USER OPTIONS HAVE BEEN MODIFIED AND AUGMENTED ON THE JOB RECORD,RAINTABLES ADDED.ERROR AND WARNING MESSAGES EXPANDED,.AND THE SUMMARY TABLES COMPLETELY REVISED. THE HOLDOUT OPTION IS NOT OPERATIONAL AT THIS TIME. PROGRAM QUESTIONS OR PROBLEMS SHOULD BE DIRECTED TO HYDRAULIC ENGINEERS.AT THE SCS NATIONAL TECHNICAL CENTERS: CHESTER,PA(NORTHEAST) --215-499-3933, FORT WORTH,TX(SOUTH)--334-5242(FTS) LINCOLN,NB(MIDWEST) --541-5318(FTS), PORTLAND.OR(VEST) --423-4099(FTS) OR HYDROLOGY UNIT.ENGINEERING DIVISION.LANHA.M,MD--436-7383(FTS). PROGRAM CHANGES SINCE MAY 1982: 12117/82-CORRECT PEAK RATE FACTOR FOR USER ENTERED DIMHYD CORRECT REACH ROUTING PEAK TRAVEL TIME PRINTED WITH FULLPRINT OPTION 5/02/83-CORRECT COMPUTATIONS FOR--- 1.DIVISION OF BASEFLOW IN DIVERT OPERATION 2.HYDROGRAPH VOLUME SPLIT BETWEEN BASEFLOW.AND ABOVE BASEFL0IW 3.CROSS SECTION DATA PLOTTING POSITION 4,INTERMEDIATE PEAK WHEN"FROM"AREA IS LARGER THAN"THRU"AREA 5.STORAGE ROUTED REACH TRAVEL TIME FOR MULTIPEAK HYDROGRAPH 6.ORDERING"FLOW-FREQ"FILE FROM SUMMARY TABLE 1'3 DATA 7.BASEFLOW ENTERED WITH READHYD 8.LOW FLOW SPLIT DURING DIVERT PROCEDURE:2 WHEN SECTION RATINGS START AT DIFFERENT ELEVATIONS ENHANCEMENTS--- 1.REPLACE USER MANUAL ERROR CODES(PAGE 4-9 TO 4-11)\WITH MESSAGES 2.LABEL OUTPUT HYDROGRAPH FILES WITH CROSS SECTION'STRUCTURE,ALTERNATE AND STORM NO'S 09/01/83-CORRECT INPUT AND OUTPUT ERRORS FOR INTERMEDIATE PEAKS CORRECT COMBINATION OF RATING TABLES FOR DIVERT CHECK REACH ROUTING PARAMETERS FOR ACCEPTABLE LIMITS ELIMINATE MINIMUM REACH TRAVEL TIME WHEN ATT-KIN COEFFICIENT EQUALS ONE Test Scrim E :�6-? 10/1/86 Ground Surface r " 0,0„ Ololl Very loose, to loose, cry, FINE SAND, some organic silt 2,017 a ' decayed leaven. Very dense, dry, FINE TO COARSE SAND, some fine to coarse gravel, trace inorganic silt and cobbles. 26-30-:1- 5,611 -28 7'0" Dense to eery de.^.se, dry to wet, FINE TO MEDIUM SAIND, some coarse sand and inorganic Qipll silt, trace fine to coarse 14-20-21 gravel, few cobbles and boulders. 10'61, �/411 1u1011 1�1611 19'C" 101011 Very dense, wec, FINE E i t c C At 6u-12C;1" SAND, score fine to ecarse gravel 1C,711 and inorganic silt, some weather ed rick, trace cobbles and ;21C1, 22 1 1 11 bou�aers. 22, 1„ Refusal at 2211" with Water level at 101511 hollow stem auger and upon completion. 12010" with 140# hammer. Note: Prior attempt augered to refusal at 167. IQ „ - is _ .r.f 7.,. tn:..... •..,.ri:� .... ..., .,. t.. .., : f Test Boring B-86-11 Test Boring B-86-10 10/2/86 ,0 10/2/86 • 2 5�"-q "r 01011 OL C o l ofl 0'of Ground Surface Loose ctr' C ii , O e organic A 11p11 6-3- oose dry F N , so�e O,o 1-2_1 '0” 1 :01t Media dense, dry, FINE TO 116" 11011 o ' 'v'' Pa P� 3 i NiEDIUPI SAND, some inorganic J Dense to very dense, dry to ,bit 3t00l silt trace-coarse sand. moist, FINE TO MEDIUM SAND, Dense, dry, FINE TO MEDIUM SAND, some coarse sand and fine to some coarse sand and fine to 416Y, coarse gravel, some inorganic medium gravel, some inorganic 2C-21-18 silt, trace cobbles, boulders 4161- silt, trace cobbles, boulders 6fo" and clay.' 16-22-28 and clay. 6'0'1 Cron 18-21-24 g 1 61i 10,61, 10'61, 101 all 34-120/4, 1014" End of boring 10,61, Refusal at 101411 Q 120/41, with 140# hammer. No water encountered upon completion. No water encountered upon completion. • r r' {r i E l